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Abstract

We present a general deep learning method for detecting cracks on all sorts of surfaces. For
making this method robust to different types of cracks and acquisition procedures, we have
trained our method on four datasets - Crack500, DeepCrack, SDNet2018 and CrackForest. We
have also labelled a part of the SDNet2018 dataset so that it contains semantic labels, as it
originally only proposed crack/non-crack classifications on the image level. To validate our
approach, we perform a cross-dataset study where we train the model on a subset of the datasets
and test it on another subset. Results of this study show that training the model on these
various datasets makes it more robust to new images, outperforming existing classical and deep
learning methods. In order to make our method even more robust to different objects, scenes
and illuminations, we have also added images from the Flickr website, leading to an important
drop in false positives on extra dataset images. The network seems to function well on images
not belonging to any of the datasets, and its publication in IPOL will allow users to enrich
further training.

Source Code

The python source codes implementing the algorithms described in the paper, and the online
demo, are accessible at the associated web page1.

Supplementary Material

The parameters of the implemented neural network, the labels used for the SDNet2018 dataset,
the filenames of the different datasets used for training, validation and test, and the URLs of
the Flickr images used for data augmentation are provided as supplementary material at the
associated web page.

Keywords: crack detection; semantic segmentation; deep neural networks; U-net

1https://doi.org/10.5201/ipol.2020.282

Sébastien Drouyer, An “All Terrain” Crack Detector obtained by Deep Learning on Available Databases, Image Processing On Line, 10 (2020),
pp. 105–122. https://doi.org/10.5201/ipol.2020.282



Sébastien Drouyer

1 Introduction

Finding cracks on urban structures such as buildings, bridges, roads, and actually on any material
subject to fatigue, is essential for identifying decaying structures and maintaining them. The surface
to inspect is however extensive, making a manual inspection time-intensive and prone to errors. As
a result, efforts have been made in the recent years to detect cracks in an automatic manner [4, 32,
18, 20, 35, 25, 22, 30, 29, 3, 8].

Although this task might be easy in simple cases such as wide cracks on white homogeneous walls,
it becomes much more difficult when the studied surface is rough or textured, or when the crack is
thin and not easily discernible. As classical approaches fail to produce satisfying results, machine
learning and deep learning approaches have been proposed in recent years [18, 17, 15]. However, two
major problems subside.

First, as these methods are specialized on specific areas (bridges or roads for instance) and specific
acquisition procedures, their performance often drops when applied on different images. This can
easily be observed by the variety of shapes, texture or illumination conditions of the images in
different datasets (see Figure 1).

(a) Crack500 [32] (b) DeepCrack [18] (c) SDNet2018 [20] (d) CrackTree [35]

(e) CCIC* [25] (f) Codebrim [22] (g) AigleRN [4] (h) CrackForest [30]

Figure 1: Crops of different crack datasets. CCIC: Concrete Crack Images for Classification.

Secondly, some methods only classify images [20, 22, 25] as containing a crack or not. The shapes
and widths of the cracks are not provided, although it can be an important information for assessing
the cracks’ severity.

The objective of this work is to propose a robust semantic segmentation algorithm detecting cracks
on images (see Figure 2). For achieving this goal, we have first created a dataset merging the largest
state of the art datasets: Crack500 [32], DeepCrack [18], SDNet2018 [20] and CrackForest [30].
A part of the SDNet2018 dataset [20] has also been improved: it initially provided only crack /
non-crack classes for each image, but using manually corrected predictions of the deep learning
algorithm trained on the other datasets, we now provide semantic segmentation labels. Those labels
are available online.
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This dataset was created so that our algorithm can be trained on a variety of crack detection
problems. To evaluate its robustness, we have elaborated a cross-dataset study where the algorithm
is trained on a subset of datasets and evaluated on another subset. We show that merging these
datasets greatly enhances the robustness of the trained neural network. We also show that adding
non-crack pictures (extracted from the Flickr website) increases the neural network performance,
especially reducing the rate of false positives. The weights of the trained neural networks as well as
the source code are available online.

(a) Input (b) Expected output

Figure 2: Objective of our method: create, from and input image (a), a semantic segmentation map indicating where the
cracks are (b). Example from the CrackForest dataset [30].

2 Related Work

Researchers have been using image processing techniques to detect cracks on concrete materials for
several decades [13, 23]. There is a general interest in detecting cracks on any type of surface, but
some areas are more active than others. Most popular research areas are crack detection on road
pavements [13, 23, 30, 8, 32, 35, 4] and crack detection on bridges [22, 27, 16, 7, 33]. There are
however a variety of different applications such as crack detection on steel [26] or nuclear power
plants [29]. Some methods try to detect cracks in a more general manner such as DeepCrack [18].
The authors of [14] provide a review on defect detection - including cracks - on concrete and asphalt
civil infrastructures.

Edge detections algorithms, such as Sobel, Canny or the Fast Haar Transform have been studied
for crack detection [1]. However, as shown in Figure 3, these operators work on easy examples such as
dark cracks on light walls, but fail when the texture of the surface is too important. Moreover, they
often need adapted preprocessing and post-processing steps. The same is true for threshold-based
approaches [21] or percolation-based image processing techniques [31].

These methods fail as a semantic understanding of the scene is necessary to separate cracks and
non-cracks. The concrete surface can indeed contain lines as in Figure 1b or have a very heterogeneous
texture as shown in Figure 1g. Moreover, cracks can be particularly large as in Figure 1e, detecting
them can therefore require a large scale analysis to differentiate them from dark walls.

As a consequence, methods leveraging machine learning have been developed. Abdel-Qader et
al. [2] combine edge detectors and PCA to classify images as containing cracks or not. Shi et al. [30]
use a random forest to classify each pixel as belonging to a crack or not. Mundt et al. [22] leverage
convolutional neural networks to classify defects - cracks being among them - on pictures of bridges.
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(a) Easy example (b) Sobel applied on (a) (c) Hard example (d) Sobel applied on (c)

Figure 3: Results of the Sobel operator on easy and hard examples.

Several methods [18, 17, 15] use deep learning semantic segmentation methods to segment images
into crack / non-crack areas.

In order to train machine learning and deep learning methods, several datasets have been released
by the scientific community. Datasets of road pavement images are particularly numerous [30, 8, 32,
35, 4, 6]. Among them, only [30], [32] and [4] provide semantic segmentation labels. CrackTree [35]
only provides a fine line representation of the cracks, their widths are therefore not provided. GAPs [8]
and AsphaltCrack [6] classify each image as containing a crack or not, no semantic segmentation
annotations are provided.

Codebrim [22] is a dataset classifying defects on bridge images. SDNet2018 [20] and Deep-
Crack [18] are more general datasets and contain images from various areas (bridges, walls and
pavements). However, only DeepCrack provides semantic segmentation labels; SDNet2018 classifies
images as containing cracks or not.

3 Experimental Setup

3.1 Dataset Creation

The dataset was created by combining Crack500 [32], DeepCrack [18], SDNet2018 [20] and Crack-
Forest [30]. The dataset was divided into three parts: training, validation and testing. For allowing
an easier comparison with the state of the art, the initial repartition of each dataset was respected
when possible: for instance, an image in the training part of the dataset of Crack500 stayed in the
training part of the combined dataset. DeepCrack only provided training and validation subsets: a
testing subset was created by separating the validation subset in two parts. SDNet2018 and Crack-
Forest didn’t provide any training, validation or testing subsets: they were randomly separated into
three parts. Filenames used in each set are available online. The size of each dataset is shown in
Table 1. There is an important imbalance between the datasets both in terms of number of images
and number of pixels. We describe in Section 3.2 how we manage this imbalance.

Subset Training Validation Test

Crack500 250 / 922M 50 / 184M 62 / 229M
SDNet2018 800 / 82M 200 / 13M 80 / 5M
CrackForest 81 / 12M 23 / 4M 14 / 2M
DeepCrack 300 / 63M 138 / 29M 56 / 12M

Table 1: Size of datasets in number of images / number of pixels.

As SDNet2018 didn’t provide any semantic segmentation labels, we used our model trained on
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Crack500, DeepCrack and CrackForest to produce semantic segmentation labels on a part of SD-
Net2018 (1000 images). These labels were then manually corrected. As the dimensions of the images
were different from one dataset to another, they were divided into patches of 256 × 256 pixels to
make the learning process easier.

3.2 Model Architecture and Training

As explained in Section 2, segmenting an image into crack and non-crack areas requires to take into
account lower scale and higher scale features. The chosen model architecture should therefore be able
to take into account multi-scale features. A U-net-like neural network [28] is particularly adapted to
such detections problems, as its encoder-decoder architecture allows to perceive the image both at fine
and coarse levels. Our architecture is therefore similar, but we added batch normalization layers [11]
to speed up the training and train more robust models. This approach is similar to SegNet [5],
except that the number of convolutions is more limited and there is only one batch normalization
before each max pool or up-convolution. This has been done to reduce the number of parameters
and memory usage. The architecture is shown in Figure 4. The loss used for training is binary cross
entropy

L = −

∑
i,j y[i, j] log(p[i, j]) + (1− y[i, j]) log(1− p[i, j])

w × h
,

where y[i, j] is the ground truth label at pixel (i, j) (0 being non-crack, 1 being crack), p[i, j] is the
predicted probability that the pixel (i, j) is crack, w and h are the width and height of the patch.

The neural network takes a grey level image as input and outputs the semantic segmentation map
which is a 2D matrix of values between 0 and 1 representing the likelihood that a pixel is in a crack.
RGB images are converted to grey level images to maximize the generalisability of the model: the
neural network is less likely in this case to be disturbed by colors that were never represented in the
dataset.

During training, random flips, rotation, zooms (between -20% and +20%), illumination and
contrasts changes were done in order to augment the merged dataset (see Algorithm 1). The size of the
batches was set to 8, and they were constructed so that each dataset was represented approximately
equally to prevent larger datasets to have a higher impact than smaller ones in the training process
(see Algorithm 2). We used Adam [12] as the optimizer, with α = 0.001, β1 = 0.9 and β2 = 0.999,
as recommended in the original paper. The momentum of batch normalization layers was set to
0.99. We also used the ReduceLROnPlateau functionality of Keras2: during the training process, the
learning rate is multiplied by 0.2 if a new low in the validation loss does not appear for 10 epochs.

3.3 Cross-Dataset Study

To estimate the generalisability of our model, we have conducted a cross-dataset study which consists
of training the model on a subset of datasets and testing it on a different subset.

As described in Section 3.2, the output map of our neural network is a likelihood map where
each pixel has a value comprised between 0 and 1 representing the likelihood that the pixel is in a
crack. To evaluate these likelihood maps, we propose to use two metrics: a modified version of the
F1 score [10], and the Area Under the Curve of the ROC curve [9].

For the first metric, we transform our likelihood map into a binary map by applying a threshold
b(x, y) = l(x, y) > t with t = 0.5, l being the likelihood map and b the resulting binary map. A

2Keras, Chollet, F. and others, 2015, https://keras.io
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Algorithm 1: Patch preprocessing during training

input : patch
output: patch (processed)
avg = mean(patch)
patch -= avg
patch ∗= RandomNumberBetween 0 And 1 + 0.5
patch += avg + (RandomNumberBetween 0 And 1 - 0.5) × 0.3
if RandomCoinFlip = True then

patch = VerticalFlip(patch)

if RandomCoinFlip = True then
patch = HorizontalFlip(patch)

Apply random rotation on patch (set undefined pixels to 0)
Apply random zoom, between 0.8 and 1.2 on patch (set undefined pixels to 0)
return patches

Algorithm 2: Batch dataset balancing

input : patchesListPerDataset, sizeOfBatch
output: patches
nbPatches= sizeOfBatch

number of datasets

patches = Empty Array()
foreach dataset in patchesListPerDataset do

for i in range(0, nbPatches) do
patches.append(pick random patch from patchesListPerDataset[dataset])

return patches

classical metric for measuring classification tasks is the F1 score [10], which takes into account both
the precision and the recall of the classifier

F1 = 2×
precision × recall

precision + recall
,

with

precision = fraction of true positives among all detections =
tp

tp+ fp
=

|{b = 1} ∩ {g = 1}|

|{b = 1}|
,

recall = fraction of true positives succesfully detected =
tp

tp+ fn
=

|{b = 1} ∩ {g = 1}|

|{g = 1}|
,

where b is the binary segmentation map ({b = 1} is the set of points {(i, j), b(i, j) = 1}), g is the
ground truth, and tp, fp and fn are respectively the number of true positives, false positives and
false negatives. Although this metric is adapted to most classification tasks, it can be ill-adapted
to semantic segmentation problems where thin objects are represented, as it is the case with cracks.
Indeed, the width of cracks is generally between 2 and 5 pixels in the databases under study. As
illustrated in Figure 5, if the width of the crack is 3 pixels and there is a shift of just one pixel
between the detection and the ground truth, the precision, recall and F1 scores all drop to 2

3
where it

would have been 1 if the semantic segmentation was aligned correctly. This drop is very important
considering that, due to inaccuracies and inconsistencies intra and inter-dataset during the labeling
process, the ground truth often exhibits such discrepancies. Moreover, it is not necessary to be
precise down to the pixel level: a shift of a few pixels is not likely to modify the crack’s diagnosis.
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Figure 4: Architecture of our model. In: the input image. Out: the output semantic segmentation. BN: Batch Normaliza-
tion.

We therefore introduce a new metric that does not penalize small spatial shifts and distortions
in the prediction compared to the ground truth. The main idea is to consider a detection as correct
if a positive in the ground truth exists at a distance strictly less than θ, and to consider a positive
in the ground truth successfully detected if a detection exists at a distance < θ. We therefore define
θ-precision and θ-recall as:

θ-precision = fraction of detected points at a distance < θ to a positive in the ground truth,

θ-precision =
|{b = 1} ∩ {δθ(g)| = 1}

|{b = 1}|
,

θ-recall = fraction of positives in the ground truth at a distance < θ of a detection,

θ-recall =
|{δθ(b) = 1} ∩ {g = 1}|

|{g = 1}|
,

where b is the binary segmentation map, g the ground truth and δθ(x) the binary morphological
dilation of size θ.

We can then define θ-F1:

θ-F1 = 2×
θ-precision × θ-recall

θ-precision + θ-recall
.

Figure 6a shows the relationship between θ and θ-precision, θ-recall and θ-F1.
The second metric evaluates the likelihood map as a whole. The ROC curve represents for all

possible thresholds the relationship between the true positive rate (ordinate) - the percentage of
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(a) Ground truth (b) Semantic segmentation (c) TP, FP and FN

Figure 5: Limitation of the F1 score. TP: True Positive (black in (c)). FP: False Positive (red in (c)). FN: False Negative
(purple in (c)).

pixels detected as cracks and labelled as cracks in the ground truth - and the false positive rate
(abscissa) - the percentage of pixels detected as cracks but not labelled as cracks. An example of
such a curve can be found in Figure 7. A good classification algorithm should maximize the true
positive rate while minimizing the false positive rate, in other words maximize the Area Under the
Curve (AUC). An area of 0.5 (or 50%) means that the false positive rate is increasing as fast as the
true positive rate: in other words, the algorithm is not better than random draws. The best area
values are close to 1 (or 100%) as it means that there exists a threshold detecting most positives
with very few false positives.

Tables 2, 3 and 4 show the performance of all considered networks when trained on a single
dataset and tested on another one. As expected, the results are best when a network is trained
and tested on the same dataset. F1 scores can be poor, especially when the model has been trained
on one dataset and tested on another, but are significantly improved when using θ-F1 with θ = 5,
suggesting that these low measured performances are mostly due to differences during the labelling
process. Indeed, the ground truth represents cracks with different widths depending on the dataset.
Overall, the θ-recall is lower than the θ-precision, implying that there is a higher number of missed
cracks than false positives. Networks trained on other datasets seem to have an important drop
in performance when tested on Crack500, suggesting that this dataset has some unique cracks and
features. The model on CrackForest is the worst in terms of generalization, which can be explained
by the fact that CrackForest contains the least number of images.

Crack500 SDNet2018 CrackForest DeepCrack

P. R. F1 P. R. F1 P. R. F1 P. R. F1
Crack500 76% 58% 66% 53% 46% 49% 75% 37% 49% 74% 75% 75%

SDNet2018 37% 27% 31% 68% 64% 66% 57% 69% 62% 75% 62% 68%
CrackForest 67% 18% 29% 76% 26% 38% 78% 60% 68% 76% 34% 47%
DeepCrack 66% 34% 44% 53% 55% 54% 84% 26% 40% 74% 78% 76%

Table 2: Cross dataset performance study: performance when training on a single dataset (1/3). The first column indicates
the dataset on which the neural network has been trained. The first line indicates which dataset it has been tested on. The
performance metrics are the classical precision (P.), recall (R.) and F1: 0% represents the worst performance, 100% is the
best performance.

Table 5 shows the AUC performance of the networks when trained on all datasets except one
and tested on the remaining one. Although the performance is slightly worse compared to when the
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Crack500 SDNet2018 CrackForest DeepCrack

θ-P. θ-R. θ-F1 θ-P. θ-R. θ-F1 θ-P. θ-R. θ-F1 θ-P. θ-R. θ-F1
Crack500 92% 82% 87% 56% 63% 59% 99% 59% 74% 81% 91% 86%

SDNet2018 47% 43% 45% 77% 81% 79% 99% 81% 89% 87% 81% 84%
CrackForest 80% 38% 52% 79% 47% 59% 99% 93% 96% 84% 53% 65%
DeepCrack 83% 51% 63% 57% 77% 65% 99% 49% 66% 83% 90% 86%

Table 3: Cross dataset performance study: performance when training on a single dataset (2/3). The first column indicates
the dataset on which the neural network has been trained. The first line indicates which dataset it has been tested on. The
performance metrics are the θ-precision (θ-P.), θ-recall (θ-R.) and θ-F1 introduced in Section 3.3 with θ = 5: 0% represents
the worst performance, 100% is the best performance.

Crack500 SDNet2018 CrackForest DeepCrack

Crack500 98.8% 90.9% 94.3% 97.5%
SDNet2018 84.4% 97.7% 94.8% 97.2%
CrackForest 73.8% 77.9% 98.9% 81.6%
DeepCrack 87.0% 93.3% 88.4% 97.6%

Table 4: Cross dataset performance study: performance when training on a single dataset (3/3). The first column indicates
the dataset on which the neural network has been trained. The first line indicates which dataset it has been tested on. The
performance metric is the Area Under Curve of the ROC curve [9]: 0% represents the worst performance, 100% is the best
performance.

network is trained and tested on the same dataset, it is consistently better than when we train a
network on one dataset and test it on another. Also, the worst combination achieves an AUC of 94.3%,
whereas the worst AUC of the best network trained on a single dataset is 90.9%, suggesting that
training on several datasets produces more robust networks. We have done this cross-validation for
multiple architectures in Table 6. Our method performs better on the worst performing combination
than any of the other tested architectures, suggesting that it generalizes better. Also, training our
architecture on each dataset separately, then evaluating each neural network on the test set and
combining the predictions using different operators (min, median, avg, max) doesn’t produce better
results.

Trained on Tested on AUC Diff. 1 Diff. 2

SDNet2018+CrackForest+DeepCrack Crack500 94.3% -4.5% +8.4%
CrackForest+Crack500+DeepCrack SDNet2018 94.5% -3.2% +1.3%
SDNet2018+Crack500+DeepCrack CrackForest 95.1% -3.8% +0.3%
SDNet2018+CrackForest+Crack500 DeepCrack 97.8% +0.1% +0.3%

Table 5: Cross dataset performance study: performance when training on several datasets using our approach. AUC: Area
Under Curve of the ROC curve [9]: 0% represents the worst performance, 100% is the best performance. Diff. 1: how
much the AUC has changed compared to when we trained the model on the dataset we tested it on. Diff. 2: how much
the AUC has improved compared to the best model trained on a single dataset different from the one it was tested on.

3.4 Quantitative and Qualitative Results

Table 7 shows the AUC performance of multiple models (trained on all datasets when possible). The
AUC performance of our proposed network is comprised between 97% and 99% depending on the
dataset, and its performance is close to, or better, than the one of networks trained and tested on
the same dataset.
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Architecture Min. AUC Max. AUC

FCN-8 [19] 94.1% 97.2%
FCN-32 [19] 91.6% 95.3%
PSPNet [34] 91.3% 95.1%
SegNet [5] 90.3% 97.4%
Our method 94.3% 97.8%

Spe. (min.) 68.4% 88.1%
Spe. (median) 90.1% 97.6%
Spe. (avg.) 93.1% 98.4%

Spe. (max.) 92.8% 98.2%

Table 6: Cross dataset performance study: performance range when training on several datasets using different architectures.
AUC: Area Under Curve of the ROC curve [9]: 0% represents the worst performance, 100% is the best performance. Min.
AUC & Max. AUC : minimum and maximum AUC obtained when combining 3 datasets and testing on another. Spe.
(method): for each sample, we run our architecture trained on each dataset, and aggregate the detection using the
minimum, median, average and maximum.

Method Crack500 SDNet2018 CrackForest DeepCrack All

CrackIT[24] * 76.1% 65.5% 77.5% 71.9% 72.0%
DeepCrack[18] ** 95.2% 93.2% 97.0% 97.8% 96.0%
FCN 8 [19] 97.4% 97.3% 98.0% 98.2% 97.9%

FCN 32 [19] 95.8% 94.6% 95.2% 96.5% 95.8%
PSPNet [34] 97.9% 95.8% 94.4% 96.9% 96.8%
SegNet [5] 96.5% 97.0% 97.4% 95.9% 96.8%
Our method 97.2% 98.1% 98.5% 98.6% 98.2%

Table 7: Performance of the model trained on all datasets. AUC: Area Under Curve of the ROC curve [9]: 0% represents
the worst performance, 100% is the best performance. Bold: best results. Gray bold: second best results. * The CrackIT
method doesn’t use machine learning, so it was not trained on the dataset. ** Contrary to all other deep learning methods
in the table, DeepCrack was not trained on our dataset.

Table 8 shows the recall, precision and F1 performance metrics as well as their θ counter-part.
Figure 6b shows the relationship between θ and θ-F1. Overall, there is an increase of 15 to 20
percentage points when comparing F1 scores to θ-F1 scores with θ = 5: a large part of the errors
measured by F1 are due to small discrepancies between the binary map and the ground truth around
cracks. Precision is here again larger than recall: there are more missed cracks than false positives.
Our modified U-net method seems to perform better than other state of the art methods.

Method Precision Recall F1 θ-Precision θ-Recall θ-F1

CrackIT 59% 26% 36% 68% 43% 52%
DeepCrack 50% 80% 61% 74% 88% 80%
FCN8 76% 52% 61% 88% 76% 82%

FCN32 73% 20% 31% 88% 31% 46%
PSPNet 65% 21% 32% 84% 35% 49%
SegNet 72% 47% 57% 88% 63% 74%
Our method 77% 65% 70% 88% 86% 87%

Table 8: Performance metrics for the binary segmentation map for several methods. θ = 5. Bold: best results. Gray bold:
second best results.

The ROC curve of the benchmark’s methods on the test set is displayed in Figure 7.
Our method can also be used for classifying whole patches. For doing so, we define a patch as
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Figure 6: Relationship between θ-F1 and θ.
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Figure 7: ROC curve of our benchmark on all datasets.

containing a crack if there exists a pixel inside it marked as belonging to a crack in the ground truth.
If we define S =

∑
∀x∈p p(x), p(x) being the prediction mask, the optimal threshold maximizing the

F1 score is S > 176.09, achieving an F1 score of 89%, a precision of 92% and a recall of 87%.

Examples of predictions of our U-net on the merged dataset are shown in Figure 8. Figure 9
shows an example of prediction on an image of ground crack, a type of crack that the network was
never trained on, suggesting that the network generalizes well.
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(a) Crack500 (b) SDNet (c) CrackForest (d) DeepCrack

(e) Prediction on (a) (f) Prediction on (b) (g) Prediction on (c) (h) Prediction on (d)

Figure 8: Examples of predictions of the model trained on the merged dataset.

3.5 Robustness Enhancement using Extra-Dataset Images

We have shown in Section 3.4 that combining several datasets during training enhances the robustness
of detectors. However, a limitation of the combined dataset we have constructed is that it focuses on
images of concrete structures containing cracks. As it doesn’t contain images of more general scenes,
the trained detectors fail when tested on images containing different objects (see Figure 10).

In order to make our crack detector more robust, we have added in our merged dataset an
additional set of 3893 images from the Flickr3 website (a list of image URLs will be made available).
These images served as negative examples, and a manual check was done to check that they contained
no cracks.

Some comparative results are shown in Figure 10 and Table 9. The detector trained on the
augmented dataset is less sensitive than when trained on the original dataset (precision is higher
and recall is lower): this is an expected effect of adding images with only negative examples. We
have therefore shown in Table 9 the performance of the model trained on the original dataset with
the standard threshold of 0.5 and an additional threshold of 0.75 resulting in a similar precision
and recall than what is achieved by the model trained on the augmented dataset. The number of
false crack detections on the Flickr dataset is much lower: there are, on average, 40 times less false
positive pixels when using the model trained on the augmented dataset than the one on the original
dataset. This observation remains true even after adjusting the threshold on the model trained on
the original dataset: the number of false positive pixels is 12 times lower in that case.

3.6 A Few Notes about Inference

Although the neural network has been trained on 256 × 256 patches, it is important to note that
the detector can be tested on larger images as well.

3https://www.flickr.com/
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(a) Ground crack

(b) Prediction on (a)

Figure 9: Example of prediction on an image of ground crack, a type of crack that the model was never trained on.
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(a) Image of a spider (b) Detection when trained
on original dataset

(c) Detection when trained on
augmented dataset

Figure 10: Example of problematic image: an image of a spider on a wall is detected as a crack when using U-net trained
on the original merged dataset. However, when using the augmented dataset, our detector correctly classifies the spider as
non crack.

Trained on θ-Precision θ-Recall θ-F1 AFD

Original dataset (t = 0.50) 88% 86% 87% 3491
Original dataset (t = 0.75) 92% 70% 80% 1080
Augmented dataset (t = 0.50) 93% 70% 80% 88

Table 9: Performance metrics for the binary segmentation map for several methods. θ = 5. θ-Precision, θ-Recall and θ-F1
are computed on the original dataset. t: threshold used for classifying pixels as cracks / non cracks. AFD: Average number
of pixels per image falsely classified as cracks on the Flickr dataset.

A first approach can be to simply provide a larger image to the neural network. The only
requirement in that case is that the images width and height must be multiples of 16 so that the output
size is the same as the input size. A limitation of this approach is that the memory requirements for
processing the image might exceed the GPU or RAM specifications.

Our algorithm therefore uses another approach. The neural network is evaluated on overlapping
sliding windows of the image and predictions are then concatenated and aggregated as described in
Algorithms 3 and 4. This approach allows us to be more permissive on the size of the image at the
cost of a longer inference time.

Batch normalization layers are fixed during inference.

4 Conclusion

We have presented a general deep learning method for detecting cracks on textured surfaces. For
making this method robust to different types of cracks and acquisition procedures, we have trained
our method on four datasets - Crack500 [32], DeepCrack [18], SDNet2018 [20], CrackForest [30].
We have also labelled a part (1000 images) of the SDNet2018 dataset so that it contains semantic
labels, as it originally only proposed crack / non-crack classifications on the image level. In order
to make our method even more robust to different objects, scenes and illuminations, we have also
added images from the Flickr website, leading to an important drop in false positives on extra dataset
images.

To validate our approach, we have done a cross-dataset study where we trained the model on a
subset of the datasets and tested it on another subset. Results of this study show that training the
model on the several datasets makes it more robust to new images.

Overall, the network’s predictions are satisfying even on images outside the merged dataset.
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Algorithm 3: Sliding windows inference

input : image, neuralNetwork, windowSize, nbOutputLayers
output: predictions
// Image dimension is width × height

// windowSize is 256 in our case.

// nbOutputLayers is 1 in our case.

windowWeights = GetWindowWeights(windowDimensions)
// See Algorithm 4

windows = get 50% overlapping sliding windows positions of size windowSize on image
sumMat = matrix filled with zeros of dimensions width × height × nbOutputLayer
foreach window in windows do

sumMat[window] += windowWeights

prediction = matrix filled with zeros of dimensions width × height × nbOutputLayer
foreach window in windows do

exTarget = extract window from image;
exPrediction = neuralNetwork.predict(exTarget);
// This is a simplification. If memory allows it, the best is to predict on batches.

prediction[window] = exPrediction × windowWeights / sumMat[window]

return patches

Algorithm 4: GetWindowWeights

input : windowSize, unreliableD
output: windowsWeights
// Predictions are not reliable near the borders of the patch, unreliableD is the distance at which we

estimate it is not reliable.

windowsWeights = binary matrix filled with zeros of dimensions windowSize × windowSize
// For each pixel in windowsWeights, set its value to the distance to the nearest border.

windowsWeights[1:-1, 1:-1] = 1
windowsWeights = distanceTransform(windowsWeights)
windowsWeights = (windowsWeights - unreliableD) / unreliableD
windowsWeights[windowsWeights < epsilon] = epsilon
// epsilon being a very small number, to handle images borders.

windowsWeights[windowsWeights > 1] = 1
// Pixel value is epsilon when distance to border is less than unreliableD.

// Pixel value is 1 when distance to border is more than 2 × unreliableD.

// Otherwise, it is between 0 and 1.

return windowsWeights
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