
Published in Image Processing On Line on 2022–10–18.
Submitted on 2022–05–10, accepted on 2022–10–03.
ISSN 2105–1232 c© 2022 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2022.405

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Breaking down Polyblur: Fast Blind Correction of Small

Anisotropic Blurs

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, France
thomas.eboli@ens-paris-saclay.fr

Communicated by Julie Delon Demo edited by Thomas Eboli

Abstract

Polyblur is a two stage blind deblurring technique for removing small-sized blurs, like small
camera shake or the lens point-spread function, proposed in 2021 by Delbracio et al. First, the
blur is modeled with a zero-mean anisotropic Gaussian kernel whose parameters are rapidly
estimated from the oriented blurry image gradients. Second, a sharp estimate is obtained by
applying an approximate deconvolution filter, which is designed as a polynomial function of
the estimated blurring kernel. Since in practice true blurs are not exactly Gaussian filters,
the residual blur is gradually removed by repeating this two-stage procedure. Because it relies
only on simple image manipulations, Polyblur is a quick blind deblurring technique, running in
a fraction of a second on a smartphone. In this presentation, we analyze its key ingredients,
showcase several use cases on real images, and provide Numpy and Pytorch implementations.

Source Code

The reviewed source code of this algorithm is available on the web page of this article1. The
latest version of the code can be found at the Github repository2.

Keywords: blind deblurring; spatial Gaussian filter; computational photography; sharpening;
defocus; point-spread function

1 Introduction

Fast and efficient deblurring is pivotal in several image processing applications, for instance to correct
camera shake [17], out-of-focus blur [19], or optical aberrations [14]. The restoration algorithms run
most of the time in a blind setting where the underlying blur is unknown, and sometimes is even hard
to model. Recent years have seen the advent of several blind deblurring techniques, which almost
always embed two sub-modules: (i) A blur estimation algorithm applied to the degraded image at

1https://doi.org/10.5201/ipol.2022.405
2https://github.com/teboli/polyblur

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo, Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs,
Image Processing On Line, 12 (2022), pp. 435–456. https://doi.org/10.5201/ipol.2022.405

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2022.405
https://doi.org/10.5201/ipol.2022.405
https://github.com/teboli/polyblur
https://doi.org/10.5201/ipol.2022.405
https://github.com/teboli/polyblur

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

hand, and (ii) a state-of-the-art non-blind deblurring method based on an elaborated image prior.
In particular, the first one may leverage the properties of the blur kernel in the Fourier domain
as proposed by Goldstein and Fattal [8, 1], or the so-called “unnatural” image priors [18, 12, 2]
favoring latent sharp images with sharp edges. Both approaches are designed to predict any sort
of blur trajectories, and are thus showcased for complex motion blurs. However, such approaches
are generally slow, taking several seconds to minutes for even low-definition images, and are thus
reserved to post-processing applications.

In this work we analyze Polyblur, a blind deblurring method proposed by Delbracio et al. [5] that
addresses the correction of “mild” blurs: blurs whose kernels have relatively small supports and are
responsible of slight defocus for instance, or accounting for the lens blur [10, 6]. The out-of-focus
photograph in Figure 1 illustrates an instance of such “mild” blur. By focusing on such specific but
common sort of blurs, Delbracio et al. introduce a fast and effective iterative deblurring technique
that may even run on a mobile phone in a fraction of a second, narrowing the gap with real-time
applications. This method consists in alternating between fast spatial Gaussian kernel estimation
and non-blind deconvolution. The first stage leverages the possibility to approximate small blurs
with Gaussian filters, whose covariance matrix can be directly estimated from the gradients of the
blurry image. The latter exploits a truncated geometric series of the blur kernel approximating its
theoretical inverse filter, whose convergence is guaranteed since Polyblur addresses only “mild” blurs
removal. This truncated series yields a parametric deconvolution filter. Repeating these two steps a
couple of times results in a sharper image.

(a) Defocused original photograph. (b) Image restored with Polyblur.

Figure 1: Out-of-focus blur removal in a real-world deblurring scenario, featuring a “mild blur”: We took a slightly defocused
photograph of a peacock, resulting in small loss of sharpness of the bird. Polyblur, the method discussed in this presentation,
is a fast iterative blind deblurring technique, i.e., we contemplate a realistic situation where a blur kernel is not available,
to address the correction of such relatively small blurs. The resulting image is a sharper version of the original photograph,
as if it were taken with accurate focusing on the bird’s eye.

Formally, let u and v be sharp and blurry H × W images (we assume a grayscale version in
this presentation but the model holds for color images as well), k the ground-truth blur kernel (for
instance the lens point-spread function), and ε is additive noise. The image formation model reads

v = s(k ∗ u+ ε), with ε ∼ N (0, σ2
n), (1)

where ∗ is the discrete convolution of two 2D arrays, and s models saturation clipping the pixel
values within [0,1]. Polyblur aims at estimating from the gradients of v a Gaussian filter g that
approximates the possibly non-parametric kernel k, and use it to deblur v. Repeated several times,
this procedure yields a sharp estimate of u.

436

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

Algorithm 1: Polyblur

Data: Image v, blur coefficients (C, b), polynomial coefficients (α, β), Polyblur iterations N ,
prefiltering coefficients (σs, σr), prefiltering iterations M , saturation threshold t

Result: Sharp estimate û
1 n← 0;
2 for n < N do

3 g ← GaussianBlurEstimation(v, C, b, t);
4 v ← Deconvolution(v, g, α, β, σs, σr,M);
5 n← n+ 1;

6 end

7 û← v;

The main deblurring function Polyblur is shown in Algorithm 1, highlighting the two main steps
of Polyblur. Section 2 motivates the principal assumptions behind Polyblur, with numerical and
theoretical validations. The functions GaussianBlurEstimation and Deconvolution are detailed
in Section 3. Section 4 presents qualitative results for defocus and lens blur correction, and for
sharpening of images predicted with a super-resolution (SR) algorithm, for instance in [11].

2 Preliminary Results

We discuss in this section the two main assumptions behind Polyblur. Delbracio et al. [5] first
posit that the blurs of interest are small enough (what they call “mild” in their article), so that a
deconvolution filter formulated as a truncated power series of the blur kernel achieves satisfactory
visual results. This suggests that no image prior, e.g., the total variation [13], is necessary for efficient
restoration in this context. Second, effective deconvolution can be carried out by approximating
the underlying blur kernel k with spatial Gaussian filters, whose parameters are inferred from the
gradients of the blurry image.

2.1 Deconvolution Filters for “Mild” Blurs

The first main idea of Delbracio et al. is to target relatively small blurs compared to typical blur
estimation, e.g., [12, 8]. The key assumption on these “mild” blurs can be formally expressed as

||δ − k||2 < 1, (2)

where δ is the identity filter for the non-cyclic convolution ∗. This criterion implies that the kernel
k does not importantly degrade the original image. Provided Equation (2) is valid, the inverse filter
k−1 exists and may be written as the following geometric power series in δ − k

k−1 =
∞∑

i=0

(δ − k)i, (3)

where the exponent i in this presentation denotes i consecutive convolutions with the same filter,
with the convention that the exponent i = 0 results in the Dirac filter δ.

Proof. Calling h = δ − k, we know that the inverse to δ − h exists and can be expressed as a power
series of h whenever ‖h‖2 < 1 is verified. Since we assume that k is a “mild” blur, this condition is

437

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

fulfilled and the inverse filter to δ − h = k exists, and reads

k−1 = (δ − h)−1 =
∞∑

i=0

hi =
∞∑

i=0

(δ − k)i
def
= p(δ − k), (4)

where p is the polynomial resulting from the summation of the filters on the left hand of the equation.
The second equality transforming an inverse into a convergent series is a property of a Neumann
series.

In practice, this ideal inverse filter can be only approximated by a truncated polynomial of degree d

pd(k) =
d∑

i=0

(δ − k)i. (5)

As a result, we predict a sharp image û by applying the deconvolution filter pd(k) to v

û = pd(k) ∗ v = pd(k) ∗ k ∗ u+ pd(k) ∗ ε. (6)

The polynomial pd should at the same time remove the blur k and prevent noise amplification. To
that end, Delbracio et al. use a custom polynomial with coefficients a0, a1, . . . , ad, such that

pd(k) =
d∑

i=0

aik
i. (7)

For a selected truncation degree d, the coefficients are chosen to reach the best deblurring/noise
compensation trade-off. In Section 3, we detail the strategy for finding the polynomial coefficients
when d = 3.

2.2 Quick Estimation of a Gaussian Blur

The second main assumption in [5] is that zero-mean spatial Gaussian filters can model well “mild”
blurs to achieve efficient deblurring. Zero-mean Gaussian kernels are completely determined by their
covariance matrix, which is itself shaped by three parameters: the standard deviations along the
principal and orthogonal axes σ and ρ, and the principal axis orientation θ. These kernels read

g(x) = [det(2πΣ)]−
1
2 exp

(
−1

2
x⊤Σ−1x

)
, (8)

for all x in R2, with covariance matrix

Σ = R(θ)⊤
[
σ2 0
0 ρ2

]
R(θ), (9)

where R(θ) denotes the 2D rotation matrix of angle θ. The triplet (σ, ρ, θ) thus fully determines
the 2D Gaussian filter. We now show that these three parameters can be computed solely from the
gradients of the blurry image v at hand.

438

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

Hypothesis on the orientation θ. First, let us defined the 2-infinite norm for an image u as

‖u‖2,∞ def
= max

x∈D
‖u(x)‖2, (10)

where D is the image domain. Delbracio et al. observe that in sharp natural images, the infinite
norm of the gradients is roughly the same in any direction, or formally

‖∇ϕi
u‖2,∞ ≈ ‖∇ϕj

u‖2,∞, (11)

for all orientations ϕi and ϕj in [0, π). Blurring the image in a direction θ thus degrades the infinite
norm of the oriented gradients in this orientation. The angle θ may therefore be obtained from the
blurry image v with

θ = argmin
ϕ

‖∇ϕv‖2,∞. (12)

Figure 2 shows the infinite norms of the directional gradients for a sharp image u and for its blurry
version v, which was blurred with a Gaussian of parameters θ = π/2, σ = 3 and ρ = 0.5, i.e., a
vertically elongated filter, and contaminated with 1% additive Gaussian noise. The curves are the
median of the infinite norms over the 500 images of the BSD dataset [3]. For the sharp image u,
the infinite norm has a constant value of about 0.8 across all directions ϕ, whereas for its blurry
counterparts a clear minimum is achieved when ϕ is equal to θ.

0 30 60 90 120 150 180

ϕ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

‖∇
ϕ
u
‖ ∞

θ

Blurry

Sharp

Figure 2: The median over 500 images from [3] of the infinite norm of the gradients of the sharp images and synthetic
blurry counterparts convolved with a vertically elongated Gaussian filter, i.e., θ = π/2. The magnitude of the gradient is
roughly constant in all the directions for the sharp images, whereas it exhibits a minimum at θ for the blurry ones.

Hypothesis on the standard deviation values σ and ρ. Delbracio et al. [5] base their blur
estimation procedure on the affine relationship between the variance of a Gaussian kernel and the
squared magnitude of the gradients of a blurry edge. Here, we improve on the original paper and
prove, partly with a numerical argument, such a claim for an ideal edge.

Proof. Let f be an ideal edge defined as f(x) = 1(x > 0) for all x in R, and g a 1D zero-mean
Gaussian filter of variance σ2. The zero-mean hypothesis means that the blur does not move the
location of the maximum slope of the edge. Taking the gradient of the blurry edge g ∗ f yields

∇(g ∗ f) = g ∗ ∇f = g ∗ δ = g, (13)

where we have permuted the gradient and the blur operators, and used the property that the gradient
of this ideal edge is the Dirac mass, approximated by the δ kernel defined above. Since the Gaussian

439

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

filter g is zero-mean, its maximum is reached for x = 0. The infinite norm of the gradient of a blurry
ideal edge therefore is

‖∇(g ∗ f)‖∞ = max
x∈D
‖∇(g ∗ f)(x)‖ = g(0) =

1√
2πσ

. (14)

In the noise-free case, there exists a linear relationship between the magnitude of the blur and the
inverse of the gradient’s value at the location of the steepest point of an edge.

In practice, the edge of an image is noisy, and we thus have to consider an additional noise vector.
The actual gradient we consider is

∇(g ∗ f + ε) = ∇(g ∗ f) +∇ε = g ∗ ∇f +∇ε. (15)

We now compute the infinite norm of this quantity to obtain an analytic relationship between σ2

and 1/‖∇(g ∗ f + ε)‖2,∞. Since we now include the noise in our analysis, we should actually take the
expectation of the infinite norm for several instances of ε, which reads

E [‖∇(g ∗ f + ε)‖2,∞] = E

[
max
x∈D
‖∇(g ∗ f + ε)(x)‖2

]
, (16a)

= E

[
max
x∈D

(
(g ∗ ∇f)2(x) + (∇ε)2(x) + 2∇ε(x)(g ∗ ∇f)(x)

)]
. (16b)

In general, one cannot permute the expectation and the max in the above equations. However, recall
that we address “mild” blur removal, and on images with noise supposed relatively small. This
is a reasonable assumption since deblurring/sharpening usually occurs after denoising in a camera
pipeline, or on post-processed images. Figure 3(a) demonstrates the empirical commutation of the
expectation and max applied to squared gradients of noisy and blurry images, under the mild noise
assumption. We computed the expectation by averaging 100 instances of ε for each one of the 600
synthetic images used in this experiment. As a result, the expectation E and max are shown to
commute in this “mild” blur and reasonable noise regime. The function n in the plot’s labels is a
normalization function featured in [5] and detailed in the next section in Equation (20). Inverting
the application of expectation and max thus yields

E [‖∇(g ∗ f + ε)‖2,∞] = max
x∈D

(
(g ∗ ∇f)2(x) + E

[
(∇ε)2(x) + 2∇ε(x)(g ∗ ∇f)(x)

])
(17a)

= ‖g ∗ ∇f‖2,∞ +Bσ2
n, (17b)

where we used the fact that E[ε] = 0 implies that E[∇ε] = 0, and where B is a constant depending
on the implementation of ∇. Injecting the relationship of Equation (14) (with the relationship
‖u‖2,∞ = ‖u‖2∞), and isolating σ2 results in

σ2 =
1

2π (E [‖∇(g ∗ f + ε)‖2,∞]− Bσ2
n)
. (18)

By writing h2 = 1/E [‖∇(g ∗ f + ε)‖2,∞] for conciseness, and by multiplying the numerator and
the denominator by h, the previous relationship now reads

σ2 =
h2

2π(1− Bσ2
nh

2)
. (19)

Figure 3(b) compares this “oracle” model (the green curve) with the affine model predicted with
the protocol of Delbracio et al. (and detailed in the next section and Algorithm 3) on 600 synthetic
blurry images. The oracle model has a linear behavior in this range of values, validating the affine
model of [5] whose plot mimics that of the green curve.

440

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

0.0 0.2 0.4 0.6 0.8

E[maxx |∇θn(v(x))|2]

0.0

0.2

0.4

0.6

0.8

m
ax

x
E
[|∇

θ
n
(v
(x
))
|2]

(a) Permuting max and E.

0 20 40 60 80 100 120 140

1/‖∇θn(v)‖2∞

0

2

4

6

8

10

12

14

16

σ
2

Oracle

Affine

(b) Oracle and affine models.

Figure 3: (a) From 600 synthetic images blurred with Gaussian filters whose standard deviation in the principal direction
σ is smaller than 4, we show that computing first the expectation with respect to the noise followed by taking the max
is equivalent to taking the max followed by the expectation of the square image gradients (the black dashed line is the
identity function x 7→ x). This suggests that max and the expectation can permute in the context of this presentation. The
normalizing function n is defined later in Equation (20). (b) We follow the calibration protocol of [5] and use 600 synthetic
images to fit an affine model (the red curve) between the reciprocal of the square infinite norm of the gradients of the image
and the variance of the blur in the principal direction σ2. We also compute the oracle model of Equation (19) (the green
curve). The similarity between the two plots suggests that in low noise level and “mild” blur regime, the affine relationship
of [5] is valid.

This proof is also valid for contrasted edges that are not Heaviside functions, solely changing the
relationship of Equation (14) with the multiplication of a scalar that corresponds to the magnitude
of the gradients at 0.

A key result of this proof is that the quality of the prediction highly depends on the noise
intensity: If the noise is too important, the maximum value will change and lead to erroneous
results. Furthermore, in practice the values of the slope and the intercept of this affine model will
depend on the noise level, preventing the existence of noise-agnostic parameters. This algorithm is
thus very sensitive to noise as stressed in Section 4.

3 Method

3.1 Gaussian Filter Estimation

The implementation of the function GaussianBlurEstimation is detailed in Algorithm 2. It consists
in first estimating the Gaussian blur’s principal direction θ based on the model in Equation (12)
relating θ and the minimizer of the infinite norm of the gradients of the blurry image across the
different directions. Second, this function leverages an affine relationship between the variance of the
Gaussian blur and the norm of the gradients in the principal directions θ and θ+ π/2, illustrated by
the red plot in Figure 3. This yields the variance values σ2 and ρ2.

Image normalization. The analysis of the blur estimation algorithm in the previous section
supposes that the latent sharp edges are ideal Heaviside functions from 0 to 1, which is untrue in
practice. Indeed, the intensity may vary across images. To compensate for this disparity, Delbracio

441

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

Algorithm 2: GaussianBlurEstimation

Data: Blurry image v, blur coefficients (C, b), saturation threshold t
Result: Gaussian filter g
/* Compute the saturation mask */

1 mt ← v < t // Binary mask setting to 0 the pixels greater than t
/* Predict the blur’s main direction */

2 Φ0 ← {0, 30, 60, 90, 120, 150}◦;
3 ∇ϕn(v)← cos(ϕ)∇xn(v)− sin(ϕ)∇yn(v), ∀ϕ ∈ Φ0;
/* n(v) is the normalized image defined in (20) */

4 Φ1 ← {0, 6, 12, . . . , 168, 174}◦;
5 ∇̂ϕn(v)← CubicInterpolation({∇φn(v)}φ∈Φ0 , ϕ), ∀ϕ ∈ Φ1;

6 θ ← argminϕ∈Φ1
‖∇̂ϕn(v)⊙mt‖∞;

/* Estimate the blur’s standard deviation values in main directions */

7 σ2 ← C2 / ‖∇θn(v)⊙mt‖2∞ − b2;
8 ρ2 ← C2 / ‖∇θ+π

2
n(v)⊙mt‖2∞ − b2;

/* Clip the predicted standard deviations to the range [0.3, 4] */

9 σ2 ← Clip(σ2, 0.09, 16);
10 ρ2 ← Clip(ρ2, 0.09, 16);

/* Build the spatial Gaussian filter */

11 Σ← R(θ)⊤
[
σ2 0
0 ρ2

]
R(θ);

12 g(x, y)← exp
(
−1

2
[x, y]Σ−1[x, y]⊤

)
/ (2π det(Σ)) , ∀(x, y) in predefined support;

et al. propose to correct the contrast by normalizing the blurry image v with

n(v) = min

(
max

(
v − v[q]

v[1− q]− v[q]
, 0

)
, 1

)
, (20)

where v[q] is the q-th quantile of the pixel values in the image v. In practice q = 0.0001 was found
to yield satisfactory results.

Gradient computation. There exist many techniques to compute the image gradient, e.g., with
finite differences. We favor a fast implementation leveraging the properties of the image derivatives in
the Fourier domain, which may be seen as interpolating the gradients on a sine basis. By denoting U
the 2D Fourier transform of u with spatial frequencies ξ and ν, we compute the horizontal and vertical
gradients with the inverse 2D Fourier transform. Formally, for all (x, y) in [0,W − 1]× [0, H − 1]

∇xu(x, y) =
W−1∑

ξ=0

H−1∑

ν=0

j2πξU(ξ, ν) exp (j2π[ξx+ νy]) , (21a)

∇yu(x, y) =
W−1∑

ξ=0

H−1∑

ν=0

j2πνU(ξ, ν) exp (j2π[ξx+ νy]) . (21b)

The derivative along a direction ϕ in [0, 2π) is then computed as

∇ϕu(x, y) = cos(ϕ)∇xu(x, y)− sin(ϕ)∇yu(x, y). (22)

Computing the gradients with this technique calls the fast Fourier transforms algorithm only three
times: Once for computing û, and twice for computing the gradients ∇xu and ∇yu. Computing

442

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

the image gradients with this approach may be slower than other typical techniques such as finite-
difference filters or Sobel filters. However, amongst all the possible implementations, we have observed
that the Fourier transform-based version is the best one in practice to exhibit the affine relationship
between the norm of the image gradients and the standard deviation of the 1D slices of the blur
kernel. It is thus our best option to replicate the results of the original paper [5].

Handling saturation. We modify in this presentation the original blur estimation routine of
Delbracio et al. to circumvent the impact of the saturation operator s. Indeed, s breaks the typical
linear convolution model accounting for the blur, and thus the underlying affine relationship pivotal
to estimate the standard deviation of the blur. We take inspiration of deblurring techniques for
saturated images introduced in e.g., [16], and introduce a binary mask mt marking the pixel values
above the threshold t in v, for instance 0.95 for pixel values between 0 and 1. The image gradients at
the flagged pixel locations are set to 0, and are thus not considered in the infinite norm computation.

Direction θ estimation. We cannot compute the directional gradients in all the possible direc-
tions. We instead compute a coarse estimate with directions in Φ0 = {0, 30, 60, 90, 120, 150}◦. We

interpolate with the CubicInterpolation algorithm the infinite norm values ‖∇̂ϕn(v)‖∞ in new
directions sampled every 6◦, thus belonging to the set Φ1 = {0, 6, . . . , 174, 180}◦, and finally estimate
the blur direction in Φ1 as

θ = argmin
ϕ∈Φ1

‖∇̂ϕn(v)‖∞. (23)

In our implementation, we use the scipy.interpolate.interp1d routine to compute the cubic in-
terpolation. Having computed the principal direction of the blur, we estimate the standard deviation
values σ and ρ, in the directions θ and θ + π/2.

Estimation of the standard deviations σ and ρ. We leverage the affine model in Figure 3 to
compute the standard deviation of the blur in the directions θ and θ + π/2. Delbracio et al. learn
the following affine model from supervisory data

σ2 =
C2

‖∇θn(v)‖2∞
− b2 and ρ2 =

C2

‖∇θ+π
2
n(v)‖2∞

− b2, (24)

where C2 and b2 are the two learnable parameters accounting for the slope and the intercept of the
affine relationship. In particular, b accounts for the noise level as detailed in the previous section,
but also includes the interpolation errors of CubicInterpolation in Algorithm 2, as discussed in [5].
We calibrate the model with M synthetic images blurred with Gaussian filters oriented in randomly
sampled directions in [0, π), resulting in training pairs (σi, vi) (i = 1, . . . ,M). The corresponding
optimization problem is

min
C2,b2

M∑

i=1

∥∥∥∥σ2
i −

C2

‖∇θn(vi)‖2∞
+ b2

∥∥∥∥
1

. (25)

Minimization was carried out with the simplex algorithm of scipy.optimize.linprog, solving a
linear programming reformulation of (25) [4, Sec 1.2.2]. Algorithm 3 details our implementation.

Figure 4 shows our predictions for C and b by solving Equation (25). We used 60 sharp images
from the DIK2K validation dataset, discarding 40 images over the 100 composing this set that feature
motion or defocus blur. Following Delbracio et al. [5] we blurred these sharp images with Gaussian
filters, where θ was randomly sampled in [0, π), and σ and ρ randomly sampled in [0.3, 4]. We lastly
added Gaussian noise with σn = 0.01, resulting in blurry and noisy images. We sampled 10 kernels
per image, which yielded a set of M = 600 blurry images with corresponding known variances σ2 and

443

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

Algorithm 3: CalibratingAffineModel

Data: Infinite norms ‖∇θn(v1)‖∞, . . . , ‖∇θn(vM)‖∞, corresponding to blur variances
σ1, . . . , σM

Result: Optimal coefficients (C2, b2)
/* Setup the linear cost c⊤z */

1 c← zeros(M + 2, 1) // (M + 2)× 1
2 c[0 : M]← 1;
/* Setup the linear inequality constraint Az ≤ b */

3 x←
[
‖∇θn(v1)‖−2

∞ ‖∇θn(v2)‖−2
∞ . . . ‖∇θn(vM)‖−2

∞

1 1 . . . 1

]⊤
// M × 2

4 I ← eye(M) // M ×M

5 A←
[
−I x

−I −x

]
// 2M × (M + 2)

6 y←
[
σ2
1 . . . σ2

M

]⊤
// M × 1

7 b←
[
y −y

]⊤
// 2M × 1

/* Do optimization of minz c
⊤z s.t. Az ≤ b and z ≥ 0 */

8 z← linprog(c, A, b) // (M + 2)× 1
9 C2 ← z[−2];

10 b2 ← z[−1];

ρ2 and directions θ and θ + π/2. We show in both plots that one can fit a red curve corresponding
to the square root of the affine function parameterized by the optimal C2 and b2 values, which are
found by solving Equation (25). With this setting, we found C = 0.362 and b = 0.468, which are
close to the values claimed by Delbracio et al. that are C = 0.352 (when reported to the [0,1] pixel
value range) and b = 0.768.

2 4 6 8 10

1/‖∇θn(v)‖∞

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

σ

(a) Normal direction θ.

1 2 3 4 5 6 7 8

1/‖∇θ+π
2
n(v)‖∞

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ρ

(b) Orthogonal direction θ + π
2 .

Figure 4: Calibration curves obtained with CalibratingAffineModel (in Algorithm 3). We used M = 600 synthetic
blurry images (each blue point), convolved with Gaussian filters whose variances in the principal directions σ2 and ρ2 are
known. We added Gaussian noise with σn = 0.01 to these samples. The red curve is the squared root of the affine function
parameterized by C2 and b2, fitted from our synthetic samples in the directions θ and θ + π/2.

In practice the range of acceptable values for σ and ρ is kept within [0.3, 4], which covers most
of the magnitudes of mild blurs according to the original paper [5]. Beyond this range, the gradient
magnitudes are deemed either too large (most likely for sharp images) or too small (most likely for

444

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

extremely blurry images, which goes beyond the scope of mild blurs). In these cases, we follow
Delbracio et al. and simply clip the predicted standard deviation values to the range [0.3, 4].

The three quantities θ, σ and ρ are then used to build the covariance matrix (9), and thus the
Gaussian blur g accounting for the true kernel k in the formation model (1).

3.2 Mild Blur Removal

As seen in Section 2.1 and the criterion (2), the “mild” blurs are small corruptions for which no
image prior, e.g., the total variation [13], is necessary to predict a natural image. As a result, a
simple method based on a deconvolution filter may be enough to recover sharp details.

Delbracio et al. use the following polynomial to approximate the inverse of the small Gaussian
filter g

p3,α,β(g) =
3∑

i=0

ai,α,βg
i = (α/2− β + 2)g3 + (3β − α− 6)g2 + (5− 3β + α/2)g + βδ, (26)

where gi corresponds to convolving i times g with itself. This parameterization comes from constraints
on the values a polynomial filter must satisfy to prevent unwanted transformations such as luminance
changes or a too important noise amplification. These constraints are derived in the original paper [5].

Figure 5 shows the different behaviors of p3,α,β depending on α and β. The parameters α and
β control how much blur is removed in the mid and high-frequencies. In particular β may amplify
remaining noise when boosting the higher frequencies. When α = 2 and β = 4, p3,2,4 boils down to
the truncated Neumann series in Equation (5) with degree d = 3. In practice, Delbracio et al. explain
that α and β can have any value close to this setting. In this paper, we use these values for images
with very small noise or compression artifacts, and switch to α = 6 and β = 1 when noise and
artifacts are more important: We favor boosting the mid-frequencies to improve sharpness but not
as much the high-frequencies to keep low the noise and artifacts, as done in [5].

Note that a polynomial filter with a greater truncation degree, e.g., d = 10 in Figure 5, can
boost the mid and high-frequencies at the same time, without overshooting over 1 when computing
pd(g) ∗ g, whereas setting α and β in Equation (26) amounts to a trade-off between overshooting in
the mid and/or the high-frequencies for the given truncation degree d = 3. The deblurred image z
is obtained with

z = p3,α,β(g) ∗ v. (27)

Instead of explicitly constructing the polynomial p3,α,β, we use the efficient polynomial filtering
implementation of [5], detailed in Algorithm 4, which computes just 3 convolutions with g.

Halo removal. The deblurring filter may introduce a few halos next to the salient edges, caused
by the inversion of the gradients between the blurry image and its filtered counterpart, or formally

−∇v(x, y)∇z(x, y) > 0, (28)

for certain pixel locations (x, y) in [0,W − 1]× [0, H − 1]. This may be compensated with a masking
technique proposed in [5], whose pseudo-code HaloRemoval is detailed in Algorithm 5. It consists in
a linear combination of the halo-free blurry image v and the filtered version z, whose H×W weights
γ are computed based on the criterion in Equation (28) (see line 2 of Algorithm 5)

û = (1− γ)⊙ v + γ ⊙ z, (29)

where ⊙ is the pixelwise multiplication.

445

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

0.0 0.1 0.2 0.3 0.4 0.5

ξ

0

1

2

3

4

5

6

7

8

9

10
|p̂(

g
)|

g

p3,0,0

p3,0,2

p3,0,4

p3,0,6

p3,0,8

p3,0,10

p3,2,4

p10

(a) p(g) with α = 0.

0.0 0.1 0.2 0.3 0.4 0.5

ξ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|p(
ĝ
)
⊙
ĝ
|

g

p3,0,0

p3,0,2

p3,0,4

p3,0,6

p3,0,8

p3,0,10

p3,2,4

p10

(b) p(g) ∗ g with α = 0.

0.0 0.1 0.2 0.3 0.4 0.5

ξ

0

1

2

3

4

5

6

7

8

9

10

|p̂(
g
)|

g

p3,0,0

p3,4,0

p3,8,0

p3,12,0

p3,16,0

p3,2,4

p10

(c) p(g) with β = 0.

0.0 0.1 0.2 0.3 0.4 0.5

ξ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|p(
ĝ
)
⊙
ĝ
|

g

p3,0,0

p3,4,0

p3,8,0

p3,12,0

p3,16,0

p3,2,4

p10

(d) p(g) ∗ g with β = 0.

Figure 5: Profiles of several versions of the discrete Fourier transforms of p3,α,β(g) and p3,α,β(g) ∗ g when α and β vary.
The graphs show that α boosts the mid-frequencies, causing overshooting for values above 4. They also show that β boosts
the high-frequencies, thus also magnifying the possibly remaining noise. The couple (α, β) = (2, 4) exactly leads to the
truncation of the polynomial (3) to the degree 3, i.e., p3,2,4 = p3 as defined in Equation (3) with d = 3. We have also plotted
the truncation to degree 10, closer to the exact inverse filter, and boosting at the same time the mid and high frequencies
without any overshoot. We also plot the profile of ĝ (the dotted blue curve), showing it decays the mid-frequencies and set
to 0 the highest frequencies above 0.2.

Iterative deblurring. Unlike a typical FFT-based inverse filter, p3,α,β is a rather conservative filter
preventing the typical ringing artifacts, but leaving some blur in the restored image. The two-stage
technique of [5] and detailed in this presentation may be applied several times by re-estimating the
remaining blur with the Gaussian blur estimation technique in Section 3.1, and removing it with the
polynomial filter p3,α,β. This is represented in Algorithm 1 by the for loop repeating the two main
routines GaussianBlurEstimation and Deconvolution. Figure 6 shows an example of iterative
deblurring. After one iteration, contrast is enhanced but residual blur is noticeable. After a second
iteration, most of this residual is removed. A third iteration does not further improve sharpness and
magnifies instead the noise, thus degrading the image quality.

Prefiltering to handle noise and compression artifacts. As shown in Figure 6 and as ex-
plained in the previous paragraph, Polyblur amplifies the noise and/or compression artifacts since it
does not rely on any image prior. To prevent amplifying noise Delbracio et al. propose to first split
the blurry image into base and texture components with the edge-aware recursive filter of [7]. This is
a lightweight alternative to denoising the image with a convolutional neural network (CNN), at the
cost of some smoothing and some additional memory requirement. The texture image contains the
noise and the quantification artifacts, whereas its base counterpart is a noise-free smoothed version
with sharp edges. The restored image is thus obtained by running Polyblur on the base image, and

446

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

Algorithm 4: Deconvolution

Data: Blurry image v, Gaussian kernel g, polynomial parameters (α, β), prefiltering
parameters (σs, σr), prefiltering iterations M

Result: Deblurred estimate u
/* Split the blurry image into noise residual and smoothed base image */

1 w ← EdgeAwareSmoothing(v, σs, σr,M);
2 vn ← v − w;
/* Apply the polynomial deconvolution filter */

/* The coefficients ai,α,β are the ones given in Equation (26) */

3 z ← a3,α,βw;
4 for i ∈ {0, 1, 2} do
5 z ← g ∗ z + a2−i,α,βw;
6 end

/* Correct the ringing artifacts caused by misprediction of the blur kernel */

7 u← HaloRemoval(z, w);
/* Add back the noise residual */

8 u← u+ vn;

Algorithm 5: HaloRemoval

Data: Deblurred image z, blurry image v
Result: Halo-free estimate u

1 m← 〈−∇v,∇z〉;
2 γ ← max (m/(‖∇v‖22 +m), 0);
3 u← (1− γ)⊙ v + γ ⊙ z;

(a) Blurry. (b) 1 iteration. (c) 2 iterations. (d) 3 iterations.

Figure 6: Qualitative comparison of the deblurred results for several iterations of Polyblur (N in Algorithm 1) applied to a
synthetic blurry image with Gaussian noise with σn = 0.01. The sharpest result is obtained after two iterations. A third
one marginally enhances sharpness, but magnifies the noise.

adding back the textures. In our implementation of [7] detailed in Algorithms 6 and 7, we used the
parameters σr = 0.8, σs = 2, and M = 3. Figure 7 shows deblurring examples after three iterations
of Polyblur on a synthetic image with additive noise and JPEG compression artifacts. The version
without prefiltering exhibits amplified noise (for instance in the background),whereas the variant
with prefiltering has barely visible artifacts. Note that in the original paper [7] three implementa-
tions of the domain transform algorithm are proposed, including the recursive version detailed in this
article. Bilateral filtering is another possible cheap candidate for this base-detail decomposition.

Handling spatially-varying blurs. In practice, the blur may vary across the image, for instance
due to the lens point-spread function [14] or camera shake [17]. We follow Hirsch et al. [9], and
approximate a non-uniform blur by locally-uniform ones. We thus run the vanilla Polyblur algorithm
(in Algorithm 1) on overlapping patches of v that we call vp, with p in P the set of cropping indices.

447

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

(a) Blurry (28.31dB). (b) W/o prefiltering (28.28dB). (c) With prefiltering (28.82dB).

Figure 7: Qualitative comparison of the deblurred results after 3 iterations, but with and without the prefiltering technique
based on [7]. The numbers in parenthesis are the PSNR scores computed with the original sharp image. The image is
synthetically blurred, and further corrupted with Gaussian noise with σn = 0.01 and JPEG compression set to 85%. The
variant of Polyblur without prefiltering magnifies the combination of noise and compression artifacts whereas with it, the
image is deblurred and artifacts are kept with small magnitudes. The PSNR scores also indicate prefltering helps to increase
visual quality in presence of noise/compression artifacts.

Algorithm 6: EdgeAwareSmoothing

Data: Image I, weights (σs, σr), filter iterations M
Result: Smoothed image F

1 h, w, c← shape(I);
/* Compute the horizontal and vertical domain transform derivatives */

2 Ix ← zeros(h, w);
3 Iy ← zeros(h, w);
4 j ← 1;
5 for j < w do

6 Ix(:, j) = |I(:, j, 0)− I(:, j − 1, 0)|+ |I(:, j, 1)− (:, j − 1, 1)|+ |I(:, j, 2)− I(:, j − 1, 2)|;
7 j ← j + 1

8 end

9 i← 1;
10 for i < h do

11 Iy(i, :) = |I(i, :, 0)− I(i− 1, :, 0)|+ |I(i, :, 1)− I(i− 1, :, 1)|+ |I(i, :, 2)− I(i− 1, :, 2)|;
12 i← i+ 1

13 end

14 H ← (1 + σs/σr × Ix);
15 V ← (1 + σs/σr × Iy);

/* Do filtering */

16 F ← I;
17 m← 0;
18 V ← V ⊤ // the vertical pass is done on the transposed image

19 for m < M do

20 σm ← σs ×
√
3× 2M−(m+1)/

√
4M − 1;

21 F ← Recursive1DFilter(F,H, σm);
22 F ← F⊤;
23 F ← Recursive1DFilter(F, V, σm);
24 F ← F⊤;
25 m← m+ 1;

26 end

448

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

Algorithm 7: Recursive1DFilter

Data: Image I, distances D, parameter σ
Result: Horizontally filtered image F

1 F ← I;
2 h, w, c← shape(I);
/* Compute the feedback coefficient V */

3 a← exp(−
√
2/σ);

4 V ← aD; // the exponent is pixelwise

/* Left-to-right filtering */

5 i← 1;
6 for i < w do

7 k ← 0;
8 for k < c do
9 F (:, i, k)← F (:, i, k) + V (:, i)× [F (:, i− 1, k)− F (:, i, k)];

10 k ← k + 1;

11 end

12 i← i+ 1;

13 end

/* Right-to-left filtering */

14 i← w − 2;
15 for i ≥ 0 do

16 k ← 0;
17 for k < c do
18 F (:, i, k)← F (:, i, k) + V (:, i+ 1)× [F (:, i+ 1, k)− F (:, i, k)];
19 k ← k + 1;

20 end

21 i← i− 1;

22 end

We predict restored patches ûp and gather them into a single H ×W restored image û. Formally
this aggregation reads

û =

∑
p∈P Fp(wpûp)∑
p∈P Fp(wp)

, (30)

where wp is a Kaiser window to prevent fusion artifacts, Fp is a function that replaces the p-th patch
at its original location in the H × W image support, and the division is pixelwise. The set P is
defined by the patch size and the percentage of overlapping between neighboring patches. In our
implementation, we enable the patch decomposition if one of the spatial dimensions among H and
W is greater than 600 pixels. If so, we decompose the image into 400×400 tiles with 25% of overlap.

Capturing isotropic blurs. The method detailed above explicitly addresses the removal of anisotropic
blurs with different values of the standard deviation along the two principal axes of a Gaussian filter.
Yet, this model also accounts for isotropic blurs, such as the defocus kernel in Figure 1, typically
captured by a disk-shaped filter [19]. Indeed if the blur is isotropic, the infinite norm of the image
gradients along any direction will be most likely the same after blur, ultimately resulting in similar
values for σ and ρ.

449

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

4 Experiments

We test here Polyblur on several real images. We explore restoration of three typical cases: Defocus
correction, lens blur compensation and sharpening. Lastly, we contemplate some of its limitations.
In all the experiments, we run N = 3 iterations of Polyblur with prefiltering enabled, and parameters
α = 6, β = 1, C = 0.362, b = 0.468, σs = 2, σr = 0.8, M = 3 and t = 0.95.

4.1 Defocus Compensation

In Figure 8 we illustrate the effectiveness of Polyblur for compensating defocus blur. Since defocus
blur is often modeled as a disk or a Gaussian filter, the technique of Delbracio et al. is particularly
suited for this scenario. We compare Polyblur with the blind deblurring technique of [2], and show
that both methods improve the sharpness of the photographs, e.g., the center of the flower and the
eye of the peacock, but Polyblur is faster: It runs in a fraction of a second on a GPU and less than 1
second on the CPU of a laptop for this 700× 500 sample, whereas the optimization algorithm of [2]
runs in about 10 seconds.

(a) Slightly out of focus. (b) Polyblur (blind). (c) Deblurring (blind) [2].

Figure 8: Slight defocus compensation qualitative examples. We compare Polyblur with the multi-purpose blind deblurring
technique of [2]. Both methods improve the sharpness of the photographs, e.g., the center of the flower and the eye of the
peacock, but Polyblur is significantly faster. The reader is invited to zoom in on a computer screen.

4.2 Lens Blur Correction

In Figure 9 we compare the lens blur correction ability of our method with the results of the non-
blind deblurring algorithm of [14] and the blind variant of [15]. We show point-spread function
(PSF) compensation results for two JPEG images from [14]. Polyblur, despite being a blind method,
improves the sharpness of both examples, especially in the second row where the visual accuracy
exceeds that of [14]. We also showcase the versatility of Polyblur for restoring a so-called “historical”

450

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

scanned analog photograph from [15] in Figure 10. In this example too, Polyblur achieves a visual
result on par with that of the optimization scheme of [15], accurately postprocessing the optics
of an old analog camera. Polyblur, and in particular this implementation, when combined with a
chromatic aberration compensation technique yields a fast and accurate optical aberration correction,
as showcased by a previous work [6].

(a) Aberrated. (b) Polyblur (blind). (c) Deblurring (non-blind) [14].

Figure 9: Optical aberration compensation for two JPEG images from Schuler et al. [14] taken with a Canon 5D Mark II
camera and a Canon 50mm f2.8 lens at maximum aperture. We compare Polyblur, a blind deblurring technique, with the
non-blind deblurring approach of [14]. Polyblur efficiently compensates the loss of sharpness caused by the lens PSF, despite
being blind.

(a) Historical. (b) Polyblur (blind). (c) Deblurring (blind) [15].

Figure 10: Example of a historical photograph used in [15], restored by blind deblurring. Our implementation of Polyblur
achieves a visual result comparable to that of Schuler et al. [15]’s blind optimization-based approach, but in a fraction of
the running time.

451

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

4.3 Sharpening

Sharpening is useful to improve the contrast of images obtained with super-resolution algorithms,
which is necessary for personal photography. It may be used to enhance the images obtained with
a super-resolution (SR) algorithm. We improve the contrast of two examples obtained with the
technique of Lecouat et al. [11], achieving better results than a typical sharpening filter designed to
boost the mid-frequencies with a Gaussian mask (we used the implementation of
skimage.filters.unsharp mask). We show these images in Figure 11 for a SR result provided by
the authors of [11], prior to any sharpening. The version predicted by Polyblur is much sharper than
the one obtained with the typical sharpening technique.

(a) SR result of [11]. (b) Polyblur. (c) Unsharp mask.

Figure 11: Examples of sharpened images. The first column shows crops from an SR result of [11] with factor 4, and prior
to sharpening. The middle column shows the sharpened results after Polyblur, and the last one the results obtained with
skimage.filters.unsharp mask. The images restored with Polyblur are much sharper.

4.4 Limitations

We have shown throughout this presentation that Polyblur is an accurate, yet computationally-
efficient, blind deblurring technique applicable to a wide range of realistic scenarios. One of its main
merits is to predict an anisotropic Gaussian blur from the gradients of the blurry image, supposing
the existence of underlying contrasted edges. This assumption, reasonable for most natural images,
may not hold in specific situations such as textures. Figure 12 shows a lens blur correction example
in a 50 megapixel photograph. Since the point-spread function spatially varies across the field of view
of a lens, we run Polyblur on patches as in [14, 15], with sizes ranging from 100× 100 to 800× 800.
The illustration shows that for the sizes 100×100 and 200×200, the blur estimated on the tree leads
to artifacts, whereas for larger patch sizes, some salient edges are preferred by Polyblur, resulting in
a more satisfactory sharpening.

Furthermore, Polyblur is very sensitive to noise as shown in Figure 13. We have calibrated the
affine parameters C and b with the CalibratingAffineModel procedure in Algorithm 3 with the
same protocol as in Section 3, but with Gaussian noise level σn ranging from 0 (no noise) to 0.03
(medium noise). On the one hand, for σn = 0 and σn = 0.01, a clear correlation between the

452

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

(a) 100× 100 patches. (b) 200× 200 patches. (c) 400× 400 patches. (d) 800× 800 patches.

Figure 12: Example of failure of Polyblur for deblurring textures. For the smaller patch sizes, Polyblur fails to find salient
edges on the tree, which results in artifacts for the 200×200 patches. For larger patches, the problem is alleviated as salient
edges are more likely to be found on the patches’ supports. The patches in this example do not overlap to highlight the
local patch-specific artifacts.

measurements and the linear/affine fit can be seen. Note that the linear model was predicted in
Section 2 when noise is omitted. On the other hand, for greater noise levels σn = 0.02 and σn = 0.03,
the affine model does not hold anymore, highlighting the lack of robustness of Polyblur to noise.

Lastly, Figure 14 shows an image from [17] containing camera shake. One can tell by the saturated
light streaks in the blurry image on the left that the blur cannot be captured by any anisotropic
Gaussian kernel, and thus cannot be categorized as “mild” blur. The image on the right is the
estimate of Polyblur, and is a typical failure case of the method: The blur has only been marginally
removed.

5 Conclusion

We have presented in this paper a analysis of Polyblur proposed by [5] to address “mild” blurs blind
removal. In a first step, a Gaussian kernel accounting for the real blur is quickly computed from the
blurry image gradients. In a second stage, an approximate inverse filter to the Gaussian kernel is
used to deconvolve the image. The blur is gradually removed by repeating these two stages. Along
with an analysis of Polyblur, we provide with this paper two Python implementations based on the
Numpy and the Pytorch frameworks. Future work on this algorithm may focus on improving its
robustness to texture and noise.

Acknowledgements

This work was partly financed by DGA Astrid Maturation project “SURECAVI” no ANR-21-ASM3-
0002 and Office of Naval research grant N00014-17-1-2552. We thank Bruno Lecouat for providing
the images in Figure 11.

453

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

0 100 200 300 400 500 600 700

1/‖∇θn(v)‖2∞

0

2

4

6

8

10

12

14

16

σ
2 Oracle

Affine

(a) σn = 0.

0 20 40 60 80 100 120 140

1/‖∇θn(v)‖2∞

0

2

4

6

8

10

12

14

16

σ
2

Oracle

Affine

(b) σn = 0.01.

0 10 20 30 40

1/‖∇θn(v)‖2∞

0

2

4

6

8

10

12

14

16

σ
2

Oracle

Affine

(c) σn = 0.02.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

1/‖∇θn(v)‖2∞

0

2

4

6

8

10

12

14

16

σ
2

Oracle

Affine

(d) σn = 0.03.

Figure 13: Calibration curves for four noise levels between σ and ‖∇θn(v)‖−1

∞
, ranging from none to moderate degradation.

For σn = 0 and σn = 0.01, we find affine models close to the oracles of Equation (19). Increased noise levels result in
important misfits between the samples and the fitted model, highlighting the weakness of Polyblur to important noise levels.
The oracle model predicts instead a conservative prediction of the blur, without considering the noisy measurements.

(a) Blurry. (b) Restored with Polyblur.

Figure 14: A camera shake example from [17], where the blur is clearly not captured by anisotropic Gaussian filters. Polyblur
fails to restore the image, and only marginally improves the global contrast.

454

Breaking down Polyblur: Fast Blind Correction of Small Anisotropic Blurs

Image Credits

The blurry images in Figures 1, 8 and 12 are from the authors. Figure 6 was obtained from a test image
of the DIV2K dataset. Figure 7 was obtained with the skimage.data.chelsea routine. The blurry images
in Figures 9 and 10 come from the supplemental materials of Schuler et al. [14, 15]. The SR image in
Figure 11 is courtesy of Lecouat et al. [11].

References

[1] J. Anger, G. Facciolo, and M. Delbracio, Estimating an Image’s Blur Kernel Using

Natural Image Statistics, and Deblurring it: An Analysis of the Goldstein-Fattal Method, Image
Processing Online (IPOL), 8 (2018), pp. 282–304. https://doi.org/10.5201/ipol.2018.211.

[2] , Blind image deblurring using the ℓ0 gradient prior, Image Processing Online (IPOL), 9
(2019), pp. 124–142. https://doi.org/10.5201/ipol.2019.243.

[3] P. Arbelaez, M. Maire, C.C. Fowlkes, and J. Malik, Contour detection and hierarchical

image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
33 (2011), pp. 898–916. https://doi.org/10.1109/TPAMI.2010.161.

[4] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university Press, 2004.
ISBN 978-0521833783.

[5] M. Delbracio, I. Garcia-Dorado, S. Choi, D. Kelly, and P. Milanfar, Polyblur:
Removing mild blur by polynomial reblurring, IEEE Transactions on Computational Imaging
(TCI), 7 (2021), pp. 837–848. https://doi.org/10.1109/TCI.2021.3100998.

[6] T. Eboli, J-M. Morel, and G. Facciolo, Fast two-step blind optical aberration correction,
in European Conference on Computer Vision (ECCV), 2022. http://dx.doi.org/10.48550/

arXiv.2208.00950.

[7] E.S. Lopes Gastal and M.M. Oliveira, Domain transform for edge-aware image and

video processing, ACM Transactions on Graphics (ToG), 30 (2011), p. 69. https://doi.org/

10.1145/2010324.1964964.

[8] A. Goldstein and R. Fattal, Blur-kernel estimation from spectral irregularities, in Euro-
pean Conference on Computer Vision (ECCV), 2012, pp. 622–635. https://doi.org/10.1007/
978-3-642-33715-4_45.

[9] M. Hirsch, C.J. Schuler, S. Harmeling, and B. Schölkopf, Fast removal of non-

uniform camera shake, in International Conference on Computer Vision (ICCV), 2011, pp. 463–
470. https://doi.org/10.1109/ICCV.2011.6126276.

[10] E. Kee, S. Paris, S. Chen, and J. Wang, Modeling and removing spatially-varying optical

blur, in International Conference on Computational Photography (ICCP), 2011, pp. 1–8. https:
//doi.org/10.1109/ICCPHOT.2011.5753120.

[11] B. Lecouat, T. Eboli, J. Ponce, and J. Mairal, High dynamic range and super-resolution

from raw image bursts, ACM Transactions on Graphics (ToG), 41 (2022), pp. 38:1–38:21. https:
//doi.org/10.1145/3528223.3530180.

455

https://doi.org/10.5201/ipol.2018.211
https://doi.org/10.5201/ipol.2019.243
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/TCI.2021.3100998
http://dx.doi.org/10.48550/arXiv.2208.00950
http://dx.doi.org/10.48550/arXiv.2208.00950
https://doi.org/10.1145/2010324.1964964
https://doi.org/10.1145/2010324.1964964
https://doi.org/10.1007/978-3-642-33715-4_45
https://doi.org/10.1007/978-3-642-33715-4_45
https://doi.org/10.1109/ICCV.2011.6126276
https://doi.org/10.1109/ICCPHOT.2011.5753120
https://doi.org/10.1109/ICCPHOT.2011.5753120
https://doi.org/10.1145/3528223.3530180
https://doi.org/10.1145/3528223.3530180

Thomas Eboli, Jean-Michel Morel and Gabriele Facciolo

[12] J. Pan, D. Sun, H. Pfister, and M-H. Yang, Deblurring images via dark channel prior,
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 40 (2018), pp. 2315–
2328. https://doi.org/10.1109/TPAMI.2017.2753804.

[13] L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal al-

gorithms, Physica D, 60 (1992), pp. 259–268. https://doi.org/10.1016/0167-2789(92)

90242-F.

[14] C.J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf, Non-stationary correction

of optical aberrations, in International Conference on Computer Vision (ICCV), 2011, pp. 659–
666. https://doi.org/10.1109/ICCV.2011.6126301.

[15] , Blind correction of optical aberrations, in European Conference on Computer Vision
(ECCV), 2012, pp. 187–200. https://doi.org/10.1007/978-3-642-33712-3_14.

[16] O. Whyte, J. Sivic, and A. Zisserman, Deblurring shaken and partially saturated images,
International Journal on Computer Vision (IJCV), 110 (2014), pp. 185–201. https://doi.org/
10.1109/ICCVW.2011.6130327.

[17] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, Non-uniform deblurring for shaken

images, International Journal on Computer Vision (IJCV), 98 (2012), pp. 168–186. https:

//doi.org/10.1109/CVPR.2010.5540175.

[18] L. Xu, S. Zheng, and J. Jia, Unnatural L0 sparse representation for natural image deblurring,
in Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1107–1114.
https://doi.org/10.1109/CVPR.2013.147.

[19] X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, Estimating spatially varying defocus

blur from A single image, IEEE Transactions on Image Processing (TIP), 22 (2013), pp. 4879–
4891. https://doi.org/10.1109/TIP.2013.2279316.

456

https://doi.org/10.1109/TPAMI.2017.2753804
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1109/ICCV.2011.6126301
https://doi.org/10.1007/978-3-642-33712-3_14
https://doi.org/10.1109/ICCVW.2011.6130327
https://doi.org/10.1109/ICCVW.2011.6130327
https://doi.org/10.1109/CVPR.2010.5540175
https://doi.org/10.1109/CVPR.2010.5540175
https://doi.org/10.1109/CVPR.2013.147
https://doi.org/10.1109/TIP.2013.2279316

	Introduction
	Preliminary Results
	Deconvolution Filters for ``Mild'' Blurs
	Quick Estimation of a Gaussian Blur

	Method
	Gaussian Filter Estimation
	Mild Blur Removal

	Experiments
	Defocus Compensation
	Lens Blur Correction
	Sharpening
	Limitations

	Conclusion

