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Abstract

This work describes two anisotropic optical flow inpainting algorithms. The first one recovers
the missing flow values using the Absolutely Minimizing Lipschitz Extension partial differential
equation (also called infinity Laplacian equation) and the second one uses the Laplace partial
differential equation, both defined on a Riemmanian manifold. The Riemannian manifold is
defined by endowing the plane domain with an appropriate metric depending on the reference
video frame. A detailed analysis of both approaches is provided and their results are compared
on three different applications: flow densification, occlusion inpainting and large hole inpainting.

Source Code

The C and Octave/Matlab source codes implementing the algorithms described in the paper,
and the online demo, are accessible at the associated web page1.

Keywords: optical flow inpainting; absolutely minimizing Lipschitz extension; Laplace-Beltrami

1 Introduction

Optical flow inpainting is a pervasive problem in many tasks in computer vision ranging from semantic
video analysis and video editing to optical flow estimation in occlusion and disocclusion regions.
Occluded and nonoccluded areas represent one of the major difficulties in optical flow estimation due
to the lack of correspondences with the next and previous frame respectively. A common solution
is to inpaint or fill in the optical flow in such regions. In this work the problem of filling in an
incomplete optical flow is addressed using anisotropic interpolation in Riemannian manifolds, as
proposed in [18]. The interpolation is solved on a Riemannian manifold in order to take advantage of
the geometric information given by the video frames: Given a video and an incomplete motion field,
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each 2D frame domain is endowed with a Riemannian metric based on the video values. Then, the
missing optical flow is recovered by solving an appropriate Partial Differential Equation, such as the
Absolutely Minimizing Lipschitz Extension (amle) or the Laplace equations, on a 2D Riemannian
manifold. The inpainting process is then stated as a boundary value problem given the known values
on the boundary of the interpolation domain, which may include isolated points. The two coordinates
of the optical flow are separately reconstructed. Some authors have approached the problem with
different algorithms (see, e.g., [9, 5]).

The amle equation, ∆∞u = 0, where ∆∞u is also called the infinity Laplacian, was introduced
by G. Aronsson in [2, 3] and uniqueness of viscosity solutions was proved in [12] (see also [4] for
a review). The amle allows to interpolate the missing values of a function given on curves and
disconnected points. It appeared as one of the interpolating operators satisfying a set of suitable
axioms in [8]. This axiomatic approach was extended in [19, 7] to interpolate data given on a set of
curves on a surface in R3. The amle and the biased amle on a manifold were applied in [13] for
depth interpolation in images or videos where, due to acquisition failure, large regions of incomplete
depth information often appear. The classical amle has been also used in [1] for the interpolation
of digital elevation models.

The Laplace-Beltrami operator can also be used for anisotropic interpolation in Riemannian
manifolds and will be used in this paper to recover the missing regions of the optical flow. The
Laplace-Beltrami operator is a generalization of the Laplacian to Riemannian manifolds such as sur-
faces or as the Euclidean space RN endowed with a non-Euclidean metric. The anisotropic diffusion
produced by the Laplace-Beltrami operator has been extensively used in many areas such as image
processing or shape analysis.

In this work a detailed analysis and description of [18] and a variant of it using the Laplace-
Beltrami operator are provided. The rest of the paper is organized as follows. Section 2 explains
the amle in a manifold model, together with its discretization using the finite graph formalism. It
includes an analysis of different metric choices, discretization resolution and parameters boosting
the discrete model accuracy. Section 3 describes the Laplace-Beltrami operator used to interpolate
the optical flow. It includes an analysis of different weights and a graph formalism based approach
reducing the problem to a simple linear system. A detailed description of the parameters and the
algorithms are provided in Section 4 and Section 5 respectively. Section 6 illustrates the behaviour
of both algorithms with experimental results. Finally, Section 7 concludes the paper.

2 The AMLE in a Manifold Model

Given a video I(x, t) defined on Ω×{1, . . . , T}, where Ω ⊂ R2 denotes the image frame domain and
{1, . . . , T} is the set of discrete times, let v(x, t) = (v1(x, t), v2(x, t)) be the optical flow of the video
I, i.e., the apparent motion between a pixel x ∈ Ω at time t and the corresponding one at time t+ 1.

At time t, v(x, t) is assumed to be unknown on an open region Ω0(t) ⊂ Ω whose boundary,
denoted by ∂Ω0(t), consists of a finite union of smooth curves and possibly isolated points. In order
to interpolate v in Ω0(t) taking into account the objects in the video, the whole domain Ω is endowed,
at each time t, with a metric g(t). LetM(t) = (Ω, g(t)) be the corresponding Riemannian manifold.
The motion field v in Ω0(t) is completed, at each time t ∈ {1, . . . T − 1}, with u = (u1, u2) such that
u1 and u2 are solutions, respectively, of the geodesic amle equation{

∆∞,guc = 0 in Ω0(t),
uc = vc, in ∂Ω0(t),

(1)

for c = 1, 2, respectively. Newmann boundary conditions are used on ∂Ω. The operator ∆∞,guc is
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defined as

∆∞,guc := D2
Muc

(
∇Muc
|∇Muc|

,
∇Muc
|∇Muc|

)
, (2)

where ∇Muc and D2
Muc denote, respectively, the gradient and the Hessian of uc on the manifold. To

simplify the notation, the dependence on t of g andM was omitted and will be omitted throughout
the document; the subindex c (associated to the optical flow coordinate) will also be dropped in what
follows if no confusion may be caused. Using a coordinate system and the Einstein’s convention, the
pde in (1) can be written as(

∂2u

∂xi∂xj
− Γkij(x)

∂u

∂xk

)
gir(x)gjs(x)

∂u

∂xr
∂u

∂xs
= 0 in Ω0, (3)

where Γkij(x) denote the Christoffel symbols in that coordinate system. When M = Rn and g is the
Euclidean metric, the pde (1) is called the infinity Laplace equation and the operator in (2) is known
as the infinity Laplacian. For our application, the manifold M is a rectangle of R2 endowed with a
Riemannian metric g. The metric g is defined in this paper based on the local geometry and texture
content of video frames and several definitions are tested. For instance, g can be given by affine
covariant structure tensors [10] or taking into account spatial distances and photometric similarities
as detailed in Section 2.2.

2.1 The Discrete Model

The amle equation is solved on the manifold with a numerical algorithm which is based on the
eikonal operators for nonlinear elliptic pdes on a finite graph and which was proposed by Manfredi
et al. [17, 16]. In particular, the discrete grid of Ω ⊂ R2 is considered as the nodes of a finite weighted
graph G. As usual, we consider a grid size h = 1 in the horizontal and vertical directions. We will
denote by V the set of vertices of G = (V, E , ω), where E ⊂ V × V denotes the set of edges between
pairs of nodes, and ω : E → R denotes the weight map defined on the edges. These weights on the
edges depend on the given metric g and are described in Section 2.2.

Given a point x on the grid, let N (x) be a local neighborhood of x. Following [16], the positive
and negative eikonal operators are given, respectively, by

‖∇u(x)‖+
M = max

y∈N (x)

u(y)− u(x)

dg(x,y)
, ‖∇u(x)‖−M = min

z∈N (x)

u(z)− u(x)

dg(x, z)
, (4)

where dg(·, ·) denotes the distance according to the metric g between two points. Then, the discrete
infinity Laplacian corresponds to

∆∞,gu(x) =
‖∇u(x)‖+

M + ‖∇u(x)‖−M
2

. (5)

This yields the following iterative discrete scheme used to solve (1)

uk+1(x) =
dg(x, z)uk(y) + dg(x,y)uk(z)

dg(x, z) + dg(x,y)
, (6)

where y and z are the pixels providing the maximum and minimun in (4). As proved in [17] the
solution of the numerical scheme (6) converges to the solution of (1) when the local spatial resolution
dx and the local directional resolution dθ in the neighborhood N (x) tend to 0. For x on the grid,
let x1, . . . ,xN ∈ N (x) denote its neighbors. The local spatial resolution is defined as

dx =
N

max
i=1
|pi|, (7)
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where pi = x− xi is the direction vector. The local directional resolution is defined as

dθ = max
p∈SN

N

min
i=1
|p− p̂i|, (8)

where SN is the set of direction vectors {pi}Ni=1 and p̂i = pi/|pi|. The effect of these resolutions will
be analyzed in Section 2.4. In [18], this scheme is applied for x ∈ Ω0 keeping the known values of
v1(x), respectively v2(x), on the known region Ω \ Ω0 for all k, and initializing uk=0(x) = 0 in Ω0.

2.2 An Approximation of dg

Given any two points x and y on the grid, the geodesic distance dg(x,y) is defined as

dg(x,y) = inf
γ
{ lengthg(γ) : γ is a curve on the grid joining x and y}. (9)

This distance can be computed using Dijkstra’s algorithm, given the distance between adjacent nodes
on the grid graph of the image. In practice, for any pair of pixels x,y on a neighborhood N and on
the grid, we approximate the geodesic distance dg(x,y) in (9) by d(x,y), where d(x,y) is defined by
one of the following possibilities:

d1(x,y) =
√

(1−λ)‖I(x, t)−I(y, t)‖2+λ‖x− y‖2, (10)

d2(x,y) = (1−λ)‖I(x, t)−I(y, t)‖+ λ‖x− y‖, (11)

d3(x,y) = (1−λ)‖I(x, t)−I(y, t)‖2+λ‖x− y‖2, (12)

d4(x,y) = (1− λ)‖P(x, t)− P(y, t)‖2 + λ‖x− y‖2, (13)

where λ ∈ [0, 1] and P(x, t) denotes a patch of I of size s × s pixels centered at (x, t). Notice that
the definition in (12) is a semimetric, i.e., it does not satisfy the triangle inequality, and that (13) is
a generalization of (12) using patches. From now on, the discrete scheme in (6) will be referred in
terms of the weights ωi(x,y) = 1/di(x,y), i ∈ {1, . . . , 4}, which yields the following discrete scheme

uk+1(x) =
1

ωi(x, z) + ωi(x,y)

(
ωi(x,y)uk(y) + ωi(x, z)uk(z)

)
. (14)

To experimentally analyze the behavior of the interpolation method with respect to the different
metric g (thus, on the different weights’ choice) we present in Figures 1 and 2 the inpainting results
using the weights ωi(x,y), i ∈ {1, . . . , 4}, based on the definitions (10), (11), (12) and (13). Notice
that ω3(x,y) (given by the semi-metric defined in (12)) produces slightly better results. Indeed,
when part of an edge is subjective or weak (i.e., the two regions separated by the edge are similar)
the other weights do not completely penalize the propagation of the optical flow from one region to
another; ω3(x,y) does a better job as observed in Figure 1. In Figure 2 one can notice that the edges
of the different moving objects are sharper when ω3(x,y) is used. For all the results in Figure 1 and
Figure 2 the End-Point Error (epe), with respect to the ground truth flow v̄ = (v̄1, v̄2), is indicated.
The formula used to calculate the epe is

E =
1

|Ω0|
∑
x∈Ω0

√
(v̄1(x)− u1(x))2 + (v̄2(x)− u2(x))2. (15)

The influence of the parameter λ is shown in Figure 3, where three inpainting examples are
considered. Each curve of the last row plots the interpolation error for each weight and for different
values of λ. These curves show that there is not a unique optimal value of λ but rather an optimal
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reference frame inpainting mask ground truth

ω1, λ=10−6, E=0.1350 ω2, λ=10−4, E=0.1345 ω3, λ=10−4, E=0.1039 ω4, λ=10−3, E=0.1231

Figure 1: amle interpolation. Influence of the metric. First row from left to right, the guiding image, the sparse inpainting
mask with 1% points where white pixels denote unknown optical flow values, and the ground truth flow. Second row shows
four inpainting results corresponding from left to right to the weights ω1(x,y), ω2(x,y), ω3(x,y) and ω4(x,y). The
interpolation error and the value of λ are indicated for each result. The last row shows a detail of the results of the second
row.

reference frame inpainting mask ground truth

ω1, λ=10−6, E=1.0277 ω2, λ=10−3, E=1.0265 ω3, λ=10−4, E=0.8059 ω4, λ=10−1, E=0.8919

Figure 2: amle interpolation. Influence of the metric. First row from left to right, the guiding image, the sparse inpainting
mask with 1% points where white pixels denote unknown optical flow values, and the ground truth flow. Second row shows
four inpainting results corresponding from left to right to the weights ω1(x,y), ω2(x,y), ω3(x,y) and ω4(x,y). The
interpolation error and the value of λ are indicated for each result. The last row shows a detail of the results of the second
row.

one for each image and weight ωi(x,y). One can observe different behaviours depending on the
content of the reference frame, which defines the metric, and the content of the optical flow. In some
cases the value of λ might almost not affect the error for a given weight (column one). In others the
optimal value is λ = 1, i.e. no metric is used (column three).
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Figure 3: amle interpolation error for different values of λ ∈ {1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and weights ωi, i ∈
{1, 2, 3}. Three examples are shown using a sparse mask with 1% points. From top to bottom: reference frame, ground
truth flow and plots of the interpolation error. Each plot indicates the interpolation error for the values of λ and for those
of the weights. The optimal value of λ is different for each example and for each weight.

2.3 Influence of the Image used to Compute the Image-Based Metric

As mentioned before, the metric g is computed based on local geometry and texture content given
by an underlying image called the guiding image. In this section the influence of this guiding image
is analyzed. To this goal two inpainting results are shown in Figures 4 and 5. Both of them show
inpainting results obtained using four different guides: a binary shape guide, where the main object
is in white and all the background in black (first column in Figures 4 and 5); a cartoon guide, which
has no texture (second column in Figures 4 and 5); a textured guide (third column in Figures 4
and 5); and a realistic guide, this last one may contain texture, blur and shadows among others as
it is the case for the Final Sintel video sequences [6] (fourth column in Figures 4 and 5).

One can observe how the results obtained with the shape and cartoon guiding images in Figures 4
and 5 better preserve the motion boundaries than the other two results thanks to the contrasted and
sharper object edges of the guiding images. When the guiding image contains textures one can
observe how these small details affect the color difference and, therefore, produce wrong motion
boundaries aligned with the texture details (e.g. third column of Figure 4). In contrast with the
previous behaviour, it may happen that the colors among neighboring objects are very close, which
produces small values in the geodesic distance and optical flow leaking is visible (e.g. third and fourth
columns of Figure 5, where the color of the building is very close to the color of the hair).

2.4 Neighborhood Type

As mentioned in [17] the solution of the numerical scheme defined in (6) converges to the solution
of (1) when the local spatial resolution dx (7) and the local directional resolution dθ (8) tend to 0. In
order to satisfy these conditions two different types of neighborhoods N (x) were evaluated. Let us
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ground truth inpainting mask

shape cartoon texturized realistic

Figure 4: amle interpolation. Influence of the metric using different guiding images. First row: the ground truth flow and
the inpainting mask where the known optical flow values are in black. Second row: guiding images (from left to right: shape,
cartoon, texturized and realistic). Third row: corresponding inpainting results. Fourth row: a zoom-in of the inpainting
results.

ground truth inpainting mask

shape cartoon texturized realistic

Figure 5: amle interpolation. Influence of the metric using different guiding images. First row: the ground truth flow
and the inpainting mask containing 1% of known optical flow values in black. Second row: guiding images (from left to
right: shape, cartoon, texturized and realistic). Third row: corresponding inpainting results. Fourth row: a zoom-in of the
inpainting results.
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consider the square of size (2 r+ 1)× (2 r+ 1) centered at x. In the first type of neighborhood N1(x)
(first row of Figure 6) for each possible direction in the square the point at lowest distance from x is
kept. For the second type N2(x) (second row of Figure 6), all the points in the square are kept. These
two options have the same local directional resolution dθ but differ in the local spatial resolution dx.
The influence of the discretization of (1) is illustrated with a particular example. Let us consider
the ball BR((0, 0)) in R2 of center (0, 0) and radius R. Given a function U whose only known values
are U(0, 0) = C, with C a positive constant value, and U(x, y) = 0 for (x, y) ∈ ∂BR((0, 0)), the goal
is to interpolate U by solving ∆∞,gU = 0 on BR((0, 0)), with g the Euclidean metric, and with those
conditions on (0, 0) and ∂BR((0, 0)). The exact solution to this amle problem is the cone of height
C and radius R [8]. In Figure 7 several results obtained with the discretization (6) using different
types and sizes of neighborhoods are shown. One can observe that in both neighborhood types the
approximation to the cone is better recovered when both the spatial and directional resolutions are
small which is the case of the third column in Figure 7. The first two columns have a directional
resolution which is too large: 45◦ and 90◦. In the fourth and fifth columns, even though the directional
resolution is smaller than in the first three cases the spatial resolution gets too large. As both
neighborhoods produce similar results and the optical flow interpolation using N1(x) is faster (for
a fixed r it involves less pixels and, therefore less computations), we choose the first neighborhood
configuration with r = 2 for all the experiments of the paper, which implies that the cardinality N
of N1(x) equals 16.

dθ=90◦, r=1, N=4 dθ=45◦, r=1, N=8 dθ∈[18, 26]◦, r=2, N=16 dθ∈[7, 19]◦, r=3, N=32

dθ=90◦, r=1, N=4 dθ=45◦, r=1, N=8 dθ∈[18, 26]◦, r=2, N=24 dθ∈[7, 19]◦, r=3, N=48

Figure 6: Comparison of the two types of neighborhood considered in the discretization of the geodesic amle: N1(x) (top)
and N2(x) (bottom). For each case the square ratio r, the directional resolution dθ and the cardinality N of N (x) are
shown.

2.5 Multiscale Scheme

The discrete scheme defined in (14) used to solve (1) is embedded in a multiscale approach: the input
optical flow and the corresponding video frame are downscaled to a set of scales and the solution is
computed at each one using (14). The inputs are downsampled by a factor of two. At the coarsest
level, the unknowns are initialized to zero; the other scales are initialized by upsampling the solution
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E=13.458, t=2.38s E=3.055, t=2.91s E=2.234, t=3.77s E=2.381, t=3.39s E=2.505, t=5.12s

E=13.458, t=2.45s E=3.055, t=2.91s E=2.254, t=4.71s E=2.396, t=4.55s E=2.519, t=6.83s

Figure 7: This figure shows different results when interpolating a cone using the amle. Top row: from left to right
results using {4, 8, 16, 32, 64} neighbors, respectively, for neighborhood N1(x). Bottom row: from left to right results using
{4, 8, 24, 48, 80} neighbors for neighborhood N2(x). In all cases the interpolation error E and the execution time t in
seconds are indicated.

of the previous scale. As shown in [8] the amle pde defined in (1) has a unique solution, thus
the solution using the single scale or the multiscale approach is the same. This can be observed
in the single scale and multiscale results in Figure 9, for the example in Figure 8. The multiscale
pyramid simply provides an initialization of the numerical scheme closer to the solution, leading to a
global faster convergence. This is illustrated in Figure 10, where one can observe that the multiscale
scheme is less time consuming. For this, the runtime and the interpolation error E defined in (15)
are plotted. One can observe that, for a given interpolation error, the runtime of the multiscale
algorithm is smaller than the one of the single scale case.

ground truth optical flow inpainting mask guiding image

Figure 8: Left: ground truth optical flow. Center: inpainting mask where white pixels indicate the inpainting region given
by the occlusion areas. Right: guiding image.

3 Inpainting using the Laplace-Beltrami Operator

The Laplace-Beltrami (lb) operator can also be used for anisotropic interpolation in Riemannian
manifolds. In this section the reconstruction of v(x, t) in Ω0(t) is done by solving the Laplace-
Beltrami pde with Dirichlet boundary conditions on ∂Ω0(t). Actually, the values on Ω \ Ω0(t) are
prescribed. The Laplace-Beltrami operator is usually denoted by ∆2,g, or simply by ∆g, and defined
by

∆gu(x) = Trace
(
G−1(x)D2

Mu
)

= Trace

(
G−1(x)

(
∂2u

∂xi∂xj
− Γkij

∂u

∂xk

))
, (16)
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one scale inpainting result four scales inpainting result

Figure 9: amle interpolation. From left to right: the inpainting result using one scale and using four scales for the example
in Figure 8. The interpolation error converges to the same value for different numbers of iterations and both inpainting
results are indistinguishable.
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Figure 10: amle interpolation. Comparing the execution time of the single and multiscale algorithms.

where G(x) denotes the (symmetric) matrix (gij(x)). Or, equivalently,

∆gu(x) =
1√

det(G(x))
∂i

(√
det(G(x))gij∂ju

)
. (17)

As before, let us forget about the time variable and write Ω0 and ∂Ω0 instead of Ω0(t) and ∂Ω0(t),
respectively. Thus, the reconstructed optical flow is given by u(x, t) such that u1 and u2 are the
solutions of {

∆guc = 0 in Ω0

uc = vc, in ∂Ω0.
(18)

3.1 The Discrete Model

As in Section 2.1, the discrete grid of Ω (with grid size h = 1 in x and y direction) is considered
as the nodes or vertices of a finite weighted graph G = (V, E , ω), where V is the set of vertices,
E ⊂ V × V is the set of edges between pairs of vertices, and ω : E → R denotes the weights on the
edges, as defined in Section 2.1. Let us assume that n = |V | and m = |E| are the cardinals of V and
E , respectively. In the following we will assume that n is the number of pixels of (Ω0 ∪ ∂Ω0)∩Z×Z.

Indeed, the discretization of (18) is done using this graph formalism and then the pde problem
translates into a linear problem where the linear matrix has size n×n. To do so, let us use the usual
compact notation where the double indexing in each pixel (i, j) ∈ (Ω0 ∪ ∂Ω0) ∩ Z× Z is replaced by
a single index and where all unknown gray values are assembled in a one-dimensional vector u ∈ Rn.
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Let us recall that usually in this context, the Laplacian operator ∆ (that is, when g denotes the
Euclidean metric) can be expressed as a square matrix L, of size n [11, 14], which is defined as

L = −BTB, (19)

where B is the incidence matrix of the graph and has m rows and n columns. The incidence matrix B
represents the gradient operator and −BT the divergence operator. In other words, (19) corresponds
to the definition of the Laplacian operator ∆ = div(∇) in the discrete context.

As mentioned earlier, the motion reconstruction problem is solved using an anisotropic interpo-
lation with the aim of respecting the moving object boundaries. For that, the domain Ω is endowed
with a metric g(t) at the frame domain at time t. Then, the Laplace-Beltrami operator ∆g can be
expressed in matrix form as

Lg = −BTWB, (20)

where W is an m×m diagonal matrix containing the weights defined by one of the proposed metrics
((10), (11) or (12)) in the manifold [11, 14]. These weights are defined for every edge (x,y) ∈ E
between two adjacent vertices x and y of the graph as

ω(x,y) =
1

d(x,y)
. (21)

Finally, adding the boundary conditions, problem (18) becomes{
Lgu = 0 in Ω0

u = vc in ∂Ω0,
(22)

which can be re-formulated as the linear system

(MLg + I −M)uc = (I −M)vc, (23)

where M is an n× n diagonal matrix of ones and zeros equal to the indicator IΩ0 of the subset Ω0,
with diagonal values equal to one on the pixels to inpaint, and I is the identity matrix of size n× n.
The following result guarantees that the linear system (23) has a unique solution and it is given by

uc = (MLg + I −M)−1(I −M)vc, c = 1, 2. (24)

Theorem The linear system (23) has a unique solution, for each c = 1, 2, which is given by (24).
Moreover, the solution satisfies in Ω0 ∩ Z× Z the following maximum and minimum principle

min
k̃∈∂Ω0∩Z×Z

vc(k̃) ≤ uc(k) ≤ max
k̃∈∂Ω0∩Z×Z

vc(k̃) ∀k ∈ Ω0 ∩ Z× Z, (25)

for c = 1, 2.
The proof of this result can be found in [15] (Theorem 1).

3.2 An Approximation of dg

As in Section 2.2 the same weights are considered, which are defined in (10), (11) and (12). In
Figures 11 and 12 one can observe that in the case of the Laplace-Beltrami interpolation the weight
ω3 is again the one that gives better results, both qualitatively and quantitatively. Also, from
Figure 13 one can once again observe that there is no unique optimal value of λ but rather an
optimal one for each image and weight ωi(x,y).
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reference frame inpainting mask ground truth

ω1, λ=10−6, E=0.1378 ω2, λ=10−6, E=0.1342 ω3, λ=10−6, E=0.0993

Figure 11: Laplace-Beltrami interpolation. Influence of the metric. First row, from left to right, the guiding image, the
sparse inpainting mask with 1% points where white pixels denote unknown optical flow values, and the ground truth flow.
Second row shows four inpainting results corresponding, from left to right, to the weights ω1(x,y), ω2(x,y) and ω3(x,y).
The interpolation error and the value of λ are indicated for each result. The last row shows a detail of the results of the
second row.
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reference frame inpainting mask ground truth

ω1, λ=10−6, E=0.9740 ω2, λ=10−6, E=0.9657 ω3, λ=10−6, E=0.7333

Figure 12: Laplace-Beltrami interpolation. Influence of the metric. First row, from left to right, the guiding image, the
sparse inpainting mask with 1% points where white pixels denote unknown optical flow values, and the ground truth flow.
Second row shows four inpainting results corresponding, from left to right, to the weights ω1(x,y), ω2(x,y) and ω3(x,y).
The interpolation error and the value of λ are indicated for each result. The last row shows a detail of the results of the
second row.
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Figure 13: Laplace-Beltrami interpolation error for different values of λ ∈ {1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and
weights ωi, i ∈ {1, 2, 3}. Three examples are shown using a sparse mask with 1% points. From top to bottom: reference
frame, ground truth flow and plots of the interpolation error. Each plot indicates the interpolation error for the values of λ
and for those of the weights. The optimal value of λ is different for each example and for each weight.

90



On Anisotropic Optical Flow Inpainting Algorithms

4 Explanation of the Parameters

The parameters of both methods are described in this section. The geodesic amle interpolation
algorithm depends on four parameters: the anisotropic weight (λ), the stopping criterion threshold
(ε), the square ratio r defining the size of the local neighborhood and the number of scales S
used to build the flow pyramid. The Laplace-Beltrami interpolation algorithm only depends on the
anisotropic weight (λ).

• λ is the anisotropic weight used in definitions (10), (11), (12) and (13), which takes values in
[0, 1]. It determines the degree of anisotropy of the method and it is inversely proportional
to the anisotropic diffusion. When λ = 1 the Euclidean metric is used and the amle and
the Laplace operators are recognized for the cases ω1 and ω2. The experiments show that a
reasonable default value is 0.001.

• ε is the stopping criterion threshold used in the numerical scheme which is a trade-off between
precision and running time. Small values will yield more precise results at the expense of higher
running times. A reasonable default value is ε = 0.0001.

• r is the square ratio which defines the size of the local square neighborhood N (x) of a node x
on the graph. It defines a trade-off between the local spatial and directional resolutions defined
in (7) and (8) respectively. When r = 1 the local spatial resolution is small (dx = 1) at the
expense of a high directional resolution (dθ = π/4). Increasing r will decrease dθ but increase
dx. A good default value is r = 2.

• S is the number of scales used to build the flow pyramid. It allows to accelerate the convergence
of the method. Different values of S yield the same inpainting result. The default value is S = 4.

In addition, there are two hyperparameters g and nt enabling the choice of different weights and
the choice of different neighborhoods respectively.

• g indicates which weight will be used for the anisotropic interpolations. In the case of the
amle in a manifold the possible values of g are {1, 2, 3, 4}, indicating that the metric used
is (10), (11), (12) or (13), respectively. In the case of the Laplace-Beltrami the possible values
of g are {1, 2, 3}, indicating that the metric used is (10), (11) or (12), respectively. The default
value is set to g = 3 for both cases.

• nt indicates the type of local neighborhood N (x) used in the discrete scheme. There are two
options: nt = 1 for the neighborhood type N1 and nt = 2 for N2, both defined in Section 2.4.
The value of nt conditions the value of the size of the neighborhood N . For nt = 1 and
r ∈ {1, 2, 3, 4, 5} the cardinality of N1 is N ∈ {4, 8, 16, 24, 32}, respectively. For nt = 2 and
r ∈ {1, 2, 3, 4, 5} the cardinality of N2 is N = {4, 8, 24, 48, 80}. The two options yield similar
results. However, for r > 1 and nt = 1 the execution time is slightly smaller than for nt = 2
since it involves less pixels. The default value is set to nt = 1.

5 The Algorithms

5.1 The AMLE in a Manifold Interpolation

Algorithm 1 provides a general description of the optical flow inpainting approach using the geodesic
amle in two main steps: computation of the weight map W̃ and application of the iterative discrete
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scheme to solve the pde defined in (1). A detailed pseudocode specifies each of these steps. The
method takes as input an incomplete optical flow v, an inpainting mask κ and a guiding image I,
which defines the weights of the geodesic interpolation. Three parameters and two hyperparameters
are required: the anisotropic weight λ, a stopping criterion threshold ε, the square ratio r, the
neighborhood type nt and the metric g. The output of the method is a complete optical flow u.

The main algorithm described in Algorithm 1 starts by defining the inpainting domain Ω0 based on
the mask κ where positive values indicate the region to inpaint. Then, the relative neighboring pixels
positions (dx, dy) for any node (i, j) in the graph are computed and stored in N where a neighbor of
(i, j) is defined as (i+dx, j+dy). The positions in N depend on the type of neighborhood nt and the
neighborhood ratio r. After that, the weight map W̃ is computed containing for every pixel (i, j) ∈ Ω0

the weights of the edges ((i, j), (i + dx, j + dy)) for all (dx, dy) ∈ N . Then, the iterative discrete
scheme defined in (21) is applied separately to each component vc, c = 1, 2, of the flow v returning
the component uc, c = 1, 2, of the flow u. An image init indicates how to initialize the values of u1

and u2 in the inpainting domain Ω0 and it is given as input to amle interpolation(vc, W̃ , init,Ω0, λ, ε).

Algorithm 1: Optical flow inpainting (single scale)

input : An incomplete optical flow v, an inpainting mask κ, a guiding image I, an
anisotropic weight λ, a stopping criterion threshold ε, a weight choice g, a
neighborhood type nt and a neighborhood ratio r

output: A completed optical flow u
Ω0 ← {(i, j) ∈ Ω : κ[i, j] ≥ 0} inpainting domain.

N ← get neighboring indexes(nt, r)

W̃ ← compute weight map(I, λ, g,Ω0,N ) Algorithm 2

for (i, j) ∈ Ω do
init[i, j]← 0 initialization image of 0’s

for c ∈ {1, 2} do

uc ← amle extension(vc, W̃ , init,Ω0, λ, ε) Algorithm 3

u← [u1;u2]
return u

The computation of the weight map is described in Algorithm 2. It takes as input a guiding
image I, the anisotropic weight λ, the variable g, the inpainting region Ω0 and the relative positions
of the neighboring pixels in N . The variable g takes values in {1, 2, 3, 4}, indicating which type of
weights will be used. Overall, for each pixel (i, j) in the inpainting domain Ω0, the weights to its N
neighboring pixels (x, y) = (i+ dx, j+ dy) are computed and stored in W̃ [i, j, p], p ∈ {0, . . . , N − 1}.
The matrix of weights W̃ is of size |Ω0| ×N .

Algorithm 3 is the core of the method and details the iterative scheme that solves (1). The input
is one component v of an optical flow and the output is the respective interpolated component u.
The component u is initialized with the values in init for all (i, j) ∈ Ω0. The iterative scheme (14)
is applied until the stopping criterion is reached consisting of a maximum number of iterations
NITER and a threshold ε on the error ek between two consecutive iterations. The value of NITER
is set to 5000. Algorithm 4 implements one iteration of the discrete scheme where the values of one
component of the optical flow are updated only for the pixels (i, j) in Ω0. For each node (i, j) ∈ Ω0

the positive and negative eikonals are computed as defined in (4). That is, the node (xp, yp) and
(xn, yn) maximize and minimize the derivatives in (i, j) respectively. These two nodes define the
pixels used to interpolate the value of u in pixel (i, j) at iteration k following (14).

The iterative discrete scheme, as commented in Section 2.5 converges very slowly to the solution
of (1), in particular when the inpainting domain is large. To accelerate the convergence a multiscale
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Algorithm 2: compute weight map(I, λ, g,Ω0,N )

input : A guiding image I, an anisotropic weight λ, a weight choice ω, an inpainting domain
Ω0 and neighboring indexes N

output: An image of weights W̃
C ← dim(I) number of channels of the guiding image I.

foreach (i, j) ∈ Ω0 do
foreach (dx, dy) ∈ N do

p← 0 initialize position in neighboring indexes N .

D[i, j, p]← 0 initialize the distance image.

x← i+ dx x component of a neighboring pixel.

y ← j + dy y component of a neighboring pixel.

switch ω do
case 1

foreach c ∈ C do
D[i, j, p]← D[i, j, p] + (I[x, y, c]− I[i, j, c])2

D[i, j, p]← D[i, j, p]/C

D[i, j, p]←
√

(1− λ)D[i, j, p] + λ((x− i)2 + (y − j)2) definition (10)

W̃ [i, j, p]← 1/D[i, j, p]

case 2
foreach c ∈ C do

D[i, j, p]← D[i, j, p] + (I[x, y, c]− I[i, j, c])2

D[i, j, p]← D[i, j, p]/C

D[i, j, p]← (1− λ)
√
D[i, j, p] + λ

√
(x− i)2 + (y − j)2 definition (11)

W̃ [i, j, p]← 1/D[i, j, p]

case 3
foreach c ∈ C do

D[i, j, p]← D[i, j, p] + (I[x, y, c]− I[i, j, c])2

D[i, j, p]← D[i, j, p]/C
D[i, j, p]← (1− λ)D[i, j, p] + λ((x− i)2 + (y − j)2) definition (12)

W̃ [i, j, p]← 1/D[i, j, p]

case 4
foreach c ∈ C do

for (m,n) ∈ Ps×s do
D[i, j, p]← D[i, j, p] + (I[x+m, y + n, c]− I[i+m, j + n, c])2

D[i, j, p]← D[i, j, p]/C/s2

D[i, j, p]← (1− λ)D[i, j, p] + λ((x− i)2 + (y − j)2) definition (13)

W̃ [i, j, p]← 1/D[i, j, p]

p← p+ 1 update position.

return W̃
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Algorithm 3: amle extension(v, W̃ ,init,Ω0, λ, ε,N )

input : An incomplete optical flow component v, a weight map W̃ , an initialization image
init, an inpainting domain Ω0, an anisotropic weight λ, a stopping criterion threshold
ε, neighboring indexes N

output: A completed optical flow component u
for i ∈ Ω do

if i ∈ Ω0 then
u[i]← init[i]

else
u[i]← v[i]

u0 ← u
ek ← 1000 initialize ek
while k < NITER and ek > ε do

u← amle iteration(u,Ω0, W̃ ,N ) Algorithm 4.

ek ←
1

|Ω0|
∑

(i,j)∈Ω0

|u[i, j]− u0[i, j]|

u0 ← u
return u

Algorithm 4: amle iteration(v,Ω0, W̃ ,N )

input : An optical flow component v, an inpainting domain Ω0, a weight map W ,
neighboring indexes N

output: An optical flow component u
foreach (i, j) ∈ Ω0 do

ep ← −∞ initialize positive eikonal.

en ← +∞ initialize negative eikonal.

p← 0 initialize counter.

foreach (dx, dy) ∈ N do
x← i+ dx
y ← j + dy
e←

(
u[x, y]− u[i, j]

)
W̃ [i, j, p] relaxed gradient.

if e > ep then
ep ← e update positive eikonal.

wp ← W̃ [i, j, p] update positive weight.

[xp, yp]← [x, y] update position.

if e < en then
en ← e update negative eikonal.

wn ← W̃ [i, j, p] update negative weight.

[xn, yn]← [x, y] update position.

p← p+ 1 update counter.

u[i, j]← v[xn,yn]wn+v[xp,yp]wp

wn+wp
update new value.

return u
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approach is considered and described in Algorithm 5. This is done in a recursive way calling at each
scale Algorithm 5. At the coarsest scale, s = 1, the inpainting domain is initialized with zeros and a
first optical flow us, (s = 1) is interpolated following Algorithm 3. The output us of Algorithm 3 is
then used as the initialization of the following scale s+ 1 obtained by upsampling us by a factor two.
Algorithm 3 is then once again applied obtaining us, (s = 2) that will be used as the initialization of
the following scale. This procedure is repeated until the finest scale s = S is reached, where S is the
total number of scales. The inputs are downsampled by a factor of 2 using 2× 2 block averages and
bilinear interpolation is used for upsampling.

Algorithm 5: amle recursive(v, I,Ω0, s, λ, ε, ω,N )

input : An incomplete optical flow v, a guiding image I, an inpainting domain Ω0, number of
scales s, an anisotropic weight λ, a stopping criterion threshold ε, a weight choice ω
and a the neighboring indexes N

output: A completed optical flow u
W̃ ← compute weight map(I, λ, ω,Ω0,N ) Algorithm 2

if s > 1 then
vs ← zoom out 2(v) zoom out of a factor 2

Is ← zoom out 2(I) zoom out of a factor 2

us ← amle recursive(vs, Is,Ω0, λ, ε, ω, s− 1) Algorithm 5

init← zoom in 2(us) update the initialization image

else
for (i, j) ∈ Ω do

init[i, j]← 0 initialize the coarsest scale wits 0s

u← amle extension(v, W̃ , init,Ω0, λ, ε,N ) Algorithm 3

return u

5.2 The Laplace-Beltrami Interpolation

Algorithm 6 provides a description of the optical flow inpainting approach using the Laplace-Beltrami
interpolation in three main steps: computation of the incidence matrix, computation of the weight
map and solving the linear system defined in (23). A detailed pseudo-code specifies each of these
steps. The method takes as input an incomplete optical flow v, a color guiding image I and an
inpainting mask κ. One parameter and one hyperparameter are required, the anisotropic weight λ
and the metric g. The output of this method is a completed optical flow u.

The first step of Algorithm 6 consists in computing the sparse incidence matrix B which represents
the gradient operator. For an image of size h × w = m, the matrix B is rectangular of size m × n,
where m is the number of edges in the grid graph of the image. In the case of 4-connectivity, we
have m = (w − 1)h+ (h− 1)h. Therefore, ∇z = Bz yields the gradient of a grayscale image z. The
incidence matrix is then used to compute the three different weight maps W depending on the value
of the variable g. W is a vector of size 1 × m, where m is the number of edges of the graph. W
is reshaped to a diagonal matrix of size m×m. The weighted Laplacian Lw is computed using the
incidence matrix B and the weight map matrix W . The last step consists in building and solving the
linear system Axc = bc, where xc is the solution in vector shape and is reshaped into a h×w matrix.

The computation of the incidence matrix is described in Algorithm 7 for a 4-connectivity graph.
Three Matlab functions are used: sparse(i,j,s,m,n), speye(m,n) and kron(x,y). The first one builds
a sparse matrix of size m × n such that the value in pixel (i[k], j[k]) is equal to s[k]. Here i, j and
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s are vectors of the same length. The second function builds a sparse identity matrix of size m× n.
The third and last function is the Kronecker tensor product of x and y.

Algorithm 6: laplace beltrami interpolation(v, g, κ, λ, ω)

input : An incomplete optical flow v, a color image g, an inpainting mask κ, an anisotropic
weight λ, a weight ω

output: A completed optical flow u
B ← incidence matrix 4N(h,w) Algorithm 7

‖∇g‖2 ← (BgR �BgR +BgG �BgG +BgB �BgB)/3 element wise multiplication

‖∇X‖2 ← x� x+ y � y
switch ω do

case 1

W ←
[√

(1− λ)‖∇g‖2 + λ‖∇X‖2
]−1

case 2

W ←
[
(1− λ)‖∇g‖+ λ‖∇X‖

]−1

case 3

W ←
[
(1− λ)‖∇g‖2 + λ‖∇X‖2

]−1

W ← diag(W ) diagonal matrix with W on the principal diagonal

Lw ← −Bt(WB) weighted Laplacian

κs ← spdiags(κ) sparse diagonal matrix with κ on the principal diagonal

A← Iwh − κs + κsLw Iwh sparse identity matrix of size wh× wh
for c ∈ {1, 2} do

bc ← (Iwh − κs)vc
xc ← A−1bc
uc ← reshape(xc, h, w)

u← [u1, u2]
return u

Algorithm 7: incidence matrix 4N(h,w)

input : A number of rows h and a number of columns w
output: A matrix of incidence B
x← sparse(1 : h− 1, 2 : h, 1, h− 1, h)− speye(h− 1, h) path of length h

y ← sparse(1 : w − 1, 2 : w, 1, w − 1, w)− speye(w − 1, w) path of length w

B ← [kron(speye(w), x); kron(y, speye(h))] Kronecker union

return B
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6 Experimental Results and Discussion

In order to compare the performance of the amle and the Laplace-Beltrami anisotropic interpolations
in Riemannian manifolds, this section illustrates their behaviour with some experiments. For each
experiment, the optimal parameters providing the lower epe error are used. Notice that in some
cases, the optimal metrics (i.e. the weights) used in both approaches are not the same. To generate
the results of all the experiments shown in this section Algorithms 5 and 6 are used. Two different
applications are considered, namely, optical flow densification (Figure 15) and optical flow inpainting,
both in occlusion areas (Figure 17) and in large holes (Figure 19). The results will be presented as
follows: a reference frame (guiding image), an inpainting mask, the ground truth flow, the output
flows and the error images. The error image is computed as the L2 norm of the difference between
the ground truth flow v̄ and the inpainted flow u.

Flow densification A sparse flow is provided containing 1% isolated ground truth flow values (the
sparse mask is presented in Figure 14). The geodesic amle and the Laplace-Beltrami interpolations
are applied to complete the missing data of this flow. Overall, the visual quality of the results of
these interpolations are comparable as can be seen in Figure 15. Laplace-Beltrami’s result yields a
lower epe since it better recovers smooth regions. The Laplace-Beltrami interpolation at one pixel is
a weighted average of its 4-connected neighbors while the geodesic amle is the weighted average of
two neighboring nodes verifying (4). Moreover, in both cases the diffusion across edges can be visible.
This is due to the content of the guiding image where the foreground object and the background have
similar intensities. When isolated ground truth points are provided the geodesic amle interpolation
performs better in the neighborhood of these points. Indeed, as it is well known, the amle operator
appropriately deals with the Dirichlet data given on isolated points producing a Lipschitz interpolator
from these isolated data. This is not the case of the Laplace-Beltrami operator. For example, in the
first row of Figure 15, in the region of the body and shirt, one can notice the black isolated points
surrounded by a light neighborhood in the Laplace-Beltrami result and not in the geodesic amle.
To better observe this behaviour the reader is encouraged to zoom-in the results. Notice that, in the
error image, dark parts correspond to a low error and bright parts to a high error.

Figure 14: Sparse mask with 1% pixels known (in black).

Flow inpainting: occlusions and large holes Figure 17 shows some results on recovering the
missing flow of occluded areas. For each example, a mask containing the occluded regions is provided
in Figure 16 where the missing pixels are painted in white. Both the geodesic amle and the Laplace-
Beltrami interpolations are used to recover the missing flow. The amle on a manifold yields slightly
better results than the Laplace-Beltrami, both quantitative and qualitatively; e.g. larger error in the
right boundary of the foreground person in the first and second examples of Figure 17. Figure 19
shows some results on recovering the missing flow of large holes. The inpainting masks are provided
in Figure 18. For large inpainting regions the Laplace-Beltrami interpolation tends to oversmooth
the result loosing some of the edges as can be seen in the first and third examples of Figure 19 where
the boundary of the head is smoothed out and the wing of the dragon is not fully reconstructed. On
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the other hand, the geodesic amle produces more diffusion across edges as in the first example in
parts where the background and foreground colors are very similar.

An additional observation is related to the fact that the use of the guiding image is not always
the best solution. This can be observed in the examples in Figure 20. For instance, when the flow to
recover contains gradual discontinuities the results of both the Laplace-Beltrami and geodesic amle
interpolations are better when no guiding image is used (λ = 1) as shown in the third and fourth
examples of Figure 20. Moreover, when the flow to recover contains sharp edges, as in the two first
examples of Figure 20, a guiding image is necessary to control the diffusion across edges.

As can be seen in this section, the qualitative and quantitative results yielded by both methods
are very similar. On top of that, the implementation of the Laplace-Beltrami interpolation is reduced
to solve a sparse linear system which makes it much faster in terms of execution time regarding the
geodesic amle which is solved with an iterative discrete scheme. This is why inpainting the missing
flows, regardless of the application, with the Laplace-Beltrami operator is a good solution in terms
of results and execution time.

7 Conclusions

An implementation of two optical flow inpainting techniques has been described. The first one is
based on the amle interpolator on a Riemannian manifold and the second one is based on the Laplace-
Beltrami operator. Both approaches are based on pdes that are solved on a 2D Riemannian manifold
endowed with an appropriate metric defined by the image frame, which acts as a guiding image for
the resulting anisotropic diffusion. The behaviour of these methods were illustrated separately with
different examples and different metrics and parameters, and afterwards compared together. In
general, both methods perform similarly; the amle being more sensitive to color changes and thus
producing sharper edges in some situations while causing some leaking when the image colors across a
motion boundary are barely distinguishable. From this analysis, one can conclude that the key point
relies on the use of non-Euclidean metrics for interpolation rather than the choice of a particular pde.
The use of a good interpolation guide is crucial to define the weights of these anisotropic diffusions.
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ground truth flow amle: λ=10−4, E=0.126477 lb: λ=10−6, E=0.0996

guiding image amle error image lb error image

ground truth flow amle: w4, λ=10−1, E=1.1297 lb: w3, λ=10−5, E=1.0204

guiding image amle error image lb error image

ground truth flow amle: w3, λ=10−1, E=0.9553 lb: w3, λ=10−5, E=0.9331

guiding image amle error image lb error image

ground truth flow amle: w3, λ=10−4, E=0.8059 lb: w3, λ=10−6, E=0.7351

guiding image amle error image lb error image

Figure 15: Sparse flow inpainting using the mask in Figure 14. First, third and fifth rows, from left to right: ground truth
flow, geodesic amle and lb inpainting results. Second, fourth and sixth rows, from left to right: guiding image, geodesic
amle and lb error images.
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Figure 16: Occlusions masks.

ground truth flow amle: w4, λ=10−3, E=5.6643 lb: w3, λ=10−5, E=5.9500

guiding image amle error image lb error image

ground truth flow amle: w3, λ=10−3, E=3.7042 lb: w3, λ=10−5, E=4.1378

guiding image amle error image lb error image

ground truth flow amle: w3, λ=10−2, E=5.2543 lb: w3, λ=10−6, E=5.5341

guiding image amle error image lb error image

Figure 17: Inpainting of occluded flow using the masks in Figure 16. First, third and fifth row, from left to right: ground
truth flow, geodesic amle inpainting result, lb inpainting result. Second, fourth and sixth row, from left to right: guiding
image, geodesic amle and lb error images.
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Figure 18: Hole masks.

ground truth flow amle: w3, λ=10−3, E=0.8001 lb: w3, λ=10−6, E=0.9206

guiding image amle error image lb error image

ground truth flow amle: w3, λ=10−3, E=10.3202 lb: w3, λ=10−6, E=9.6072

guiding image amle error image lb error image

ground truth flow amle: w1, λ=10−1, E=1.3819 lb: w1, λ=10−6, E=0.7848

guiding image amle error image lb error image

Figure 19: Inpainting of large holes using the masks in Figure 18. First, third and fifth row, from left to right: ground truth
flow, geodesic amle inpainting result, lb inpainting result. Second, fourth and sixth row, from left to right: guiding image,
geodesic amle and lb error images.
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ground truth flow amle, λ=10−4 amle, λ=1

guiding image amle error image amle error image

ground truth flow lb: λ=10−6 lb: λ=1

guiding image lb error image lb error image

ground truth flow amle: λ=10−1 amle: λ=1

guiding image amle error image amle error image

ground truth flow lb: λ=10−6 lb: λ=1

guiding image lb error image lb error image

Figure 20: Comparing guided (λ < 1) and unguided results (λ = 1).
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