
Published in Image Processing On Line on 2020–05–21.
Submitted on 2019–10–16, accepted on 2020–04–23.
ISSN 2105–1232 c© 2020 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2020.283

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Local JPEG Grid Detector via Blocking Artifacts, a

Forgery Detection Tool

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-94235, Cachan, France
{nikoukhah, colom, morel, grompone}@cmla.ens-cachan.fr

Abstract

Image JPEG compression leaves blocking artifact traces. This paper describes an algorithm
that exploits those traces to locally recover the grid embedded in the image by the JPEG
compression. The algorithm returns a list of grids associated with different parts of the image.
The method uses Chen and Hsu’s cross-difference to reveal the artifacts. Then, an a contrario
validation step according to Desolneux, Moisan and Morel’s theory delivers for each detected
grid a Number of False Alarms (NFA) which tells how unlikely it is that the detection is due
to chance. The only parameter is the step size of the windows used, which represents the
exhaustiveness of the method. The application to image forgery detection is twofold: first, the
presence of discrepant JPEG grids with low NFA is a strong forgery cue; second, knowledge of
the grid is anyway required for further JPEG forensic analysis.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Keywords: JPEG compression; blocking artifact analysis; a contrario method; forgery detec-
tion

1 Introduction

The JPEG format is currently the most common method for compression of digital photography.
The encoding process consists of the following steps:

1. The RGB (red, green and blue) color channels are converted to YCbCr (luminance and two
chroma components).

2. The chroma channels Cb and Cr are subsampled. The sampling ratios depend on the parameters
used in the compression method.

1https://doi.org/10.5201/ipol.2020.283

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi, Local JPEG Grid Detector via Blocking Artifacts,
a Forgery Detection Tool , Image Processing On Line, 10 (2020), pp. 24–42. https://doi.org/10.5201/ipol.2020.283

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2020.283
https://doi.org/10.5201/ipol.2020.283
https://doi.org/10.5201/ipol.2020.283
https://doi.org/10.5201/ipol.2020.283

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

3. Each of the three image channels is partitioned into 8× 8 non-overlapping blocks.

4. The type II 2D Discrete Cosine Transform (DCT) is then applied to each block.

5. The DCT coefficients of each block are quantized according to a given table.

6. The resulting 8× 8 blocks are losslessly encoded by using run length and Huffman coding.

The quantization of DCT coefficients (lossy compression) leaves traces at the boundaries of each
8× 8 block, as shown in Figure 1. These traces, characteristic of JPEG compression, can be used to
retrieve the grid, depicted in red in the figure. Since the blocks are of size 8×8, there are 64 possible
grid origins. In the following, a grid will be characterized by its origin’s coordinates gx and gy. If the
JPEG image has not been further processed, the grid’s origin should be (0, 0).

Figure 1: JPEG block artifacts. The red dotted lines highlight the boundaries of the 8× 8 blocks used in the compression.

Our method analyses the blocking artifacts locally in several image windows, and aims to de-
termine whether a JPEG grid is observed in each one. The algorithm is composed of three main
steps: First, a cross-difference filter [1] is applied to the luminance channel of the image to emphasize
the JPEG traces. Then, a family of overlapping windows is created as illustrated in Figure 2. In
each window, the horizontal and vertical local maxima of the cross-difference vote for the JPEG grid
origin that would imply that a block boundary passed through them. Finally, the votes go through a
statistical validation step based on the a contrario theory [2]. The result of the algorithm is the list
of all the windows and their vote: a meaningful grid or no detection. The presence of two or more
different JPEG grid origins may be a cue for image forgery. On the other hand, when a single and
coherent JPEG grid origin is found all over the image, further JPEG analysis can be performed to
authenticate the image.

The only parameter of this method is the minimum window step (W ×W pixels, W must be a
multiple of 8 as we will see later). The smaller W , the more exhaustive the method; nevertheless,
the exhaustiveness implies the cost of a longer computational time.

The algorithm described here derives from the one in [7] but includes some improvements.

25

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

2 Algorithm

Algorithm 1 provides a pseudo-code of the full method. Each step of this algorithm is described in
the following subsections.

Image Filtered image Sample of windows starting at
coordinate (x, y)

<latexit sha1_base64="k1Sj6xixu0gxSHFpNV94jHAB3YU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJUkJKIoMeiF48VTFtoQ9lsN+3S3U3Y3Ygh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777aysrq1vbJa2yts7u3v7lYPDlo5TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vp367UeqNIvlg8kSGgg8lCxiBBsr+bWn8+ysX6m6dXcGtEy8glShQLNf+eoNYpIKKg3hWOuu5yYmyLEyjHA6KfdSTRNMxnhIu5ZKLKgO8tmxE3RqlQGKYmVLGjRTf0/kWGididB2CmxGetGbiv953dRE10HOZJIaKsl8UZRyZGI0/RwNmKLE8MwSTBSztyIywgoTY/Mp2xC8xZeXSeui7rl17/6y2rgp4ijBMZxADTy4ggbcQRN8IMDgGV7hzZHOi/PufMxbV5xi5gj+wPn8AfGkjho=</latexit><latexit sha1_base64="k1Sj6xixu0gxSHFpNV94jHAB3YU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJUkJKIoMeiF48VTFtoQ9lsN+3S3U3Y3Ygh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777aysrq1vbJa2yts7u3v7lYPDlo5TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vp367UeqNIvlg8kSGgg8lCxiBBsr+bWn8+ysX6m6dXcGtEy8glShQLNf+eoNYpIKKg3hWOuu5yYmyLEyjHA6KfdSTRNMxnhIu5ZKLKgO8tmxE3RqlQGKYmVLGjRTf0/kWGididB2CmxGetGbiv953dRE10HOZJIaKsl8UZRyZGI0/RwNmKLE8MwSTBSztyIywgoTY/Mp2xC8xZeXSeui7rl17/6y2rgp4ijBMZxADTy4ggbcQRN8IMDgGV7hzZHOi/PufMxbV5xi5gj+wPn8AfGkjho=</latexit><latexit sha1_base64="k1Sj6xixu0gxSHFpNV94jHAB3YU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJUkJKIoMeiF48VTFtoQ9lsN+3S3U3Y3Ygh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777aysrq1vbJa2yts7u3v7lYPDlo5TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vp367UeqNIvlg8kSGgg8lCxiBBsr+bWn8+ysX6m6dXcGtEy8glShQLNf+eoNYpIKKg3hWOuu5yYmyLEyjHA6KfdSTRNMxnhIu5ZKLKgO8tmxE3RqlQGKYmVLGjRTf0/kWGididB2CmxGetGbiv953dRE10HOZJIaKsl8UZRyZGI0/RwNmKLE8MwSTBSztyIywgoTY/Mp2xC8xZeXSeui7rl17/6y2rgp4ijBMZxADTy4ggbcQRN8IMDgGV7hzZHOi/PufMxbV5xi5gj+wPn8AfGkjho=</latexit><latexit sha1_base64="k1Sj6xixu0gxSHFpNV94jHAB3YU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJUkJKIoMeiF48VTFtoQ9lsN+3S3U3Y3Ygh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777aysrq1vbJa2yts7u3v7lYPDlo5TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vp367UeqNIvlg8kSGgg8lCxiBBsr+bWn8+ysX6m6dXcGtEy8glShQLNf+eoNYpIKKg3hWOuu5yYmyLEyjHA6KfdSTRNMxnhIu5ZKLKgO8tmxE3RqlQGKYmVLGjRTf0/kWGididB2CmxGetGbiv953dRE10HOZJIaKsl8UZRyZGI0/RwNmKLE8MwSTBSztyIywgoTY/Mp2xC8xZeXSeui7rl17/6y2rgp4ijBMZxADTy4ggbcQRN8IMDgGV7hzZHOi/PufMxbV5xi5gj+wPn8AfGkjho=</latexit>

x

y

Figure 2: Sample of windows, with x = W and y = 2W .

2.1 Luminance Component

The algorithm takes an RGB image and computes (Algorithm 1 step 1) its luminance according to
the JPEG standard

I = 0.299 R + 0.587 G+ 0.114 B,

where R, G and B are the values of the red, green and blue channels at a given pixel. The chroma
components, Cb and Cr, are not used in the proposed method. These components are usually sub-
sampled in JPEG images. The sub-sampling ratios for rows and columns may be different and they
vary from image to image. When these ratios are known, the proposed approach could be adapted
to use, additionally, the chroma components.

2.2 Grid Extraction

The blocking artifacts appear as luminance changes along the block frontiers. Several filters were
proposed in the literature to emphasize the blocking artifacts.

Let I be the X × Y luminance component of the input image and I(x, y) the intensity value at
pixel (x, y), with 0 ≤ x ≤ X − 1 and 0 ≤ y ≤ Y − 1. The simplest method [6] to reveal the presence
of block artifacts computes the absolute value of the gradient magnitude image. This first order
derivative is approximated by two difference filters,

• horizontally:
|Ix(x, y)| ≈ |I(x, y)− I(x− 1, y)|; (1)

• and vertically:
|Iy(x, y)| ≈ |I(x, y)− I(x, y − 1)|. (2)

Other authors [5] use the absolute value of second order derivatives approximated by

• horizontally:
|Ixx(x, y)| ≈ |2I(x, y)− I(x+ 1, y)− I(x− 1, y)|; (3)

26

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Algorithm 1: Local JPEG grid detector via blocking artifacts

input : A color image (R,G,B) of size X × Y
input : Window step size W
output: A list L of windows with detected JPEG grid

1 I ← 0.299R + 0.587G+ 0.114B // compute luminance image

2 C ←

∣∣∣∣∣I ?
[

1 −1
−1 1

]∣∣∣∣∣ // compute cross-difference

3 foreach ω ∈ Ω(W) do // loop on the family of local windows, Section 2.3

4 votex[·]← 0 // initialize votes to zero

5 votey[·]← 0
6 foreach (x, y) ∈ ω do
7 if C(x, y) > C(x− 1, y) and C(x, y) > C(x+ 1, y) then // local horiz. maximum

8 increment votex[x mod 8]

9 if C(x, y) > C(x, y − 1) and C(x, y) > C(x, y + 1) then // local vert. maximum

10 increment votey[y mod 8]

11 nx ← sum(votex) // total number of horizontal votes

12 kx ← max(votex) // votes for best horizontal origin

13 NFAx ← (XY)2

1024
B
(
|ω|
16
, kx

2
, nx

|ω|

)
// compute horizontal NFA, Section 2.4

14 ny ← sum(votey) // total number of vertical votes

15 ky ← max(votey) // votes for best vertical origin

16 NFAy ← (XY)2

1024
B
(
|ω|
16
, ky

2
, ny

|ω|

)
// compute vertical NFA, section 2.4

17 if NFAx < 1 and NFAy < 1 then // meaningful JPEG grid found

18 gx ← arg max(votex)
19 gy ← arg max(votey)
20 append (ω, gx, gy,NFAx,NFAy) to L

27

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

• and vertically:
|Iyy(x, y)| ≈ |2I(x, y)− I(x, y + 1)− I(x, y − 1)|. (4)

Yet, as can be seen in Figure 3, both filters have a strong response to the edges and textures present
in the image and may induce aberrant grid detection. To reduce the interference of the background
scene details, a cross-difference filter proposed in [1] is defined by

C(x, y) = |I(x, y) + I(x+ 1, y + 1)− I(x+ 1, y)− I(x, y + 1)|. (5)

This filter amounts to the absolute value of a convolution of the image with a 2×2 kernel as given in
step 2 of Algorithm 1. To avoid setting boundary conditions, the JPEG grid detection will work only
in the region where the cross-difference is well defined: everywhere except the last row and column
of the image.

Cross-difference filter First-order difference filter Second-order difference filter

Figure 3: Close view of the cross-difference, first-order derivative and second-order derivative.

Our method uses this filter to reveal the compression artifacts. However, in cases where the
image has been weakly compressed, even this filter can be inefficient. The JPEG format has a
quality parameter Q measuring the compression quality in a scale ranging from 1 to 100. The higher
the compression quality Q, the less the image is compressed and the dimmer the JPEG grid. The
image in Figure 3 comes from a smartphone camera which compresses at quality 93 and the images
of Figure 4 have been compressed with imagemagick with varying quality factors.

2.3 Voting Process

The JPEG grid is evaluated locally, so a counting process is performed independently in each window,
see Algorithm 1 step 3. Figure 2 illustrates the family of windows Ω(W) we use. In principle, any
pixel of the image can be used for the upper-left corner and any pixel can be used for the lower-right
corner of a window. But to simplify the comparison between different grid origins, we will restrict
the windows to sizes multiple of 8; in this way, any of the eight horizontal or vertical grid origins are
equally represented in each window.

28

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Uncompressed Q = 95 compressed Q = 30 compressed

Figure 4: Comparison of cross-difference images for different JPEG compression quality factors.

However, to accelerate the computation, only a subset of these rectangular windows is computed:
the number depends on how local we want the method to be, with W being the minimum window
side size such that pixels of the image with coordinates multiple of

⌊
X
W

⌋
and

⌊
Y
W

⌋
are used as the

corners of the family of rectangular windows.

Thus the total number of windows with sizes that are multiples of W is

|Ω(W)| = 1

4

⌊
X

W

⌋(⌊
X

W

⌋
+ 1

)⌊
Y

W

⌋(⌊
Y

W

⌋
+ 1

)
. (6)

When a JPEG grid is present, the local maxima of the cross-difference tend to concentrate on
JPEG block frontiers as shown in Figure 3. Therefore each horizontal or vertical local maximum of
the cross-difference C(x, y) votes for the grid origins compatible with such block frontiers, namely
xmod 8 and ymod 8, see Algorithm 1 steps 6 to 10. Thus, each local maximum votes for origin gx
or gy with values from 0 to 7.

To work in an area where the cross-difference and the computation of the local maxima are both
defined, the family of local windows Ω(W) is set with 1 ≤ x ≤ X − 2 and 1 ≤ y ≤ Y − 2.

Working with a reduced family of windows is just the result of a practical consideration, to obtain
a faster algorithm. With an adequately chosen value for W , the algorithm will give a good balance
between producing a result similar to the exhaustive search (W = 8) while significantly reducing the
computational time.

2.4 Validation Step

The validation step is based on the non-accidentalness principle which prescribes to reject detec-
tions that could be the result of an accidental configuration. Accordingly, the a contrario approach
introduced by Desolneux, Moisan, and Morel [2] proposes to control the expected number of false
detections on a noise or a contrario model H0 where the desired structure could only be present by
chance.

Our a contrario assumption is the absence of a JPEG grid. Under that assumption the local
maxima votes should be ceteris partibus uniformly distributed between 0 and 7. A detection will be
considered when the number of votes for a particular position is too large to be the result of chance.

29

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

The mathematical setting corresponds to a multiple testing procedure to control the expected
number of false detections under the null model H0 [3]. The Number of False Alarms (NFA) of
observing a value e is defined by

NFA = Ntest PH0(E ≥ e) (7)

where Ntest is the number of events tested and PH0(E ≥ e) is the probability of observing a value as
large as e for a random variable E under the stochastic model H0. The event is called ε-meaningful
if and only if NFA < ε. The question to be answered is whether a window’s vote for a coordinate
(gx, gy) is meaningful or not. Each window has two events to test: the horizontal gx and the vertical
gy grid origin coordinate. A window will be called meaningful under the a contrario assumption
when both of these events are ε-meaningful, i.e. NFAx < ε and NFAy < ε.

Let us denote by nx and ny the total number of horizontal and vertical votes (see Algorithm 1
steps 11 and 14). We will denote by kx and ky the number of votes for the most voted grid, horizontal
and vertical respectively (Algorithm 1 steps 12 and 15). Because it was imposed that the window
size is a multiple of eight, each of the possible grid origins has the same number of potential votes,
and directly comparing the number of votes is fair. We need now to determine whether kx and ky are
too large to be the result of chance, which implies that too many of the positions compatible with a
given grid voted for it. However, evaluating directly the probability of observing kx or more votes for
a given origin is difficult because the votes are not independent. Indeed, the computation of a local
maximum requires comparing three consecutive values of the cross-difference, and each of the latter
is computed using a 2× 2 set of image pixels. Thus, a horizontal local maximum involves a 4× 2 set
of image pixels. As a consequence, the votes on a given column are not independent. Nevertheless,
the votes would be independent if we counted only rows at distance two. Ideally, we should perform
two tests, one with even rows and another one with odd rows. A simpler way is to count all the rows
and then divide by two. If the votes were equally distributed on the rows, then this count would give
the same value as any of the sub-counts. If not, necessarily one of the two sub-counts would have
more votes. So kx/2 is a conservative count of the number of independent votes.

Among the |ω| pixels in the window ω, only |ω|/8 are potential maxima associated to each
of the 8 horizontal grid origins. Using the same reasoning as before, only half of them can be
considered independent. That means that among the |ω|/16 positions that could have voted for a
given horizontal grid position, only kx/2 actually did. Our a contrario random model H0 is that
each of these votes are independent Bernoulli random variables. The probability of voting for these
random variables is unknown a priori ; the proposed algorithm makes an empirical estimation given
by nx

|ω| , that is the total number of votes in the window over the total number of pixels in the window.
Then, the probability of observing as many votes just by chance is thus

B
(
|ω|
16
,
kx
2
,
nx
|ω|

)
,

where B(η, κ, ρ) is the binomial tail given by

B(η, κ, ρ) =

η∑
j=κ

(
η

j

)
ρj(1− ρ)η−j. (8)

The number of tests Ntest corresponds to the total number of windows in the image, times the number
of different horizontal grid origins, times 2 to count the two tests theoretically performed, one for
odd rows and one for even rows. Here, we will not take into consideration the reduction of the family
of windows described in the last section; indeed, the only purpose of such reduction is reducing the
computational time, but we want the result for a given window to be the same as if the exhaustive

search were performed. Thus, Ntest = 2× 8× |Ω(8)| ≈ 16 1
4

(
X
8
Y
8

)2
= (XY)2

1024
.

30

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Following the a contrario theory, we define the Number of False Alarms (NFA) as

NFAx =
(XY)2

1024
B
(
|ω|
16
,
kx
2
,
nx
|ω|

)
. (9)

An analogous reasoning is performed for the vertical grid origin. The evaluation of the horizontal
and vertical grid origins are different tests and even different families of test; therefore, there is no
problem of independence between the horizontal and vertical test for the same window. Similarly to
the horizontal case, the NFA for the second test is

NFAy =
(XY)2

1024
B
(
|ω|
16
,
ky
2
,
ny
|ω|

)
. (10)

All in all, a JPEG grid is detected when NFAx < ε and NFAy < ε, see Algorithm 1 step 17.
Desolneux et al. [2] suggested using ε = 1 which implies getting, on average, less than one false

detection per image. This makes sense when many detections are expected per image. An example
of this is the detection of line segments in an image [4], where hundreds or thousands of them are
present in a typical image; accepting less than one false detection seems thus reasonable. In our
current problem, however, it may seem contradictory to set ε = 1 as in a normal JPEG image we
expect to find just one grid; accepting one false grid detection in H0 would imply getting, on average,
a spurious grid detection on every image, even when no JPEG compression is present. Nevertheless,
the proposed a contrario formulation treats the horizontal and vertical grid evaluations as different
families of tests, and the number of false detections is controlled so as to get no more than ε false
horizontal origin detections and no more than ε false vertical origin detections. The JPEG grid origin
detection requires both tests to be satisfied, so we know the expected number of JPEG grid origin
detections is also controlled by ε. Actually, its expected value is much lower. Indeed, when setting

ε = 1 one expects to obtain, under the null model H0, one test among a total of (XY)2

1024
horizontal tests

to be positive; it is also expected that one test among a total of (XY)2

1024
vertical tests to be positive.

But to obtain a false JPEG grid origin detection, both tests must correspond to the same window.
There is no reason why for spurious horizontal and vertical tests to be satisfied on the same window.
As a result, we may expect to observe accidental horizontal and vertical detections on the same

window in about one out of Ω(8) ≈ (XY)2

16384
random images of size X × Y ; this is again reasonable.

Even for images as small as 100× 100, this corresponds to one false detection every 6103 images. (A
tighter selection of ε would be possible, but it would require the user to select the acceptable false
alarm rate.) All in all, we set ε = 1 as this simple criterion results in an effective control of the
number of false JPEG grid origin detection without the need for further user intervention.

Concerning the numerical implementation, two comments are relevant. First, in our implemen-
tation, the computation of the binomial tail is performed using the following relation to the Gamma
function, (

n

k

)
=

Γ(n+ 1)

Γ(k + 1) · Γ(n− k + 1)
,

for which there are effective implementations readily available. To speed up the computations, the
sum of the binomial tail is truncated when the error can be bounded to be less than 10%.

Second, the NFA may reach very small values, which may underflow the usual IEEE 754 number
representation. Our implementation in the C programming language, which uses IEEE 754 number
representation, computes log10(NFA) instead of NFA, allowing for a larger numeric range. Any
logarithm base is equally useful for this purpose; the 10 base makes it slightly easier to read the
order of magnitude of the NFA values. Of course, the test must now compare log10(NFA) to log10(ε),
which for ε = 1 is zero.

31

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

2.5 Parameter Choice and Computational Complexity

The algorithm’s only parameter is the size of the smallest window W × W . The smaller W , the
more local the method, and the longer the computation. The code can be executed in parallel, the
computation at each window is independent from the others. It is reasonable to use values W ≥ 64
so that each window has at least 8 repetitions of the JPEG 8×8 blocking artifact. We observed that
smaller values increase the computation time while rarely adding meaningful detections.

In a nutshell, the algorithm first computes the cross-difference of the whole image; then, for each
window the votes are counted, and finally a NFA value is computed. The number of operations
required for computing the cross-difference is proportional to the number of pixels in the image.
The bottleneck is the second step, which is proportional to the product of the number of windows
analyzed and the size of each window. From Equation (6) we know that the number of windows is
bounded by

|Ω(W)| ≤ (XY)2

W 4
.

Two operations are performed per window: counting the number of votes and selecting the maxima
per axis for the computation of the NFA values. Only the vote count is relevant for the present
calculation as the other computations require a constant number of operations per window. The
complexity, thus, is determined by the number of votes which requires as many operations as the size
of the window. This value is bounded by the largest window, the one covering the full image. Thus,
the complexity of the algorithm is

computational complexity = O

(
(XY)3

W 4

)
. (11)

In other words, the complexity is proportional to the cube of the number of pixels in the image.
Also, the larger the smallest window W , the faster the method. The speed-up comes at the cost of
a reduced spatial resolution, reducing the capacity to detect small forgeries.

To give an idea of the usefulness of performing a non-exhaustive search, Equation (11) shows that
doubling W reduces the computational time by a 16 factor. Then, relative to the exhaustive search
(W = 8), the speed-up obtained are about 16 for W = 16, 256 for W = 32, 4096 for W = 64, and so
on. Thus, the value of W determines in practice the analysis time and may result in an exhaustive
but slow, or in a very fast process.

3 Experiments

The algorithm should detect the “strongest” grid, namely the one with the heaviest compression, in
case of several successive compressions. Indeed, most post-processed or tampered images have been
compressed at least twice, once when acquired and once after processing. In the following we analyze
the results of our detection algorithm for several meaningful applications.

3.1 JPEG Compression Detection

A first simple application is to tell if an image has undergone JPEG compression or not. If the image
has undergone a lossy compression, a global grid is detected and so the coordinates to its origin
are returned, otherwise there is no detection. The method does not need to be exhaustive and can
therefore look at big windows in the image, therefore performing few tests and being very fast.

32

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Figure 5: Uncompressed image and JPEG compressed image at quality 90.

Let us consider the examples in Figure 5. It consists of two copies of the same 768× 512 images,
one uncompressed and the other compressed with JPEG at quality 90. The proposed algorithm,
with W = 64 gives the following result for the uncompressed version:

image size: 768 x 512

window step size: 64

total number of evaluated windows: 1848

number of meaningful windows: 0 (0 %)

number of meaningful windows for each JPEG grid origin:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

best log(NFA) for each JPEG grid origin:

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

number of meaningful JPEG grids found: 0

no meaningful grid found

No suspicious traces found in the image with the performed analysis.

33

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

Again, the proposed algorithm, with W = 64 gives the following result for the JPEG version of
the image:

image size: 768 x 512

window step size: 64

total number of evaluated windows: 1848

number of meaningful windows: 1736 (93 %)

number of meaningful windows for each JPEG grid origin:

1736 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

best log(NFA) for each JPEG grid origin:

-637.8 - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

number of meaningful JPEG grids found: 1

most meaningful JPEG grid origin (0,0) with NFA: 10^-637.838

No suspicious traces found in the image with the performed analysis.

This second table represents the number of votes per coordinate. Here, 1736 windows voted mean-
ingfully for the origin (0, 0) out of the 1848 windows which did vote. In the online demo, to each
block’s vote is associated a NFA. Here, the most meaningful NFA is printed.

We can illustrate with this example the impact of the parameter W on the processing time:

W time (s)
64 1.54
32 21.07
16 391.98

These values are in general agreement with Equation (11).

3.2 Crop Detection

In Figure 6, we took an original JPEG image and cropped a square out of it. Algorithm 1 was tested
on the cropped image with W = 64, which led to testing 3025 windows. Of these windows, 2883
detected the grid (4, 4) with overwhelming significance. The origin of the global grid being different
from (0, 0), the (anticipated) conclusion is that the image has been cropped.

34

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Figure 6: Original and cropped JPEG compressed images.

The output of the algorithm is the following:

image size: 668 x 687

window step size: 64

total number of evaluated windows: 3025

number of meaningful windows: 2883 (95 %)

number of meaningful windows for each JPEG grid origin:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 2883 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

best log(NFA) for each JPEG grid origin:

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - -930.3 - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

number of meaningful JPEG grids found: 1

most meaningful JPEG grid origin (4,4) with NFA: 10^-930.259

The most meaningful JPEG grid origin is not (0,0). This may indicate that

the image have been cropped.

35

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

3.3 Forgery Detection

In the forged image of Figure 7, with W = 256, the list of votes returned two meaningful grids (0, 0)
and (0, 5). In Figure 8, the red area represents the windows which voted for a foreign grid and the
blue area the windows with a non-meaningful vote: the whole image voted for the coordinates (0, 0),
whereas the foreign area for another. We conclude that the area marked in red has a JPEG grid
with an offset which is different from the rest of the image.

Figure 7: Original and forged image.

Figure 8: Result for the forged image. Meaningful windows for a foreign grid in red, non-meaningful windows in blue.

36

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

The output of the algorithm is the following:

image size: 3264 x 2448

window step size: 256

total number of evaluated windows: 3510

number of meaningful windows: 3458 (98 %)

number of meaningful windows for each JPEG grid origin:

3455 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

best log(NFA) for each JPEG grid origin:

-1162.4 - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

-4.2 - - - - - - -

- - - - - - - -

- - - - - - - -

number of meaningful JPEG grids found: 2

most meaningful JPEG grid origin (0,0) with NFA: 10^-1162.4

second most meaningful JPEG grid origin (0,5) with NFA: 10^-4.22603

This image shows more than one meaningful JPEG grid. This may be caused

by image manipulations such as resampling, copy-paste, splicing, or some

particular periodic pattern in the scene. Please examine the deviant

meaningful blocks to make your own opinion about a potential forgery.

In some cases, an area can be revealed where there are no meaningful grids at all. This may be
caused by several reasons: if there has been an external copy-paste from an uncompressed image,
or by operations such as erasing. Further work will look into areas of non-meaningful overlapping
windows.

For example, the image of Figure 9 is an example of a real case image from the social network
Twitter posted to propagate fake news. The method with W = 64 is applied to the forged image.
The blue area is forged, as it can be seen thanks to the original image on the right. Indeed, there
are no detectable JPEG blocks in this area probably caused by too much post processing.

37

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

forged image detection original image

Figure 9: Real case image from Twitter, detection and original image. The blue area represents an area without any
detection.

4 Limitations

As the method relies on the ability of the cross-difference filter to reveal the blocking artifacts, in
some cases which are detailed below, it may not detect the proper grid or any grid at all.

4.1 High Quality Images

When the image is only slightly compressed, with quality parameters 98, 99 or 100, the JPEG blocks
are often imperceptible, even after the cross-difference enhancement. The algorithm may fail to
detect the JPEG global grid for small images of high quality.

4.2 Interference with Resampling traces

The main limitation of the proposed method is its relation with the presence of periodic patterns
in the image. Indeed, a JPEG grid is revealed by periodic structures on the cross-difference. To be
detected, the structure needs to show, locally, a period of 8 pixels (or a multiple). In rare occasions,
this may be observed in a natural image, and it is of course a violation of our a contrario hypothesis.
Nevertheless, this phenomenon is arguably rare, as the method requires the presence in the image of a
periodic structure with the right 8-period on both, the horizontal and vertical directions. While rare
in natural images, such periodic traces, however, can arise as artifacts left by an image resampling
operation.

Resampling an image creates a regular pattern [8] which can, when aligned horizontally or/and
vertically interfere with the JPEG 8×8 grid. For example, a JPEG image loses (naturally) its JPEG
blocking artefact when stretched. However, sometimes, it creates a new periodic pattern as it can
be detected in the image of Figure 10. The image was JPEG compressed and of size 512× 512, after
being stretched vertically, became of size 512× 520.

38

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Figure 10: Compressed image Pelican and stretched version pelican (8 pixels in height).

The output of the algorithm for the stretched image is the following:

image size: 512 x 520

window step size: 32

total number of evaluated windows: 16320

number of meaningful windows: 56 (0 %)

number of meaningful windows for each JPEG grid origin:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 9 0

0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 9 0

0 0 0 0 0 0 23 0

0 0 0 0 0 0 4 0

best log(NFA) for each JPEG grid origin:

- - - - - - - -

- - - - - - -2.3 -

- - - - - - -2.5 -

- - - - - - - -

- - - - - - - -

- - - - - - -2.5 -

- - - - - - -4.9 -

- - - - - - -1.1 -

number of meaningful JPEG grids found: 5

most meaningful JPEG grid origin (6,6) with NFA: 10^-4.88746

second most meaningful JPEG grid origin (6,2) with NFA: 10^-2.48428

This image shows more than one meaningful JPEG grid. This may be caused

by image manipulations such as resampling, copy-paste, splicing, or some

particular periodic pattern in the scene. Please examine the deviant

meaningful blocks to make your own opinion about a potential forgery.

39

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

In our case illustrated in Figure 11, the resampling was applied to an uncompressed image, and
it led to the detection of several grid origins. The image on the left was stretched horizontally and
vertically to obtain an image twice as big.

image size: 1024 x 1024

window step size: 64

total number of evaluated windows: 14400

number of meaningful windows: 10473 (72 %)

number of meaningful windows for each JPEG grid origin:

23 0 99 0 182 0 573 0

0 0 0 0 0 0 0 0

424 0 1132 0 939 0 3320 0

0 0 0 0 0 0 0 0

62 0 25 0 76 0 242 0

0 0 0 0 0 0 0 0

208 0 512 0 759 0 1897 0

0 0 0 0 0 0 0 0

best log(NFA) for each JPEG grid origin:

-21.2 - -23.1 - -29.7 - -79.5 -

- - - - - - - -

-43.9 - -90.8 - -108.2 - -180.4 -

- - - - - - - -

-18.5 - -16.1 - -30.3 - -41.0 -

- - - - - - - -

-43.1 - -80.8 - -89.2 - -116.3 -

- - - - - - - -

number of meaningful JPEG grids found: 16

most meaningful JPEG grid origin (6,2) with NFA: 10^-180.387

second most meaningful JPEG grid origin (6,6) with NFA: 10^-116.288

This image shows more than one meaningful JPEG grid. This may be caused

by image manipulations such as resampling, copy-paste, splicing, or some

particular periodic pattern in the scene. Please examine the deviant

meaningful blocks to make your own opinion about a potential forgery.

Future work will focus on using similar techniques specially tailored for image resampling detection
and on being able to tell the difference between resampling and JPEG compression. Our best guess
so far is to look for several periodic patterns, not only of 8 pixels. We observed that if an image is
upsampled before being also JPEG compressed, the resampling traces can remain detectable if the
final compression is mild enough.

5 Conclusion

The proposed JPEG grid detection method involves Chen and Hsu’s cross-difference filtering to
emphasize blocking artifacts. The detection is made locally in a family of windows, where each local
maximum votes for a JPEG grid origin, and the most voted grid position is taken as candidate.
An a contrario validation step of this candidate is used to control the number of false detections.
The resulting method is unsupervised and depends on a single parameter for selecting the balance
between exhaustiveness and speed of the algorithm.

The algorithm can be used in image forensics to detect cropped or tampered images, and it can
also be used to provide the grid localization for further JPEG analysis. The main limitation of the

40

Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool

Figure 11: Uncompressed image and double stretched in both directions image.

proposed method is that image upsampling traces may lead to meaningful detections that are not
JPEG related. Future work will concentrate on this decision problem.

Acknowledgment

Work funded by the ANR-DGA challenge DEFALS (ANR-16-DEFA-0004).

Image Credits

by the authors,

Kodak Lossless True Color Image Suite2,

Image Manipulation Dataset from Friedrich-Alexander-Universitat Erlangen-Nurnberg3,

from Twitter.

2http://http://r0k.us/graphics/kodak/
3http://www5.cs.fau.de/research/data/image-manipulation/

41

http://http://r0k.us/graphics/kodak/
http://www5.cs.fau.de/research/data/image-manipulation/

Tina Nikoukhah, Miguel Colom, Jean-Michel Morel, Rafael Grompone von Gioi

References

[1] Y-L. Chen and C-T. Hsu, Image tampering detection by blocking periodicity analysis in JPEG
compressed images, in IEEE 10th Workshop on Multimedia Signal Processing, Oct 2008, pp. 803–
808. http://dx.doi.org/10.1109/MMSP.2008.4665184.

[2] A. Desolneux, L. Moisan, and J.-M. Morel, From Gestalt Theory to Image Analysis,
Springer, 2008. ISBN 978-0-387-74378-3.

[3] A. Gordon, G. Glazko, X. Qiu, and A. Yakovlev, Control of the mean number of false
discoveries, Bonferroni and stability of multiple testing, The Annals of Applied Statistics, 1
(2007), pp. 179–190.

[4] R. Grompone von Gioi, J. Jakubowicz, J-M. Morel, and G. Randall, LSD: a Line
Segment Detector, Image Processing On Line, 2 (2012), pp. 35–55. https://doi.org/10.5201/
ipol.2012.gjmr-lsd.

[5] W. Li, Y. Yuan, and N. Yu, Passive detection of doctored JPEG image via block artifact
grid extraction, Signal Processing, 89 (2009), pp. 1821 – 1829. https://doi.org/10.1016/j.

sigpro.2009.03.025.

[6] W.S. Lin, S.K. Tjoa, H.V. Zhao, and K.J. Ray Liu, Digital image source coder forensics
via intrinsic fingerprints, IEEE Transactions on Information Forensics and Security, 4 (2009),
pp. 460 – 475. https://doi.org/10.1109/TIFS.2009.2024715.

[7] T. Nikoukhah, R. Grompone von Gioi, M. Colom, and J-M. Morel, Automatic JPEG
grid detection with controlled false alarms, and its image forensic applications, in Proceedings
of the IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), 2018,
pp. 378–382. http://dx.doi.org/10.1109/MIPR.2018.00083.

[8] A. C. Popescu and H. Farid, Exposing digital forgeries by detecting traces of resampling,
IEEE Transactions on Signal Processing, 53 (2005), pp. 758–767. https://doi.org/10.1109/

TSP.2004.839932.

42

http://dx.doi.org/10.1109/MMSP.2008.4665184
https://doi.org/10.5201/ipol.2012.gjmr-lsd
https://doi.org/10.5201/ipol.2012.gjmr-lsd
https://doi.org/10.1016/j.sigpro.2009.03.025
https://doi.org/10.1016/j.sigpro.2009.03.025
https://doi.org/10.1109/TIFS.2009.2024715
http://dx.doi.org/10.1109/MIPR.2018.00083
https://doi.org/10.1109/TSP.2004.839932
https://doi.org/10.1109/TSP.2004.839932

	Introduction
	Algorithm
	Luminance Component
	Grid Extraction
	Voting Process
	Validation Step
	Parameter Choice and Computational Complexity

	Experiments
	JPEG Compression Detection
	Crop Detection
	Forgery Detection

	Limitations
	High Quality Images
	Interference with Resampling traces

	Conclusion

