
Published in Image Processing On Line on 2021–02–12.
Submitted on 2020–02–27, accepted on 2021–01–13.
ISSN 2105–1232 c© 2021 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2021.296

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Finding the Skeleton of 2D Shape and Contours:

Implementation of Hamilton-Jacobi Skeleton

Yuchen He1, Sung Ha Kang1, Luis Alvarez2

1 School of Mathematics, Georgia Institute of Technology, US
2 CTIM (Centro de Tecnoloǵıas de la Imagen), University of Las Palmas de Gran Canaria, Spain

(yhe306@gatech.edu, kang@math.gatech.edu, lalvarez@ulpgc.es)

Abstract

This paper presents the details of the flux-ordered thinning algorithm, which we refer to as the
Hamilton-Jacobi Skeleton (HJS). It computes the skeleton of any binary 2D shape. It is based
on the observation that the skeleton points have low average outward flux of the gradient of the
distance transform. The algorithm starts by computing the distance function and approximating
the flux values for all pixels inside the shape. Then a procedure called homotopy preserving
thinning iteratively removes points with high flux while preserving the homotopy of the shape.
In this paper, we implement the distance transform using a fast sweeping algorithm. We present
numerical experiments to show the performance of HJS applied to various shapes. We point out
that HJS serves as a multi-scale shape representation, a homotopy classifier, and a deficiency
detector for binary 2D shapes. We also quantitatively evaluate the shape reconstructed from
the medial axis obtained by HJS.

Source Code

The reviewed source code and documentation for this algorithm are available at the web page
of this article1. See the README.txt file for usage instructions in the archive.

Keywords: 2D shape; skeleton; thinning algorithm; distance transform

1 Introduction

Shape representation plays an important role in feature analysis [33], object recognition [29] as
well as classification [34]. A 2D shape is represented either by contour or region, and both can be
further classified as structural or global [35]. For example, the chain code [26] is a contour-based
structural method; the Fourier descriptor [21] is a contour-based global method; the convex hull
is a region-based structure method; and the Zernike moment [32] is a region-based global method.
These representations provide compact information applicable for different purposes. An attractive
approach is to encode the shape using simple geometries such as points, curves, or polygons. It allows

1https://doi.org/10.5201/ipol.2021.296

Yuchen He, Sung Ha Kang, Luis Alvarez, Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton,
Image Processing On Line, 11 (2021), pp. 18–36. https://doi.org/10.5201/ipol.2021.296

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2021.296
https://doi.org/10.5201/ipol.2021.296
https://doi.org/10.5201/ipol.2021.296
https://doi.org/10.5201/ipol.2021.296

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

user-friendly shape manipulation and scalable image rendition [10]. In this paper, we focus on the
skeleton of a 2D shape [23, 5, 6, 22, 15, 8], which is a region-based structural representation method.

We implement the flux-ordered thinning algorithm proposed in [30] and refer to it as the Hamilton-
Jacobi Skeleton (HJS). The first part of the algorithm is to compute the distance function from the
boundary of the shape using a Hamiltonian formalism of the Eikonal equation. Then the flux is
defined at each point using the gradient vector field of the distance function. In the second part,
each boundary point with high flux is examined and removed if the homotopy of the shape remains
unchanged. This homotopy preserving thinning procedure continues until no point is removable
anymore, then these points constitute the skeleton of the shape.

We organize this paper as follows. After a brief review on the skeleton of 2D shape in Section 2,
HJS is described in Section 3. In Subsection 3.1, we present the details of the computation of the
distance transform of a shape. In Subsection 3.2, the average outward flux is given. In Subsection 3.3
and 3.4, we discuss the homotopy-preserving criteria and the implementation of the homotopy pre-
serving thinning using a heap data structure to achieve high efficiency. We show the performance of
HJS in Section 4 using several examples and conclude the paper in Section 5.

2 Review on Skeleton of 2D Shape

Let I : Ω → {0, 1} be a binary image, where Ω = [0,M] × [0, N] denotes the continuous image
domain, and M,N are positive integers. A 2D shape, A, is a subset of Ω with piecewise analytical
boundary. Its skeleton, S, is a set of points which has equal shortest distance from two or more
boundary points of A [23]. More precisely, the skeleton of a 2D shape is a finite union of C2 curves
that are either closed or ending at a finite set of junctions or endpoints [11]. One of the many
equivalent definitions of skeleton [5, 6, 22, 15, 8] is based on the distance transform: the skeleton S
of a shape A consists of the singularities of the distance transform restricted to the inside of A [30].
For example, the skeleton of a disk is its center point, and the skeleton of a square is given by its
diagonals. Figure 1 shows the skeletons of some simple shapes. A skeleton can be used to reconstruct
a shape via the medial axis transform [5]. It defines a coordinate system placed along the skeleton
that encodes the distance from a skeleton point to the boundary of the shape. Hence, the contour
can be recovered as the envelope of a series of circles centered at the skeleton with radii specified by
the distance transform.

In the literature, different methods have been devised to skeletonize 2D shapes from various per-
spectives. For example, Voronoi diagram based methods [7, 25] focus on characterizing the symmetry
axis; continuous transformation based approaches [20, 30, 16, 5, 22, 23, 15, 8] aim at extracting the sin-
gularity set of certain evolution of the boundary curve; and most morphology-based techniques [1, 4]
look for maximally inscribed balls whose centers compose the skeleton. We refer the readers to [28]
for a detailed review. A modified U-net was developed to directly map 2D shapes to their respective
skeletons [24].

Figure 1: Skeletons (black curves) of some elementary shapes.

19

Yuchen He, Sung Ha Kang, Luis Alvarez

3 Hamilton-Jacobi Skeleton Algorithm

As summarized in [30], HJS has two main parts: Part I, distance function and flux computation, and
Part II, homotopy preserving algorithm. We present the details in four Subsections. For Part I, the
distance function is computed in Subsection 3.1. We propose to use the fast sweeping algorithm [36,
37] for the distance computation. In Subsection 3.2, the flux is defined for each point using the
gradient field of the distance function. For Part II, in Subsection 3.3, the homotopy preserving point
classification is explained, and in Subsection 3.4, the flux-ordered thinning algorithm is presented.

3.1 Distance Transform Using the Fast Sweeping Algorithm

Let I : Ω ∩ N2 → {0, 1} be a discretized binary image, where Ω ∩ N2 represents a union of square
pixels on a grid. We denote by Int(Ω) ∩ N2 = {1, 2, . . . ,M − 1} × {1, 2, . . . , N − 1} the set of pixels
in the interior of the image domain. On the continuous domain, the distance map D : Ω→ R to the
contour ∂A of the shape A is defined by

D(x, y) = min
(x′,y′)∈∂A

√
(x− x′)2 + (y − y′)2 . (1)

The distance D to the contour ∂A is the unique viscosity solution [12, 27] of the Eikonal equation{
|∇D(x, y)| = 1 ,

D(x, y) = 0 , (x, y) ∈ ∂A .
(2)

This is a first-order nonlinear PDE of Hamilton-Jacobi type which does not have classical solutions.
To solve D from (2), we employ the fast sweeping algorithm [37, 36]. The fast sweeping algorithm is
an iterative method that uses an upwind scheme for discretization and Gauss-Seidel iterations with
alternating sweeping orders for solving the Eikonal equations [36].

In the discrete setting, a pixel (i, j) ∈ Ω ∩ N2 is contained in the given shape A if I[i, j] = 0,
and outside of A if I[i, j] = 1. To trace the contour of A on the discrete domain Ω ∩ N2, a pixel
(i, j) ∈ Int(Ω) ∩ N2 is considered a boundary point if it satisfies:

1. I[i, j] = 0, and

2. at least one of its 8-neighbors is outside the shape, i.e., I[i± 1, j ± 1] = 1.

We denote by B the set of discrete boundary points.
On a rectangular grid, we discretize (2) using the Godunov upwind difference scheme for the

interior points (i, j) ∈ Int(Ω) ∩ N2

[(D[i, j]−Dx,min)+]2 + [(D[i, j]−Dy,min)+]2 = 1 , (3)

where Dx,min = min{D[i + 1, j], D[i − 1, j]}, Dy,min = min{D[i, j + 1], D[i, j − 1]}, and (z)+ = z if
z > 0 and (z)+ = 0 otherwise. For pixels on the edge of the image, a one-sided difference scheme
is applied. We initialize to D[i, j] = 0 every (i, j) ∈ B, and assign large positive values to the other
pixels. Next, we sweep the whole computational domain with four alternating orderings:

1) i = 0, 1, . . . ,M, j = 0, 1, . . . , N. 2) i = M,M − 1, . . . , 0, j = 0, 1, . . . , N.

3) i = M,M − 1, . . . , 0, j = N,N − 1, . . . , 0. 4) i = 0, 1, . . .M, j = N,N − 1, . . . , 0.

As we are at pixel (i, j) ∈ Ω ∩ N2 during the sweeping, we compute the solution D[i, j] of (3) by

D[i, j] =

{
min{Dx,min, Dy,min}+ 1 , |Dx,min −Dy,min| ≥ 1 ,
1
2
(Dx,min +Dy,min +

√
2− (Dx,min −Dy,min)2) , |Dx,min −Dy,min| < 1 .

(4)

20

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

Then we update D[i, j] with min{D[i, j], D[i, j]}. Upon completing the four specified sweepings, the
fast sweeping algorithm terminates; hence, the total computational cost is O(MN). In practice, we
only need to update the values of the pixels in the interior of the shape.

In [36], Zhao proved that the iterative solution by the fast sweeping algorithm converges mono-
tonically to the solution of the discretized system (3). After four iterations, the iterative solution at
every pixel is bounded from above by its true distance. Since the numerical Hamiltonian (3) is mono-
tone and first-order consistent, combining with the fact that the numerical solution from a monotone
and consistent scheme converges to the viscosity solution [27], Zhao concluded that the solution from
the fast sweeping algorithm converges to the distance map. Moreover, by providing a pointwise error
estimation, Zhao proved that this solution is optimal in the sense that any other method solving (3)
has the same accuracy if not worse. These properties hold in n-dimensional Euclidean space (n ≥ 1)
as well, where the fast sweeping algorithm takes 2n iterations.

Remark Starting from the continuous PDE setting, specifically, the Eikonal equation (2), we
focus on the fast-sweeping algorithm for its efficiency and simplicity as a PDE numerical scheme.
Thanks to one of the reviewers of this paper, we would like to acknowledge the advances in Euclidean
Distance Transform (EDT) in discrete graph settings. In [13], the authors gave a survey comparing six
algorithms proposed between 1994 and 2003. In 2012, Felzenszwalb and Huttenlocher [14] proposed
a simple method focusing on the cost function defined on a grid. They formulated the problem as
the minimum convolution of two functions and proposed a simple and fast algorithm. We compare
the performance in Section 4.4.

Algorithm 1: Distance Computation: The Fast Sweeping Algorithm [36]

Input: I a binary image where a pixel is 0 if it is inside the shape and 1 otherwise.
Compute the set of boundary points B.
Assign D[i′, j′] = 0 for all (i′, j′) ∈ B, and D[i′, j′] = M2 +N2 for all (i′, j′) ∈ (Ω ∩ N2) \ B.
for i=0,1,. . . ,M-1, j=0,1,. . . ,N-1 do

if i = M − 1 then
Define Dx,min = D[i− 1, j].

else if i = 0 then
Define Dx,min = D[i+ 1, j].

else
Define Dx,min = min{D[i− 1, j], D[i+ 1, j]}.

Define Dy,min along the y-direction similarly.
Compute D[i, j] according to (4).
Update D[i, j] = min{D[i, j], D[i, j]}.

Repeat the above procedure for the other 3 sweeping directions, i.e.,
i = M,M − 1, . . . , 0, j = 0, 1, . . . , N .
i = M,M − 1, . . . , 0, j = N,N − 1, . . . , 0.
i = 0, 1, . . .M, j = N,N − 1, . . . , 0.
Output: Distance map D for the interior points of the shape in I.

3.2 Computation of Average Outward Flux

The skeleton points can be distinguished from the others by comparing their average outward fluxes
derived from the gradient of the distance transform. On the continuous domain Ω, the average
outward flux F of ∇D is defined by the outward flux through the boundary of its neighboring region

21

Yuchen He, Sung Ha Kang, Luis Alvarez

R, normalized by the Hausdorff measure of ∂R

F (x, y) =

∫
∂R
〈∇D,N〉 ds
|∂R|

, (x, y) ∈ Ω (5)

where N is the outward normal along ∂R, and ds is the length element. By the assumption that the
boundary of a 2D shape is piecewise analytical (in fact, being smooth suffices), the divergence of ∇D
can be regarded as a measure supported by the skeleton of the shape. By the divergence theorem,
when (x, y) is not a skeleton point, and R is sufficiently small, F (x, y) = 0. At any skeleton point
which is not a crossing, up to a translation and a rotation, the distance function D admits a local
expansion

D(x, y) ≈ D0 − x for x ≥ 0 ; D(x, y) ≈ D0 + x for x < 0,

where the skeleton point is placed at (0, 0), and D0 denotes the distance from (0, 0) to the shape’s
boundary.

If we consider the disk Rr(s, 0) ≡ {(x, y) : (x− s)2 + y2 ≤ r2}, with r > 0 then the average
outward flux of ∇D is given by

∫
∂Rr(s,0)

〈∇D,N〉 ds
|∂Rr(s, 0)|

=

{
−

∫ arccos(s/r)
− arccos(s/r)

cos(t)rdt+
∫ 2π−arccos(s/r)
arccos(s/r)

cos(t)rdt

2πr
= − 2

π

√
1−

(
s
r

)2
if |s| < r,

0 if |s| ≥ r,

therefore the average outward flux of ∇D has a minimum at the skeleton point when we move in

the direction orthogonal to the skeleton curve and the function s → − 2
π

√
1−

(
s
r

)2
gives us an idea

about how the average outward flux varies when approaching the skeleton.
More generally, notice that for any nonnegative test function ϕ ∈ C∞c with a sufficiently small

support R such that (0, 0) ∈ R, we have∫
∂R

〈∇D,∇ϕ〉 ds =

∫∫
R2

div (∇D)ϕdx dy

≈ −
∫∫

x≤0
ϕx dx dy −

∫∫
x≥0
−ϕx dx dy

= −2

∫
R
ϕ(0, y) dy .

The above calculation explains why, numerically, skeleton points are expected to have a clearly
negative outward flux.

We compute the gradient vector field ∇D = (∂xD, ∂yD) using a finite difference scheme that can
be derived from optimization. We approximate D(x, y) using a linear function

D̂(x, y) = D[i, j] + a(x− i) + b(y − j) .

Comparing to the Taylor expansion, we have ∂xD[i, j] ≈ a and ∂yD[i, j] ≈ b. To determine the

coefficients a and b explicitly, we fit D̂ to the 3 × 3 stencil centered at P = (i, j) ∈ Int(Ω) ∩ N2 by
minimizing the following weighted squared-error

E(a, b) = (D[i+ 1, j]− D̂(i+ 1, j))2 + (D[i− 1, j]− D̂(i− 1, j))2+

(D[i, j + 1]− D̂(i, j + 1))2 + (D[i, j − 1]− D̂(i, j − 1))2+

1√
2

(D[i+ 1, j + 1]− D̂(i+ 1, j + 1))2 +
1√
2

(D[i− 1, j − 1]− D̂(i− 1, j − 1))2+

1√
2

(D[i+ 1, j − 1]− D̂(i+ 1, j − 1))2 +
1√
2

(D[i− 1, j + 1]− D̂(i− 1, j + 1))2 .

22

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

N3 = (1, 0)

N2 = (
√
2/2,
√
2/2)

N4 = (
√
2/2,−

√
2/2)

N7 = (−1, 0)

N0 = (−
√
2/2,
√
2/2)

N6 = (−
√
2/2,−

√
2/2)

N1 = (0, 1)

N5 = (0,−1)

6

7

0 1 2

P 3

45

(a) (b)

Figure 2: (a) The normal vectors at the neighboring points used for approximating the flux (8) at the central pixel. (b)
An example graph G constructed for the pixel P . For any arbitrary pixel, its 8 neighborhoods are indexed as shown here.
Neighboring pixels inside the shape (black circles) are the vertices of G, and two vertices are connected if they are 8-
neighborhood to each other. We avoid the 3-loops at the corners, e.g., 0 − 1 − 7, by directly connecting the furthest two
among them.

,

This provides approximations for partial derivatives at interior points

∂xD[i, j] = (1− α)
D[i+ 1, j]−D[i− 1, j]

2
+

α
D[i+ 1, j + 1]−D[i− 1, j + 1] +D[i+ 1, j − 1]−D[i− 1, j − 1]

4
(6)

∂yD[i, j] = (1− α)
D[i, j + 1]−D[i, j − 1]

2
+

α
D[i+ 1, j + 1]−D[i+ 1, j − 1] +D[i− 1, j + 1]−D[i− 1, j − 1]

4
(7)

where α = 2−
√

2. Note that the scalar α is derived from requiring the estimated gradient to have
a norm invariant under rotations of 45◦.

In the discrete domain, to compute F [i, j] as defined in (5) for the pixel (i, j) ∈ Int(Ω) ∩ N2, we
replace R with a square containing the 8-neighboring points of (i, j). We pre-compute the outward
normals at the neighboring points, Nn = (N x

n ,N y
n), n = 0, 1, . . . , 7, as illustrated in Figure 2 (a), and

we approximate the integral by a Riemann sum. The formula for computing the average outward
flux at (i, j) is

F [i, j] =
1

8

7∑
n=0

(∂xD[i, j]×N x
n + ∂yD[i, j]×N y

n) . (8)

3.3 Point Classification Based on Local Topology

As a thinning algorithm, HJS finds the skeleton of a shape by consecutively removing non-skeleton
points. For an appropriate shrinkage, each pixel needs to be examined carefully based on the local
topology, i.e., the intensity distribution of its 8-neighboring pixels. In particular, two types of points
are critical in the success of HJS.

A point is simple if its removal does not affect the topology of the object [30]. This means that
removing a simple point does not create a new connected component nor a hole in the original shape.

23

Yuchen He, Sung Ha Kang, Luis Alvarez

We construct a graph G for every pixel P ∈ Int(Ω)∩N2 based on its 8-neighbors and use the Euler’s
characteristic of a graph to decide if P is simple. See Figure 2 (b). In G, each vertex corresponds
to a neighboring pixel that is inside the shape A, and there is an edge if the associated two pixels
are neighbors to each other. Because P is simple if and only if G is a tree [30], it suffices to check
if the number of vertices minus the number of edges of G, i.e., the Euler characteristic of the graph,
is exactly 1. For convenience, we label the 8-neighboring pixels by integer indices from 0 to 7 in a
clockwise orientation starting at the top-left one (see Figure 2 (b)).

The procedure for checking if a point is simple goes as follows. At each point, construct a set
V collecting the indices of neighbors that are inside A. Initialize v = 0 and e = 0 for recording the
number of vertices and edges of G, respectively. For k = 0, 1, . . . , 7, if both neighbor k and neighbor
mod(k+ 1, 8) are found in V , we increase both v and e by 1; otherwise, we increase only v by 1. The
graph may contain unnecessary loops of length 3 when all the three vertices on the corners are in V .
For example, the neighbors 0, 1, and 7 in Figure 2 (b). To simplify the graph, we delete the shortest
two edges in such a loop. In particular, if the neighbor k (k = 0, 2, 4, 6) is in V , and if both neighbor
mod(k− 1, 8) and neighbor mod(k+ 1, 8) are in V as well, we reduce both v and e by 1. Finally, we
compute v − e; if it is 1, then we mark P as a simple point, otherwise, P is not a simple point.

In addition, endpoints need to be tracked. An endpoint corresponds to the end of a 4-connected
or 8-connected digital curve [30]. Identifying these points helps to produce robust skeletons and avoid
interior points in the final result. A pixel P is an endpoint if the associated vertex set V only has one
element, or if V only has two elements whose indices differ by 1 or 7, i.e., they are 4-neighborhood
to each other. Otherwise, P is not an endpoint.

3.4 Homotopy Preserving Thinning

The second part of HJS, called the homotopy preserving thinning, sifts through the pixels inside the
shape such that the remaining pixels are the skeleton points. The flux computed in Subsection 3.2 as
well as the point type discussed in Subsection 3.3 are the keys. To avoid early removals of the pixels
that are likely to be skeleton points, the average outward flux ranks the pixels inside the shape from
high to low, which are then examined in order. To preserve the homotopy of the shape, only simple
points and endpoints with high fluxes are considered removable.

An important part of the implementation is the heap data structure, which allows operations
such as insert, top, and pop. Elements stored in a heap are associated with sorting keys. A heap
will automatically sort the inserted data so that the first element, retrieved by top, always has the
maximal key value; and pop automatically deletes the top element. It is noted that a heap only
allows access to the top element, thus retrieving the element with the maximal key is very efficient.
In C++, one may define a heap via a priority queue; and in Python, one can resort to heapq.

In our case, we construct a heap of pixels with their average outward fluxes as the sorting keys.
To save the storage, we directly update the pixels of the given binary image I using three types
of labels: points that are currently in the heap (label 2), removed points (label 1), and candidate
skeleton points (label 0).

First, we insert all the boundary points that are simple into a heap H sorted by their fluxes and
label them by 2. We sift through the points via iterations. During the updates, some points that are
not simple may become simple later, or vice versa; thus it is necessary to test simple points at each
iteration. In each iteration, we extract the top element in the heap by applying H.top() followed by
H.pop(). If the top element is an endpoint and its average flux is below a threshold, τ , indicating
that it has more potential to be a skeleton point (see Section 3.2), we remove it from H and update
its label by 0. Otherwise, we change its label to 1, then we consider its 8-neighbors. If any of them
is labeled 0, we insert it in the heap together with its sorting key and label it by 2. Here we propose

24

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

a practical formula for the threshold

τ = min
(i,j)∈A∩N2

F [i, j]/γ . (9)

This γ > 0 is a parameter whose default value is γ = 2.5 in our experiments. The iteration terminates
when there are no more points to be removed, i.e., H is empty. The pixels labeled by 0 constitute
the skeleton of the shape A.

We display a complete description of HJS in the form of pseudo-code in Algorithm 2. The full
algorithm divides into two parts. Part I computes the distance function and the average outward flux
of the gradient of the distance transform, and Part II describes the homotopy preserving thinning.

Algorithm 2: Hamilton-Jacobi Skeleton (HJS) [30]

Input: I a binary image which takes value 0 for points inside the shape, and 1 for outside; τ a
threshold parameter for flux value.

Part I: Distance Function and Average Outward Flux
Compute the distance map D (11) of the set of boundary points.
Compute the gradient vector field ∇D according to (6) and (7).
Compute the average outward flux of the gradient, F , using (8).
Part II: Homotopy Preserving Flux-ordered Thinning
Initialize an empty heap H. For each point P on the boundary of the shape:
if P is simple then

insert (P, F (P)) into a heap H with the flux F (P) as the sorting key;
update I(P) = 2

while H is not empty do
Let (P, F (P))← H.top(). Delete P from H via H.pop()
if P is simple then

if P is not an endpoint OR F (P) > τ then
update I(P) = 1
for neighboring point Q of P do

if I(Q) = 0 then
if Q is simple then

Insert (Q,F (Q)) into H
update I(Q) = 2.

else
update I(P) = 0

Output: A binary image I where pixels labeled by 0 represent skeleton points.

4 Numerical Results

We present numerical results to illustrate various interesting aspects of HJS. Throughout the exper-
iments, our default choice was γ = 2.5. If the image is grayscale with dynamic range [0, 255], we
transform it into binary by setting the pixels to be 1 if the intensity > 125, and 0 if the intensity
≤ 125. For an RGB image, we use the same binarization on its lightness obtained via (R+G+B)/3.

25

Yuchen He, Sung Ha Kang, Luis Alvarez

4.1 Skeletonization of 2D Shapes

In Figure 3, we show the skeletons computed using HJS for various types of shapes. In the first row,
variations from a disk shape are shown. Compared to a disk whose skeleton is a single point, these
shapes have more complicated skeletons due to continuous modifications on their boundaries. Some
features of the shape can be understood from the graph topology of the skeleton. For example, each
convex corner of the shape creates a branch; the last shape in the first row of Figure 3 has 16 convex
corners, and its skeleton is a tree with 16 branches. In the second row, we applied HJS to shapes
of some common objects: a cup, an apple, a vase, and a hammer. Both the cup and the vase which
are topologically equivalent to an annulus, provide examples for the fact that a skeleton may contain
loops, the number of which is equal to the genus of the shape. We also observe the correspondence
between the convex corners of the shape and the branches of the skeleton as mentioned above. This
exact property explains instability in computing the skeleton: any perturbation on the boundary of
the shape may create a prominent change in the skeleton. Applying HJS to varying shapes of the
lizard in the third row, we observe some extraneous branches on the skeleton due to the non-smooth
boundaries. For this issue, many techniques, such as skeleton evolution [2] and pruning [3], have
been proposed to automatically delete the irrelevant branches.

Figure 3: Skeletons (red curves) for various shapes computed by HJS. In all examples above, we used the default parameter
γ = 2.5.

26

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

4.2 Effects of the Parameter γ

In HJS, an endpoint is kept if its average flux is greater than a threshold τ . As a consequence of the
homotopy preserving, the whole branch attached to that endpoint remains as a part of the skeleton.
Therefore, when we increase γ in (9), we expect to see more branches.

In Figure 4, we demonstrate the effects of γ by applying HJS to a shape modified from a pentagon
whose boundary is highly perturbed. Figure 4 (a) is produced when γ = 2.5 (the default choice in
this paper); due to the irregularities on the boundary, many branches are created. Observe the length
of the skeleton branches in contrast to the size of the perturbations on the boundary: they are not
proportional. The local distribution of skeleton branches, rather than individual ones, permits to
infer the smoothness of the boundary. For instance in (a), along a segment of the skeleton near the
top-left boundary of the pentagon, there are more branches on the lower side compared to the upper
side; within that range, the upper-side boundary is smoother than the lower-side boundary.

In (b), with γ = 1.5, many of the branches in (a) disappear, leaving only those associated with
sharp corners. The order of cancellation is determined by the flux. During the homotopy preserving
thinning, the threshold τ only acts on endpoints. Consequently, as long as the average flux at the
tip of the skeleton is comparatively low, the whole branch is kept as a part of the identified skeleton.

We further reduced γ to 1.2 in (c) and observe that only two major components remain: the
S-shape and a single branch caused by the sharp corner at the bottom-left of the pentagon. By
considering the medial axis to reconstruct the shape from the skeleton, with a small γ, one can
obtain a compact representation of a shape with regularized contour. The evolution from (a) to
(b), then to (c) shows that the set of skeletons extracted from different γ’s provides a multi-scale
representation of the given shape. It is analogous to applying bandpass filters to a signal to separate
the low-frequency components of the original sequence from the high-frequency components such as
noise. As we gradually decrease γ, we omit the small-scale variations along the boundary, and focus
more on capturing the principal shape. A similar approach to shape analysis can be found in [21, 17].

(a) (b) (c)

Figure 4: Multi-scale representation of the shape using skeletons computed by different γ. (a) γ = 2.5. (b) γ = 1.5. (c)
γ = 1.2. By choosing a smaller γ, the identified skeleton becomes more robust against boundary perturbation and captures
the large-scale shape features.

For a smaller value such as 0 < γ < 1, HJS shows an interesting property. The shape is simply-
connected if and only if the skeleton identified using γ < 1 is a single point. This is based on the
fact that HJS preserves the homotopy. In Figure 5, we applied HJS with γ = 0.9 to three different
shapes and used this property to check the simple-connectedness. In (a), since the skeleton is a
single point (shown at the corner of the right-bottom branch), the shape is simply-connected. The
converged skeleton point appears at the minimum of the average fluxes of the entire image, and

27

Yuchen He, Sung Ha Kang, Luis Alvarez

depending on the shape, it is not necessarily at the center of mass of the shape. In (b), the skeleton
is homeomorphic to a circle, formed by the line segments (the mug body) and an arc (the handle).
Since genus is a homeomorphic invariant, we infer that this mug shape has genus 1. It is worth noting
that the number of connected components of the skeleton graph is the same as that of the shape. In
(c), the skeleton consists of 10 points, hence the shape has 10 simply-connected components. With
the remark that the skeletons identified using any γ ∈ (0, 1) are identical, this experiment shows that
HJS with 0 < γ < 1 can be applied as an effective homotopy type detector.

(a) (b) (c)

Figure 5: HJS with γ < 1 used as a homotopy classifier. (a) The skeleton is a single point, hence the shape is simply-
connected. (b) The skeleton is homeomorphic to a circle, hence the shape is not simply-connected and has genus 1. (c)
The skeleton consists of 10 points, hence the shape has ten simply-connected components. In (a) and (c), the identified
skeleton points are emphasized by red disks for visualization.

Since HJS with 0 < γ < 1 effectively distinguishes simply-connected shapes from the others, we
apply it to detect small holes inside the shape which are not immediately visible to humans. Figure 6
(a) shows the non-trivial skeleton identified using γ = 0.9, which indicates that the perturbed
boundary contains loops. When we zoom in the top-left (b) and bottom-right (c) of the original
shape, the homotopy type of the shape is indeed modified by the perturbed pixels.

(a) (b) (c)

Figure 6: HJS with γ < 1 used as a deficiency detector in binary shapes. (a) The given shape and identified non-trivial
skeleton using γ = 0.9. (b) A hole on the boundary of the top-left petal. (c) A hole on the bottom-right pedal. (b) and
(c) show the deficiencies inducing the non-trivial skeleton in (a). In all examples here, we keep γ = 0.9.

28

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

4.3 Shape Reconstruction from Medial Axis

Skeleton serves as a compact representation of the original shape. Combined with the distance
function evaluated at the skeleton points, a medial axis allows shape reconstruction via taking a
union of disks. In particular, from the set of skeleton points, Sk(So), of the discrete shape So, our
reconstructed discrete shape Sr is computed by

Sr =
⋃

(i′,j′)∈Sk(So)

{(i, j) ∈ Ω ∩ N2 |
√

(i− i′)2 + (j − j′)2 ≤ D[i′, j′] + ε} . (10)

Here, we introduce a dilation parameter ε > 0 to address the bias introduced by pixelization. We
take ε = 1.5 as the default, which is justified later.

Figure 7 shows the reconstructed shapes from HJS using different values of γ. Recall from
the previous discussion that, as γ > 0 increases, the identified skeleton consists of more branches
representing details of the silhouette. Consistent with this feature characterization, from (b) to (d),
as γ is increased from 0.9 to 20, more details of the original shape are recovered using the medial axis.
Since γ < 1 for column (b), the reconstructed shape indicates existence of holes or simply connected
components in the shapes in (a). In particular, the sakura in the first row is simply connected, the
knot in the second row has 12 simply connected components, the trophy in the third row is of genus
6, and the deer in the fourth row contains many corrupted pixels (small holes) which are hard to
observe at first glance. When γ = 2.5 (our default value), we recover most parts of the shapes in all
cases. The results in column (d) are obtained using γ = 20, which recovers finer details of the original
shapes compared to (c). For example, the sharp tips of the petals, the corners and T-junctions in
the knot, the layers on the bottom of the trophy, and the elongated horns of the deer.

To quantify the reconstruction results, we compare the original discrete shape So = {(i, j) ∈
Ω ∩ N2 | I(i, j) = 0} with the reconstructed shape Sr by considering the following three measures:

Jaccard Index [19]: J =
|So ∩ Sr|
|So ∪ Sr|

.

Dice Similarity Coefficient [31]: DSC =
2|So ∩ Sr|
|So|+ |Sr|

.

Bpn Bias Estimator [9]: Bpn =
|Sr \ So| − |So \ Sr|

|So ∩ Sr|
.

Here | · | denotes the cardinality of a set. Higher values of Jaccard index or Dice similarity coefficient
indicate higher similarity between So and Sr. A positive (negative) Bpn bias estimator signifies that
Sr is an over-(under-) coverage of So, and a zero value means no bias, i.e., the size of the over-coverage
cancels out with the size of the under-coverage. These measures behave differently. For the Jaccard
index, every element in the intersection is counted once, whereas for the Dice similarity coefficient,
every element in the intersection is counted twice. In fact, the Jaccard index and the Dice similarity
coefficient are related via J = DSC/(2−DSC), hence, compared to the Dice similarity coefficient,
the Jaccard index is less sensitive to distinct objects, while more sensitive to similar objects. The
Bpn bias estimator provides the additional information for avoiding over-coverage or under-coverage.

In Table 1, we report these measures for the results in Figure 7. In all cases, when we increase
γ, the shape reconstructed from the medial axis becomes more similar to the original shape, which
is characterized by the increasing J and DSC. Since we are using disks with radius enlarged by
1.5 pixels for reconstruction, Bpn’s change their signs from negative (under-coverage) to positive
(over-coverage) as the endpoints of the skeleton approach the boundary of the original shapes, re-
spectively. For comparison, we also include these measures when ε = 0. Using ε = 1.5 improves
the reconstructions measured by higher J ’s and DSC’s, and it produces less biases quantified by the

29

Yuchen He, Sung Ha Kang, Luis Alvarez

(a) (b) (c) (d)

Figure 7: Shape reconstructed from the medial axis transform. (a) Original shapes. (b)-(d) The shapes reconstructed from
the HJS using (b) γ = 0.9, (c) γ = 2.5, and (d) γ = 20. Here we fixed ε = 1.5.

smaller absolute values of Bpn’s. We notice that when γ = 0, Bpn’s always remain negative in our
examples. Figure 8 provides a further investigation on the effects of varying ε as γ = 2.5 is fixed.
In both (a) and (b), the maximal rescaled values of J and DSC occur around ε = 1, but to acquire
the minimal bias, larger values of ε are needed. This is due to the fact that we are using unions of
finitely many disks to cover non-convex shapes, and slightly increasing ε allows balancing the over-
and under-fitting. Hence, we recommend ε = 1.5, which leads to results with highly accurate shape
reconstruction and low bias.

4.4 Performance of Distance Computation

As a natural extension of the Eikonal equation, the fast sweeping algorithm suits our purpose. In this
section, we compare the fast sweeping algorithm with a brute-force method, and the celebrated [14],
which is based on an optimization model efficiently solved using morphological operations.

30

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

Sakura (1st row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.1267 0.1340 0.9566 0.9770 0.9715 0.9816
DSC 0.2247 0.2363 0.9778 0.9884 0.9855 0.9907
Bpn −6.8943 −6.4625 −0.0454 0.0006 −0.0294 0.0187

Knot (2nd row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.1714 0.1911 0.9451 0.9719 0.9436 0.9479
DSC 0.2926 0.3209 0.9718 0.9858 0.9732 0.9831
Bpn −4.8351 −4.2234 −0.0581 0.0272 −0.0550 0.0342

Trophy (3rd row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.5576 0.5729 0.9641 0.9787 0.9745 0.9832
DSC 0.7160 0.7285 0.9817 0.9892 0.9871 0.9915
Bpn −0.7933 −0.7146 −0.0372 0.0043 −0.0261 0.0170

Deer (4th row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.8361 0.8691 0.9324 0.9736 0.9411 0.9662
DSC 0.9108 0.9300 0.9650 0.9866 0.9697 0.9828
Bpn −0.1960 −0.1153 −0.0725 0.0174 −0.0626 0.0332

Table 1: Comparative measures of the reconstruction results in Figure 7 (ε = 1.5). Higher values of J and DSC indicate
higher similarity between So and Sr. When Bpn is positive (negative), Sr is an over- (respectively under-) coverage for So,
and when Bpn = 0, there is no bias. We report these measures when ε = 0 for comparison.

(a) Sakura (b) Trophy

Figure 8: Effects of varying ε on the comparative measures. Here we plot the values of the rescaled measures, J , DSC
and |Bpn|, against different values of ε, when HJS (γ = 2.5) is applied to the sakura in the first row and the trophy in the
third row of Figure 7. Both plots indicate that using slightly dilated disks improves the reconstruction results.

On a discrete image domain, similarly to definition (1), one may define for each pixel (i, j) ∈
Ω ∩ N2, its distance to the boundary specified by B by

D[i, j] = min
(i′,j′)∈B

√
(i− i′)2 + (j − j′)2 . (11)

The implementation is straightforward, and we present the pseudo-code in Algorithm 3. If there are

31

Yuchen He, Sung Ha Kang, Luis Alvarez

K boundary points, then the cost of the brute-force method is of the order of O(KMN), and it can
be reduced by focusing only on the interior points of the shape.

Algorithm 3: Distance Computation: A Brute-force Method

Input: I a binary image which takes value 0 for points inside the shape, and 1 for background
points

Compute the set of boundary points B.
Assign D[i′, j′] = 0 for every boundary point (i′, j′) ∈ B.
for (i, j) ∈ Ω \ B with I[i, j] = 0 do

Set D[i, j] = M2 +N2.
for (i′, j′) ∈ B do

if (i− i′)2 + (j − j′)2 < D[i, j] then
D[i, j] = (i− i′)2 + (j − j′)2.

Update D[i, j]←
√
D[i, j].

Output: Distance map D for the interior points of the shape in I.

The Felzenszwalb-Huttenlocher (F-H) algorithm [14] views the distance transform as a minimum
convolution of two functions. More specifically, the squared Euclidean distance to the boundary of
the shape A ⊆ Ω is obtained via an optimization problem

DF-H(x, y) = min
x′,y′

(
(x− x′)2 + (y − y′)2 + χ∂A(x′, y′)

)
, (12)

where χ∂A(x′, y′) = 0 if (x′, y′) ∈ ∂A and +∞ otherwise. The discretized version of (12) is efficiently
solved via two main steps in each dimension. First, it is computed the lower envelope of parabolas
induced by each grid point’s squared Euclidean distance function; at this stage, the minimum convo-
lution is employed. Second, the distance values at grid points are filled in by comparing them with
the computed lower envelope. The total computational cost is O(2MN).

We applied theses three methods to the shape of a cat in Figure 9 (a). The distance transform
computed using the brute-force method is shown in (b), the distance transform obtained using the fast
sweeping algorithm is in (c), and the distance transform by the F-H algorithm is in (d). Noticeably,
the computation of both fast sweeping algorithm (141.22 ms) and F-H algorithm (23.16 ms) are much
faster than the brute-force method (3424.08 ms), yet all theses methods produce similar results. The
skeletons computed based on the distance transform of these methods are respectively displayed in
(e), (f), and (g). Notice that compared to (e) and (g), the skeleton in (f) obtained based on the fast-
sweeping has fewer short branches and is more robust against small-scale fluctuations on the shape’s
boundary. This was expected since the fast sweeping algorithm’s distance transform approximates a
diffusive solution of the Eikonal equation. Hence, (c) can be regarded as a slightly smoothed version
of the exact distance transform.

5 Conclusion

In this paper, we considered the flux-ordered thinning algorithm proposed by [30], which we referred
to as the Hamilton-Jacobi Skeleton (HJS), and described an implementation of this method for
extracting skeletons of 2D shapes from binary images. As a natural extension of the PDE framework,
we updated a part of the algorithm computing the distance transformation by the fast sweeping
algorithm [36], which improves the efficiency. The robustness of the identified skeleton against
boundary perturbations can be adjusted via a single parameter γ > 0. For arbitrary shapes, we

32

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

(a)

(b) Brute-force (3424.08 ms) (c) Fast Sweeping (141.22 ms) (d) F-H Algorithm (23.16 ms)

(e) (f) (g)

Figure 9: (a) Binary image (537× 700): a cat silhouette. The distance function is computed by (b) a brute-force method
(Algorithm 3), (c) the fast sweeping algorithm (Algorithm 1), and (d) the F-H algorithm [14]. Brighter pixels indicate
further distance from the contour. The F-H algorithm is the fastest, then the fast-sweeping, and the brute-force is the
slowest. (e) shows the skeleton computed based on the distance transform in (b); (f) shows the skeleton computed based
on the distance transform in (c); and (g) shows the skeleton computed from (d). In all cases, we fixed γ = 2.5.

recommend fixing γ = 2.5 which produces the principal skeleton component and some branches
indicating highly irregular features on the boundary. By applying HJS to a fixed shape using varying
values of γ, we can obtain a multi-scale shape representation analogous to the approach considered
in frequency component analysis. We investigated the special case where γ < 1 by exploring its
connection to the homotopy type of a given shape and illustrating its usage as a deficiency detector
for binary shapes. Moreover, we tested the skeleton identified by HJS as a tool for reconstructing
shapes from their medial axes. When γ increases, the reconstruction is more precise.

Acknowledgment

This work is supported by the Chateaubriand Fellowship 2019-2020 awarded to Yuchen He and
the Simons Foundation grant (584960) from Sung Ha Kang. We also thank all the reviewers for
the constructive comments, especially the reviewer who provided the code for the Felzenszwalb and

33

Yuchen He, Sung Ha Kang, Luis Alvarez

Huttenlocher method [14].

Image Credits

MPEG-7 Core Ex-

periment CE-Shape-1 Test Set2 [18], provided by Dr. Longin Jan Latecki, Professor, Department of Com-

puter and Information Sciences, Temple University, US

3 Cat Stretch Silhouette In Black, CC0 Public Domain K

4 5 6 svgsilh.com, Creative Commons CC0

References

[1] C. Arcelli and G.S. Di Baja, A width-independent fast thinning algorithm, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, (1985), pp. 463–474.

[2] J. August, A. Tannenbaum, and S.W. Zucker, On the evolution of the skeleton, in
IEEE International Conference on Computer Vision (CVPR), vol. 1, IEEE, 1999, pp. 315–322.
https://doi.org/10.1109/ICCV.1999.791236.

[3] X. Bai, L.J. Latecki, and W. Liu, Skeleton pruning by contour partitioning with discrete
curve evolution, IEEE transactions on Pattern Analysis and Machine Intelligence, 29 (2007),
pp. 449–462. https://doi.org/10.1109/TPAMI.2007.59.

[4] I. Bitter, A.E. Kaufman, and M. Sato, Penalized-distance volumetric skeleton algorithm,
IEEE Transactions on Visualization and Computer Graphics, 7 (2001), pp. 195–206. https:

//doi.org/10.1109/2945.942688.

[5] H. Blum, A transformation for extracting new descriptors of shape, Models for the Perception
of Speech and Visual Form, 19 (1967), pp. 362–380.

[6] H. Blum and R.N. Nagel, Shape description using weighted symmetric axis features, Pattern
Recognition, 10 (1978), pp. 167–180.

[7] J.W. Brandt and V.R. Algazi, Continuous skeleton computation by Voronoi diagram,
CVGIP: Image Understanding, 55 (1992), pp. 329–338.

[8] L. Calabi and W.E. Hartnett, Shape recognition, prairie fires, convex deficiencies and
skeletons, The American Mathematical Monthly, 75 (1968), pp. 335–342.

[9] M.J. Cardoso, T. Arbel, S.L. Lee, V. Cheplygina, S. Balocco, D. Mateus,
G. Zahnd, L. Maier-Hein, S. Demirci, E. Granger, and L. Duong, Intravascular

2http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
3https://www.publicdomainpictures.net/en/view-image.php?image=32201&picture=

cat-stretch-silhouette-in-black
4https://svgsilh.com/image/152115.html
5https://svgsilh.com/image/365843.html
6https://svgsilh.com/image/1614530.html

34

https://doi.org/10.1109/ICCV.1999.791236
https://doi.org/10.1109/TPAMI.2007.59
https://doi.org/10.1109/2945.942688
https://doi.org/10.1109/2945.942688
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
https://www.publicdomainpictures.net/en/view-image.php?image=32201&picture=cat-stretch-silhouette-in-black
https://www.publicdomainpictures.net/en/view-image.php?image=32201&picture=cat-stretch-silhouette-in-black
https://svgsilh.com/image/152115.html
https://svgsilh.com/image/365843.html
https://svgsilh.com/image/1614530.html

Finding the Skeleton of 2D Shape and Contours: Implementation of Hamilton-Jacobi Skeleton

imaging and computer assisted stenting, and large-scale annotation of biomedical data and ex-
pert label synthesis, in CVII-STENT and Second International Workshop, LABELS, Springer,
2017.

[10] N. Chapman and J. Chapman, Digital multimedia, Wiley Publishing, 2009. ISBN-10
0470512164.

[11] H.I. Choi, S.W. Choi, and H.P. Moon, Mathematical theory of medial axis transform,
Pacific Journal of Mathematics, 181 (1997), pp. 57–88.

[12] M.G. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transac-
tions of the American Mathematical Society, 277 (1983), pp. 1–42.

[13] R. Fabbri, L.F. Costa, J.C. Torelli, and O.M. Bruno, 2D Euclidean distance transform
algorithms: A comparative survey, ACM Computing Surveys (CSUR), 40 (2008), pp. 1–44.
https://doi.org/10.1145/1322432.1322434.

[14] P.F. Felzenszwalb and D.P. Huttenlocher, Distance transforms of sampled func-
tions, Theory of Computing, 8 (2012), pp. 415–428. http://dx.doi.org/10.4086/toc.2012.

v008a019.

[15] A.J. Frank, J.D. Daniels, and D.R. Unangst, Progressive image transmission using a
growth-geometry coding, Proceedings of the IEEE, 68 (1980), pp. 897–909.

[16] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker, Shapes, shocks, and deformations I:
the components of two-dimensional shape and the reaction-diffusion space, International Journal
of Computer Vision, 15 (1995), pp. 189–224.

[17] I. Kunttu, L. Lepisto, J. Rauhamaa, and A. Visa, Multiscale Fourier descriptor for
shape classification, in International Conference on Image Analysis and Processing, IEEE, 2003,
pp. 536–541. https://doi.org/10.1109/ICIAP.2003.1234105.

[18] L.J. Latecki, R. Lakamper, and T. Eckhardt, Shape descriptors for non-rigid shapes
with a single closed contour, in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, IEEE, 2000, pp. 424–429. https://doi.org/10.1109/CVPR.2000.855850.

[19] M. Levandowsky and D. Winter, Distance between sets, Nature, 234 (1971), pp. 34–35.

[20] F. Leymarie and M.D. Levine, Simulating the grassfire transform using an active contour
model, IEEE Transactions on Pattern Analysis and Machine Intelligence, (1992), pp. 56–75.
https://doi.org/10.1109/34.107013.

[21] P. Maragos, Pattern spectrum and multiscale shape representation, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11 (1989), pp. 701–716.

[22] U. Montanari, A method for obtaining skeletons using a quasi-Euclidean distance, Journal of
the ACM (JACM), 15 (1968), pp. 600–624.

[23] , Continuous skeletons from digitized images, Journal of the ACM (JACM), 16 (1969),
pp. 534–549.

[24] S. Nathan and P. Kansal, SkeletonNet: Shape pixel to skeleton pixel, in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019. https://doi.org/

10.1109/CVPRW.2019.00156.

35

https://doi.org/10.1145/1322432.1322434
http://dx.doi.org/10.4086/toc.2012.v008a019
http://dx.doi.org/10.4086/toc.2012.v008a019
https://doi.org/10.1109/ICIAP.2003.1234105
https://doi.org/10.1109/CVPR.2000.855850
https://doi.org/10.1109/34.107013
https://doi.org/10.1109/CVPRW.2019.00156
https://doi.org/10.1109/CVPRW.2019.00156

Yuchen He, Sung Ha Kang, Luis Alvarez

[25] R.L. Ogniewicz and M. Ilg, Voronoi skeletons: theory and applications., in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 92, 1992, pp. 63–69. https://doi.
org/10.1109/CVPR.1992.223226.

[26] T. Pavlidis, Algorithms for graphics and image processing, Springer Science & Business Media,
2012. ISBN 978-3-642-93208-3.

[27] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM Journal
on Numerical Analysis, 29 (1992), pp. 867–884. https://doi.org/10.1137/0729053.

[28] P.K. Saha, G. Borgefors, and G.S. di Baja, A survey on skeletonization algorithms and
their applications, Pattern Recognition Letters, 76 (2016), pp. 3–12. https://doi.org/10.

1016/j.patrec.2015.04.006.

[29] T.B. Sebastian and B.B. Kimia, Curves vs. skeletons in object recognition, Signal Processing,
85 (2005), pp. 247–263. https://doi.org/10.1016/j.sigpro.2004.10.016.

[30] K. Siddiqi, S. Bouix, A. Tannenbaum, and S.W. Zucker, Hamilton-Jacobi skeletons,
International Journal of Computer Vision, 48 (2002), pp. 215–231. https://doi.org/10.1023/
A:1016376116653.

[31] T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on
similarity of species content and its application to analyses of the vegetation on Danish commons,
København, I kommission hos E. Munksgaard, 1948.

[32] M.R. Teague, Image analysis via the general theory of moments, Journal of the Optical Society
of America, 70 (1980), pp. 920–930.

[33] J. Toriwaki, T. Saitoh, and M. Okada, Distance transformation and skeleton for shape
feature analysis, in Visual Form, Springer, 1992, pp. 547–563. https://doi.org/10.1007/

978-1-4899-0715-8_52.

[34] X. Yang, X. Bai, D. Yu, and L. Latecki, Shape classification based on skeleton path
similarity, in International Workshop on Energy Minimization Methods in Computer Vi-
sion and Pattern Recognition, Springer, 2007, pp. 375–386. https://doi.org/10.1007/

978-3-540-74198-5_29.

[35] D. Zhang and G. Lu, Review of shape representation and description techniques, Pattern
Recognition, 37 (2004), pp. 1–19. https://doi.org/10.1016/j.patcog.2003.07.008.

[36] H. Zhao, A fast sweeping method for Eikonal equations, Mathematics of Computation, 74
(2005), pp. 603–627. https://www.jstor.org/stable/4100081.

[37] H. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and nonparametric shape
reconstruction from unorganized data using a variational level set method, Computer Vision and
Image Understanding, 80 (2000), pp. 295–314. https://doi.org/10.1006/cviu.2000.0875.

36

https://doi.org/10.1109/CVPR.1992.223226
https://doi.org/10.1109/CVPR.1992.223226
https://doi.org/10.1137/0729053
https://doi.org/10.1016/j.patrec.2015.04.006
https://doi.org/10.1016/j.patrec.2015.04.006
https://doi.org/10.1016/j.sigpro.2004.10.016
https://doi.org/10.1023/A:1016376116653
https://doi.org/10.1023/A:1016376116653
https://doi.org/10.1007/978-1-4899-0715-8_52
https://doi.org/10.1007/978-1-4899-0715-8_52
https://doi.org/10.1007/978-3-540-74198-5_29
https://doi.org/10.1007/978-3-540-74198-5_29
https://doi.org/10.1016/j.patcog.2003.07.008
https://www.jstor.org/stable/4100081
https://doi.org/10.1006/cviu.2000.0875

	Introduction
	Review on Skeleton of 2D Shape
	Hamilton-Jacobi Skeleton Algorithm
	Distance Transform Using the Fast Sweeping Algorithm
	Computation of Average Outward Flux
	Point Classification Based on Local Topology
	Homotopy Preserving Thinning

	Numerical Results
	Skeletonization of 2D Shapes
	Effects of the Parameter
	Shape Reconstruction from Medial Axis
	Performance of Distance Computation

	Conclusion

