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Abstract

The CAEclust Python package implements an original deep spectral clustering in an ensemble
framework. Recently, strategies combining classical clustering approaches and deep autoencoders
have been proposed, but their effectiveness is impeded by deep network hyperparameters settings.
We alleviate this issue with a consensus solution that hinges on the fusion of multiple deep
autoencoder representations and spectral clustering. CAEclust offers an efficient merging of
encodings by using the landmarks strategy and demonstrates its effectiveness on benchmark
data. CAEclust enables to reproduce our experiments and explore novel datasets.

Keywords: spectral clustering; ensemble learning; deep autoencoder

1 Introduction and Related Theory
In the context of unsupervised learning, recent studies improved classical clustering approaches by
relying on deep networks for dimensionality reduction, as such networks can automatically learn
important features from data [2, 11, 20, 26]. In particular, deep autoencoders (DAE) propose a new
data representation or encoding using an unsupervised learning. Yet, the effectiveness and ease-to-
use of existing DAE clustering strategies are impeded by their sensitivity to hyperparameters. First,
network weights initialization adds randomness to the results. Pretraining helps to mitigate this
issue, but is computationally intensive. Finding the correct deep architecture is another hurdle. In
almost all recent papers on deep clustering, architectures are fine-tuned for each benchmark dataset
and lack of technical rationales. Specifically, the architecture is usually derived by cross-validation on
a validation set for a grid of hyperparameters [26, 2, 10]. Such determination is infeasible in practice
for unsupervised clustering. Other studies reuse architectures that were historically proposed for the
considered dataset, without any technical explanations. As an example, the DAE architecture used
in [24, 7, 25, 5], which contains an encoder having 3 fully connected layers with 500-500-2000 units
and an encoding size of 10, is taken from [21], which is inspired by [16] and [8].

The CAEclust package relies on our recent work [1] and practically addresses the above mentioned
issues with a consensus optimization that reaches better predictive performance and more relevant
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clusterings than single data representation strategies. CAEclust embeds the landmarks strategy that
strongly diminishes the computational complexity and requires no pretraining. It also fills the gap
between ensemble deep autoencoders and spectral clustering in order to propose an effective approach
that takes simultaneously advantage of several deep models with various hyperparameters settings.
Specifically, we apply spectral clustering on an ensemble of fused encodings obtained from m different
deep autoencoders.

1.1 Spectral Clustering

A number of spectral clustering algorithms [6, 23], that propose different ways to use the eigenvectors
of the normalized graph Laplacian matrix [17] or of the walk’s transition matrix [14], can be found
in the literature. Their objective function typically favors low similarity between clusters and high
similarity within clusters to partition n datapoints of X ∈ Rn×d into k disjoint clusters. The spectral
clustering algorithm, in its normalized version, uses the top k eigenvectors of the normalized graph
Laplacian matrix. They are the relaxations of the indicator vectors which provide assignments of each
datapoint to a cluster. Hence, it amounts to maximize the following relaxed normalized association,

max
B∈Rn×k

Tr(B>SB) s.t. B>B = I (1)

with S = D−1/2KD−1/2 ∈ Rn×n the normalized similarity matrix, where K ∈ Rn×n is the similarity
matrix and D ∈ Rn×n is the diagonal matrix whose (i, i)-element of X is the sum of X’s i-th row.
The solution of (1) is to set the matrix B ∈ Rn×k equal to the k eigenvectors corresponding to the
largest k eigenvalues of S. After renormalization of each row of B, a k-means assigns each datapoint
xi of X to the cluster that the row bi of B is assigned to.

An advantage of the spectral clustering is that it performs well on arbitrary shaped clusters, by
contrast with several other clustering algorithms (e.g. k-means). However, this approach has also
difficulties to handle large-scale datasets. This is the consequence of the high complexity of the graph
Laplacian construction and the eigen-decomposition.

Recently, the Landmark-based Spectral Clustering (LSC ) [4] (or AnchorGraph [12]) strategy of-
fered a scalable spectral clustering. In particular, LSC allows to efficiently construct the graph
Laplacian and compute the eigen-decomposition. Specifically, each datapoint is represented by a
linear combination of p representative datapoints (or landmarks), with p � n. The obtained rep-
resentation matrix Ẑ ∈ Rp×n, for which the affinity is calculated between n datapoints and the p
landmarks, is sparse. This, in turn, ensures a more efficient eigen-decomposition as compared to the
above mentioned eigen-decomposition of S (Equation (1)).

1.2 Deep Autoencoders

An autoencoder [9] is a neural network that implements an unsupervised learning algorithm in which
the parameters are learned in such a way that the output values tend to copy the input training
sample. The internal hidden layer of an autoencoder can be used to represent the input in a lower
dimensional space by capturing the most salient features.

We can decompose an autoencoder in two parts, namely an encoder fθ, followed by a decoder gψ.
The first part provides the encoding Y of the input dataset by computing a feature vector yi = fθ(xi)
for each input training sample. Then, the encoding is transformed back to its original representation
by the decoder part, following x̂i = gψ(yi).

The sets of parameters for the encoder fθ and the decoder gψ are learned simultaneously during
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the reconstruction task while minimizing the loss, referred to as J given by

JAE(θ, ψ) =
n∑
i=1

L(xi, gψ(fθ(xi))), (2)

where L is a cost function for measuring the divergence between the input training sample and the
reconstructed data. The encoder and decoder parts can have several shallow layers, yielding a deep
autoencoder (DAE) that enables to learn higher order features. The network architecture of these
two parts usually mirrors each other.

2 CAEclust Algorithm

2.1 Algorithm Overview

We first obtain a set of m encodings {Y`}`∈[1,m], given an n×d data matrix X, using m DAE trained
with different hyperparameters settings. Then, for each embedding Y`, we construct a graph matrix
S`. We fuse the m graph matrices in an ensemble graph matrix S (equivalently named affinity
or similarity matrix in the following) which contains information provided by the m embeddings.
Finally, the spectral clustering applied to S benefits from the common subspace shared by the m
deep embeddings. Hence, our proposal hinges on three challenges, namely (i) generating m deep
embeddings, (ii) integrating the clustering in an ensemble learning framework and (iii) solving the
clustering task in a highly efficient way. The steps of CAEclust are summarized in Algorithm 1 and
illustrated by Figure 1.

Figure 1: CAEclust core algorithm overview. CAEclust algorithm first computes m encodings from DAE with
different hyperparameters settings (a), then generates m sparse affinity matrices, {Ẑ`}`∈[1,m], that are concatenated in Z̄
(b), and finally performs a SVD on the ensemble graph affinity matrix Z̄ (c).
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2.2 Constructing Graph Matrices from Embeddings

An autoencoder is composed of an encoder fθ and a decoder gψ that can have multiple layers of
different widths. Its cost function, given by Equation (3), measures the error between the input
x ∈ Rd×1 and its reconstruction at the output x̂ ∈ Rd×1. We can learn m encodings {Y`}`∈[1,m] by
training DAE with different hyperparameter settings, gψ`

and fθ` , and Y` = fθ`(X) (Figure 1, (a)).

||X− gψ`

(
fθ`(X)

)
||2. (3)

The Landmark Spectral Clustering [4] and the Anchor-Graphs [12] strategies compute a smaller
and sparser representation matrix Z` ∈ Rn×p that approximates a full n × n affinity matrix. This
matrix is built between the landmarks {u`j}j∈[1,p] and the encoded points {y`i}i∈[1,n] (Figure 1, (a)).
CAEclust proposes to construct the graph matrix S` following this idea. First, we obtain a set of
p points (p � n), that are the landmarks which approximate the neighborhood structure, through
k-means applied on the embedding matrix Y`. Then, a non-linear mapping from data to landmark
is computed as follows,

z`ij = Φ(y`i) =
K(y`i ,u

`
j)∑

j′∈N(i)
K(y`i ,u

`
j′)

; j′ ∈ N(i), (4)

where N(i) indicates the r (r < p) nearest landmarks around y`i . As proposed in [4], we set z`ij to zero
when the landmark u`j is not among the nearest neighbor of y`i , leading to a sparse affinity matrix Z`.
The function K(.) is used to measure the similarity between data y`i and anchor u`j with L2 distance
in Gaussian kernel space K(xi,xj) = exp(−||xi−xj||2/2σ2), and σ is the bandwidth parameter. The
normalized matrix Ẑ` ∈ Rn×p is then utilized to obtain a low-rank graph matrix,

S` ∈ Rn×n, S` = Z`Σ
−1Z>` where Σ = diag(Z>` 1).

As the Σ−1 normalizes the constructed matrix, S` is bi-stochastic, i.e. the summation of each column
and row equal to one, and the graph Laplacian becomes,

S` = Ẑ`Ẑ
>
` where Ẑ` = Z`Σ

−1/2. (5)

2.3 Algorithmic Optimization on the Ensemble of Affinity

CAEclust merges m graph similarity matrices, S`, in an ensemble similarity matrix, S̄. This matrix
contains the information provided by the encodings {Y`}`∈[1,m] obtained using m DAE trained with
different hyperparameters setting `. Hence, the CAEclust ensemble affinity matrix is built as the
summation of the m basic similarity matrices as given by Equation (6). Such aggregation follows
an Ensemble Clustering idea analogous to that proposed in [19, 22] where a co-association matrix is
first built as the summation of all basic similarity matrices, and where each basic partition matrix
can be represented as a block diagonal matrix,

S̄ =
1

m

m∑
`=1

S`. (6)

The S̄ matrix is approximately block stochastic for many natural problems. Hence, the first k
eigenvectors of S̄ are approximately piecewise constant over the k almost invariant rows subsets [15].
In the following, we show how CAEclust computes, at lower cost, B that is shared by the m graph
matrices S`. The B matrix is obtained by optimizing the trace maximization problem given by

max
B

Tr(B>S̄B) s.t. B>B = I. (7)
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We can solve Equation (7) by setting B equal to the k eigenvectors corresponding to the largest k
eigenvalues of S̄. However, the computation of the eigen-decomposition of S̄ of size (n×n) is O(n3).
By contrast, CAEclust computes instead the k left singular vectors of the concatenated matrix,

Z̄ =
1√
m

[Ẑ1| . . . |Ẑj| . . . |Ẑm]. (8)

We naturally obtain an improvement in the computational cost of B by using the sparse matrix Z̄
∈ Rn×

∑m
j=1 `j with

∑m
j=1 `j � n, instead of S̄, which has a larger dimension (Figure 1, (b)).

Proposition 2.1. Given a set of m similarity matrices S`, such that each matrix S` can be ex-
pressed as Z`Z

>
` . Let Z̄ ∈ Rn×

∑m
j=1 `j , where

∑m
j=1 `j � n, denoted as 1√

m
[Z1| . . . |Zj| . . . |Zm], be the

concatenation of the Z`’s, ` = 1, . . . ,m. We first have,

max
B>B=I

Tr(B>S̄B)⇔ min
B>B=I,M

||Z̄−BM>||2F . (9)

Then, given SVD(Z̄), Z̄ = UΣV> and the optimal solution B∗ is equal to U.

Proof. From the second term of Equation (9), one can easily show that M∗ = Z̄>B. Plugging now
the expression of M∗ in Equation (9), the following equivalences hold

min
B>B=I,M

||Z̄−BM>||2F ⇔ min
B>B=I

||Z̄−BB>Z̄||2F

⇔ max
B>B=I

Tr(B>Z̄Z̄>B)

⇔ max
B>B=I

Tr(B>S̄B).

On the other hand, SVD(Z̄) leads to Z̄ = UΣV> (with U>U = I, V>V = I) and therefore to the
eigen-decomposition of S̄ as follows

S̄ = Z̄Z̄> = (UΣV>)(UΣV>)>

= UΣ(V>V)ΣU>

= UΣ2U>.

Thereby the left singular vectors of Z̄ are the same as the eigenvectors of S̄.

With CAEclust, we propose a unique way to combine DAE encodings for clustering. Our method
also benefits from the low complexity of the anchors strategy for both the graph affinity matrix
construction and the eigen-decomposition. Specifically, the computational cost for the construction
of each Z` affinity matrix amounts to O(np`e(t+ 1)) (Algorithm 1, step (b)) , where n is the number
of datapoints, p` is the number of landmarks for the `th DAE (p` � n), e is the size of the DAE
encoding Y` (e � n) and t is the number of iterations for the k-means algorithm that is used to
select the landmarks. It is worth noting that CAEclust proposes a parallelized computation of the
Z` matrices over multiple cores. This limits the computation time of the ensemble affinity matrix Z̄
to the most time consuming Z`. Furthermore, the eigen-decomposition of Z̄, which leads to the B
embeddings (Algorithm 1, step (c)), induces a computational complexity of O(p′3 +p′2n), where p′ is
the sum of all landmarks numbers for the concatenated Z` matrices, i.e. p′ =

∑m
j=1 `j � n. The last

k-means on B ∈ Rn×k (Algorithm 1) requires additional O(nctk), where c is the number of centroids,
usually equal to k the number of eigenvectors, leading to O(ntk2).

The originality and efficiency of the CAEclust ensemble method hinges on the replacement of a
costly eigen-decomposition on S̄ ∈ Rn×n by an eigen-decomposition on a low-dimensional and sparse
matrix Z̄ ∈ Rn×

∑m
j=1 `j , with

∑m
j=1 `j � n (Algorithm 1, step (c)). In particular, the sparsity of Z̄

enables the use of fast iterative and partial eigenvalue decomposition.
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3 CAEclust Package: Implementation and Evaluation

3.1 Software Architecture and Functionalities

We summarize the package usage in Figure 2 and detail below CAEclust functionalities.

Figure 2: CAEclust package.

[io] dataLoader.py loads a dataset. CAEclust proposes by default two well-known benchmark
images datasets, namely USPS and MNIST. dataLoader.py is needed at line 1 of Algorithm 1.

[daeNet] daeEncoding.py sets a DAE with general parameters (e.g. optimizer function, number
of epochs, batch size, encoding dimension), and any layer number and width. The method
deep_ae() generates the encoded data. The package proposes to generate the encodings either in
serial (serial_encodings.py) or in parallel (parallel_encodings.py). daeEncoding.py is needed
at lines 2 and 4 of Algorithm 1.

[clustering] ensClust.py computes the ensemble sparse affinity matrix (Equation (4)) through
the method ensemble_approximate_affinity() (Algorithm 1, line 5). The deep consensus clus-
tering is then obtained from the shared space B (Equation (8), Equation (7) & Proposition
2.1) using the sparse_SVD() method (Algorithm 1, line 6).

[evaluation] evaluation.py provides 2D and 3D visualizations of the shared space B with
commonSpace_plot(). These visualizations are also proposed with the UMAP [13] transforma-
tion. When studying benchmark datasets with ground truth labels, allMetrics() function
can compute three informative metrics (accuracy, NMI [19], and ARI [18]). Furthermore,
compare_metrics() provides an html summary table to easily compare the CAEclust results
with other clustering algorithms.
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3.2 Relating Functionalities and Algorithm

Algorithm 1 provides the CAEclust pseudo-code. Each step indicates the associated Python script.
The corresponding functions are detailed in Section 3.1.

Algorithm 1 : CAEclust core algorithm
1: Input: data matrix X  dataLoader.py
2: Initialize: m DAE with different hyperparameters settings
3: Do:
4: (a) Generate m deep embedding {Y`}l∈[1,m] (Equation (3))

 daeEncoding.py [serial_encodings.py | parallel_encodings.py]
5: (b) Construct the ensemble sparse affinity matrix Z̄ ∈ Rn×

∑m
j=1 `j (Equation (4), (8))

 ensemble_approximate_affinity()

6: (c) Compute B∗ ∈ Rn×k by performing sparse SVD on Z̄ (Equation (9))
 sparse_SVD()

7: Output: Run k-means on B∗ to get the final clustering

CAEclust package metadata are summarized by Table 1.

Code metadata description metadata
Current code version V1.0.0
Legal Code License GPL-3.0 License
Software code languages, tools, and services
used

Python (= 3.8)

Compilation requirements, operating environ-
ments & dependencies

Python (= 3.8); packages: scikit-learn, mat-
plotlib, pandas, ipykernel, jinja2, umap-learn,
tensorflow (2.6 Windows, otherwise 2.7)

Support email for questions severine.affeldt@u-paris.fr

Table 1: CAEclust package metadata.

3.3 Evaluations

The CAEclust ensemble package is evaluated on USPS and MNIST. The sets of encodings are made
with different DAE initializations (Init.), epoch numbers (Ep.) or structures (Struct.). We trained
fully connected autoencoders with an encoder fθ of three hidden layers of size 500, 750 or 1000 for
MNIST and USPS, as suggested by Bengio et al. [3], in all possible orders. The decoder part gψ mirrors
the encoder stage fθ. The encoding dimension e corresponds to the number of expected classes,
which is 10. We consider landmarks numbers within 100 and 1, 000 by step of 100. The accuracy
reported for DAE-LSC corresponds to an average over 50 replicates (10 replicates on each of the 5
encodings per DAE structure), over all epoch and landmark numbers.

The simple use of LSC on encoded data already improves the LSC performance. Indeed, we
found with LSC an average accuracy of 68.55 ± 2.25 and 77.20 ± 1.49 on the original MNIST and
USPS datasets respectively, while the use of a single encoding enables to reach an average accuracy
between 87.06± 8.27 and 91.54± 3.06 for MNIST ([500–750–1000] and [1000–500–750] DAE hidden
layers) and between 79.72 ± 6.21 and 83.47 ± 7.40 for USPS ([750–500–1000] and [500–1000–750]
DAE hidden layers). Yet, finding a priori the most appropriate DAE structure remains a challenging
task. The accuracy may also vary for different landmark and epoch numbers. The ensemble strategy
provided by CAEclust offers a straightforward way to alleviate these issues and avoid the fine tuning
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Data structure DAE-LSC

CAEclust Deep k-means Variants
no pretraining no pret. pret.

Init. Ep. Struct. DCN IDEC DKM DCN IDEC DKM

MNIST

500–750–1000 87.06 ±8.27 89.19 ±0.41 85.54 ±4.30

9
3
.2
3
±

2
.8
4

3
4
.8
±

3
.0

6
1
.8
±

3
.0

8
2
.3
±

3
.2

8
1
.1
±

1
.9

8
5
.7
±

2
.4

8
4
.0
±

2
.2

500–1000–750 90.48 ±5.20 95.33 ±0.07 94.34 ±2.68

750–500–1000 88.31 ±5.46 92.15 ±0.25 92.03 ±3.87

750–1000–500 90.30 ±4.89 92.65 ±0.13 92.26 ±3.71

1000–500–750 91.54 ±3.06 94.28 ±0.20 94.57 ±1.48

1000–750–500 90.96 ±3.98 93.87 ±0.38 95.25 ±0.59

USPS

500–750–1000 81.78 ±8.08 80.07 ±1.95 81.36 ±5.09

8
1
.7
8
±

3
.6
1

3
6
.4
±

3
.5

5
3
.9
±

5
.1

7
5
.5
±

6
.8

7
3
.0
±

0
.8

7
5
.2
±

0
.5

7
5
.7
±

1
.3

500–1000–750 83.47 ±7.40 80.54 ±0.77 82.06 ±3.54

750–500–1000 79.72 ±6.21 79.49 ±1.19 81.10 ±3.86

750–1000–500 80.29 ±5.70 79.29 ±1.05 79.88 ±2.69

1000–500–750 81.39 ±4.46 84.12 ±1.80 81.89 ±3.21

1000–750–500 83.08 ±5.64 85.22 ±2.14 84.96 ±3.29

Table 2: Mean clustering accuracy comparisons (pret. denotes pretraining).

of the DAE hyperparameters. As can be seen from Table 2, CAEclust provides higher clustering
accuracy as compared to the use of a single encoding. In particular, the mean accuracy values
obtained with the initialization ensemble strategy (Init., m = 6) can reach, 95.33± 0.07 for MNIST
and 85.22 ± 2.14 for USPS. Results for the epoch ensemble strategy (Ep., m = 5, epochs within
[50; 250]) reach 95.25± 0.59 for MNIST and 84.96± 3.29 for USPS.

The CAEclust ensemble approach on the DAE structures (Struct., m = 6, all studied structures)
enables also to reach high accuracy as compared to the single combination. ForMNIST, it outperforms
all the single encoding combination (93.23 ± 0.28 vs. 91.54 ± 3.06). For USPS, it reaches the third
best single encoding combination with a better standard deviation (81.78 ± 3.61 vs. 81.78 ± 8.08).
These good results are obtained with the added benefit of avoiding the training of a particular
DAE structure, which is not possible in an unsupervised context. Figure 3 gives an overview of the
common shared space B for diverse ensemble of encodings and demonstrates the good capacity of B
to separate the classes.

Ens. Init. Ens. Epoch Ens. Struct.

Figure 3: 2D Visualization of the embeddings B from CAEclust on USPS for an ensemble of encodings based on diverse
initializations (Ens. Init.), epochs (Ens. Epoch) and structures (Ens. Struct.). Colors indicate the true USPS digits labels.

Among the existing deep clustering methods, two approaches can now be considered as state-of-
the-art methods, namely IDEC (Improved Deep Embedded Clustering) [7] and DCN (Deep Clustering
Network) [25]. Recently, the DKM (Deep k-means) algorithm, which applies a k-means in an AE
embedding space, outperformed these approaches [5]. While our CAEclust approach does not require
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any pretraining for the initialization of the DAE weights, it outperforms the DCN, IDEC and DKM
methods in their pretrained version (Table 2).

In particular, DCN treats DAE adjacent layers as restricted Boltzmann machines (RBM) and trains
RBMs bottom-up to obtain good initial weights. Then, the network weights are fine-tuned. IDEC
uses a greedy layer-wise pre-training with dropout before fine-tuning the entire network without
dropout while DKM also relies on a pretraining step of 50 epochs before applying its main algorithm.
By contrast, CAEclust only trains the DAEs without any weight initialization that could be obtained
from a pretraining strategy. As can be seen from Table 2, none of these challenging deep clustering
approaches outperform CAEclust in their no pretraining version (see Table 2, Deep k-means vari-
ants / no pret. column). Besides, even when injecting pretraining in DCN, IDEC or DKM, CAEclust still
remains really competitive, as its lowest accuracy mainly outperforms the accuracy of the other ap-
proaches. Most importantly, the CAEclust ensemble based on the merging of encodings produced by
various structures (Table 2, Struct. column) provides a straightforward way to combine embeddings
from various DAEs without having to choose a specific architecture (Table 2, Init. & Ep. columns).
With the Struct. ensemble, CAEclust also offers a better accuracy than other approaches.

Beyond the DAEs hyperparameters, CAEclust also depends on the number of landmarks that are
used for the LSC clustering. As can be seen in [12, 2], the anchor graph strategy reduces the error
rate as the number of landmarks increases. As an example, the experiments from [12] demonstrate
that the error rate of such an approach reaches a plateau above 800 landmarks on the USPS dataset.
In [2], experimental results show that the higher the number of landmarks, the better results for
MNIST. Our experiments tend to confirm these behaviors, as can be seen in Figure 4, which provides
the accuracy of CAEclust on MNIST and USPS, for different DAE architectures trained during 50
epochs.

MNIST, 50 epochs USPS, 50 epochs

Figure 4: Mean clustering accuracy per number of landmarks for different DAE architectures.

As complementary experiments, we investigate an ensemble strategy of CAEclust on the number
of landmarks. More specifically, for a chosen DAE architecture, we construct an ensemble sparse
affinity matrix, Z̄, where each Ẑi is based on a different number of anchors (Algorithm 1, step (b);
Equation (8)). As an example, we randomly choose m = 5 number of landmarks and evaluate the
CAEclust accuracy at several numbers of epochs. As can be seen from Table 3, this landmark variant
of CAEclust provides again better accuracy than the other approaches.
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Data structure 50 epochs 100 epochs 150 epochs 200 epochs 250 epochs

MNIST

500–750–1000 85.44 ±1.07 95.14 ±0.35 85.43 ±3.82 95.37 ±0.24 82.81 ±0.62

500–1000–750 94.52 ±0.18 96.04 ±0.26 95.62 ±0.19 95.33 ±0.23 95.24 ±0.14

750–500–1000 92.80 ±2.07 85.74 ±2.88 94.90 ±0.21 94.86 ±0.93 94.09 ±0.26

750–1000–500 89.19 ±1.23 88.90 ±0.65 94.77 ±0.07 93.80 ±1.61 95.99 ±0.25

1000–500–750 89.31 ±2.76 93.12 ±2.50 95.54 ±0.14 95.17 ±0.17 95.65 ±0.15

1000–750–500 94.09 ±0.22 95.64 ±0.13 94.90 ±0.28 95.57 ±0.10 95.19 ±0.11

USPS

500–750–1000 79.57 ±4.14 78.35 ±0.78 78.32 ±0.31 90.17 ±6.62 84.42 ±7.10

500–1000–750 79.18 ±0.31 85.07 ±5.34 78.92 ±0.53 86.89 ±7.24 79.72 ±0.27

750–500–1000 77.50 ±0.32 81.27 ±4.11 82.11 ±4.57 80.82 ±4.18 81.36 ±4.13

750–1000–500 82.40 ±5.00 80.25 ±0.31 80.08 ±0.34 80.01 ±0.23 78.78 ±0.40

1000–500–750 94.34 ±0.35 79.60 ±0.18 80.16 ±0.16 91.39 ±5.75 86.28 ±6.67

1000–750–500 92.59 ±4.27 80.09 ±0.17 86.65 ±7.01 89.52 6.39± 87.73 ±6.42

Table 3: Mean clustering accuracy comparisons (landmarks ensemble).

4 Illustrative Examples

CAEclust includes two tutorial notebooks. The first one, Baseline_evaluations, shows the influence
of the DAE structure on the clustering for a non ensemble approach. The second one, Ensem-
ble_evaluations, demonstrates the effectiveness CAEclust consensus deep clustering.

4.1 Baseline Evaluations

The notebook Baseline_evaluations first loads the dataset with dataLoader.py. Then, it performs
k-means and LSC clusterings on the original data. For LSC, the required CAEclust functions are
single_approximate_affinity() followed by sparse_SVD(). We then set several DAEs with different
structures to encode data using daeEncoding.py. Finally, we perform k-means and LSC on each
encoding, evaluate the results with allMetrics() and display them using compare_metrics().

Figure 51 provides the evaluation metrics for k-means and LSC clusterings on single deep represen-
tations obtained with various autoencoders structures. As can be seen, the use of a single encoding
usually improves the clustering results, both for k-means (Figure 5, a & b) and LSC (Figure 5, c & d).
However, the results strongly depend on the DAE structure, as exemplified by Figure 6 which pro-
vides the UMAP representations for the most efficient deep encoding (left) and the least efficient deep
encoding (right) for MNIST. In the second notebook, CAEclust proposes several ensemble solutions
to alleviate such critical hyperparameters influence.

4.2 Ensemble Evaluations

The notebook Ensemble_evaluations first loads the dataset with dataLoader.py. Then, it encodes the
data with various hyperparameters using daeEncoding.py (either in serial or in parallel). To compute
the ensemble sparse affinity matrix Z̄, we use ensemble_approximate_affinity(). The clustering is
obtained from the common shared space using sparse_SVD(). We can compare the different ensemble
strategies based on the metrics of allMetrics() and display them using compare_metrics().

Figure 72 provides the evaluations of different CAEclust ensemble strategies on MNIST and USPS.
As can be seen, all the ensemble strategies (initialization, epoch and structure) enable to reach high
accuracy, NMI and ARI.

1Tables are images extracted from the outputs of the CAEclust Baseline_evaluations tutorial notebooks.
2Tables are images extracted from the outputs of the CAEclust Ensemble_evaluations tutorial notebooks.
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(a) MNIST – DAE+k-means (b) USPS – DAE+k-means

(c) MNIST – DAE+LSC (d) USPS – DAE+LSC

Figure 5: Clustering on a single deep representation with CAEclust package.

Figure 6: UMAP on best (left) and worse (right) deep individual representation for MNIST.

(a) MNIST – Consensus results (b) USPS – Consensus results

Figure 7: CAEclust ensemble evaluations on MNIST (left) and USPS (right).

In particular, the ensemble structure on MNIST (Figure 7, a; Ens. Struct.) reaches much better
results than the results obtained with the least efficient structure (Ens. Struct., 0.9082 vs. DAE[500,
750, 1000] +LSC, 0.70). Furthermore, the ensemble initialization results are comparable to the re-
sults obtained with the most efficient encoding (Ens.Init., 0.9199 vs. DAE[1000, 750, 750] + LSC,

600



CAEclust: A Consensus of Autoencoders Representations for Clustering

0.9202).

For USPS, all ensemble strategies outperform the results obtained with the individual DAE
structure. Indeed, the worst ensemble results is 0.9025 (Figure 7, b) while the best individual
encoding enable to reach a score of 0.8981 (Figure 5, d; DAE[1000, 750, 500] + LSC). It is worth
noting that Ens. Epch. and Ens. Init. results are obtained from the DAE structure [750, 500, 1000]
which is the worse DAE structure in this example.

The Ensemble_evaluations notebook also proposes a meta ensemble strategy, for which the en-
codings from the initialization, epoch and structure ensemble sets are integrated in the common
shared space B. For both USPS and MNIST, the CAEclust meta ensemble strategy outperforms the
other ensemble strategies as well as their best encoding performance. Figure 8 provides the UMAP
transformation of the common share space B and highlights the good capacity of B to separate the
classes. In practice, one could generate various encodings following a predefined grid and take ad-
vantage of all the deep representations to obtain a efficient clustering with very few hyperparameters
settings constraints.

MNIST Ens. Struct. MNIST Ens. Epoch MNIST Ens. Init. MNIST Ens. Meta.

Figure 8: 2D UMAP Visualization of the embeddings B from CAEclust on MNIST for an ensemble of encodings based
on diverse initializations (Ens. Init.), epochs (Ens. Epoch) and structures (Ens. Struct.). Colors indicate the true digits
labels.

5 Conclusions

We developed a Python package CAEclust for deep spectral clustering in an ensemble framework.
CAEclust is capable of learning a consensus solution that hinges on the fusion of multiple deep
autoencoder representations and spectral clustering. It is an effective and user friendly package that
proposes parallelization to overcome the computation time issue. Future extensions of this work will
be dedicated to the challenging text data, which is by nature unstructured, highly dimensional and
sparse. All in all, CAEclust alleviates the hyperparameters settings issue that usually impedes the
efficiency of deep network based clustering techniques, and offers an efficient merging of encodings
by using the landmarks strategy.
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