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Abstract

Time series of satellite images are now massively available thanks to the existence of several
constellations of recurrent satellites. We propose a method for detecting and measuring the
duration of changes on such series. This approach is intended to be generic and independent of
the type of satellite used, whether band limited or multispectral. It is based on a global analysis
of the sequence. The statistical detection method is applied to a residual sequence computed
from backward and forward novelty filters applied to all images in the series. Significant changes
are computed with a guarantee on their number of false alarms (NFA). To establish the efficiency
of the method, we have created an open database of 28 sequences of 20 images acquired by the
Sentinel-2 satellite, in different regions of the world. We obtain satisfactory results, which are
consistent with the visual observations.

Source Code

The C source code implementing the algorithm described in the paper, an online demo, and
some of the data used in the experiments are accessible at the associated web page1.

Supplementary Material

A reference dataset, to be used for further comparisons, is provided with the article and available
at the address https://www.ipol.im/data/algo/416/DICRSITS.zip.
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1 Introduction

In an image series, the detection of land cover or urban changes is an essential preliminary step of
any optical satellite image interpretation. Over the past decade, an increasing number of missions
involve large satellite constellations which considerably reduce the revisit time. Furthermore, the
revisit is repeatedly made from the same point of view, often with heliosynchronous orbits ensuring
slowly varying illumination. This opens the way to reliable and frequent change detection. While
bi-temporal comparisons only give a set of differences, a multi-temporal approach enables a more
complete interpretation of time variations.

We propose an unsupervised approach which is an enhanced version of the algorithms described
in [13] and [14]. It derives from the ideas of [6] where an estimator is computed for each time and
pixel thanks to a backward-forward summation. This leads to search, over time and for each pixel, for
significantly high values when several changes occur. The estimator is based on residuals computed
from the novelty filter of [25] so that it is more robust against linear variations of illuminations. The
change detector combines hue and illumination variations. We control the false detection rate by
applying an a contrario statistical test [16]. In order to test the duration of the changes, we use a
robust estimator based on the cross-correlation (see Figure 1). To evaluate our method, we created
and made available an open dataset of multi-temporal registered Sentinel-2 time series. Our paper
makes the following contributions:

• a general change detection method, applicable to any observation satellite with any number of
spectral bands;

• a mathematically founded change estimator derived from the novelty filter;

• a database of 28 Sentinel-2 time series, representing different regions of the world observed
during 4 years and in which significant changes occur.

2019-02-14 2019-05-20 Detection change map Classified change map

Figure 1: Example of a detection map (left) and a classified change map (right) obtained by our method over the region of
Al Wakrah (World cup soccer). The color code (see Figure 5) characterizes the duration of the change.

2 Related Work

This paper stands at the intersection of the fields of change detection in time series and of remote
sensing. Exhaustive surveys on this topic can be found in [1] and [40] for the change point detection
and satellite change detection problems respectively. Some methods are called “multi-temporal” in
remote sensing because they process time series, yet they only estimate the changes in pairs. We call
such methods “pair based”, while we shall call “multi-temporal”, the algorithms which rely on more
than two frames to detect the changes occurred in one of them. These methods can be classified
according to four independent modalities (see Table 1) namely:
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• Time exploitation: bi-temporal (BT) vs. multi-temporal (MT);

• Spectrum exploitation: band limited (BS) vs. multi-spectral (MS);

• Input image resolution: low (LR) vs. high (HR);

• Change localization: pixel-based (P), region-based (R), object-based (O).

Publication Temporality Spectrum Resolution Localization

[49], [48], [10] BT MS HR R
[46], [47], [31], [17] BT MS LR P
[9], [45], [41] BT MS LR R
[8], [7] BT MS LR O
[37], [28] BT BS HR P
[30] BT BS HR R
[23], [36] BT BS HR O
[38],[35] MT MS LR R
[2] MT PS LR P
[42], [43], [5], [20], [21], [50], [29], [4], [15] MT MS LR P

Table 1: Classification of image change detection algorithms according to four features.

Change detection on image pairs. The authors of [45] describe a method based on an iterative
slow feature analysis (ISFA) followed by a Bayesian soft fusion for bi-temporal multispectral remote
sensing data. In [46], Zanetti et al. consider the difference image and assume that its pixels are
split into two classes wn (no change) and wc (change); the distribution associated to a pixel ρ is
p(ρ) = p(wn)p(ρ|wn) + p(wc)p(ρ|wc). Assuming that the residual for no-change follows N (0, σ2

n)
and for changes N (µb, σ

2
n) (b is the band), then p(ρ|wn) follows a Rayleigh and p(ρ|wc) a Rice

distribution respectively. The parameters of the distributions are estimated using an EM algorithm.
Then a threshold is computed to decide between no-change and change. In [47], Zanetti and Bruzzone
enhanced the method via a Bayesian theoretical framework to describe the statistical distribution
of the difference image. In [9], Celik et al., dealing with the image of the differences, analyze a
feature space built by PCA and then cluster it by the k-means method. Luo et al. [31] use three
unsupervised change detection methods such as CVA, IRMAD and ISFA, then fuse their results by
the Dempster-Schafer theory. In [30], Liu et al. compute global and local mapping functions between
two images, estimated through SIFT keypoints extraction and matching. Based on these mappings,
keypoint matchings are then used to detect and group regions of changes. Both steps are defined
through an a contrario framework, which simplifies the parameter setting.

Zhan et al. [48] propose a deep siamese network to create feature vectors, then classify them
according to Euclidean distance between the 1st and the 2nd image. Zhang et al. propose in [49] a
solution accepting pairs of different resolutions and modalities (e.g. SAR and RGB) with at first an
autoencoder for feature learning followed by a mapping function learning. Both are fully connected
networks. In [17], Du et al. use two symmetric deep networks. Then a Slow Feature Analysis module
is deployed to suppress the unchanged components and highlight the changed components of the
transformed features. Finally, the change intensity is calculated with a χ-square distance and the
changes are determined by threshold algorithms.

Chen et al. [10] present two deep siamese convolutional networks with a multi-scale approach. To
alleviate the effect of unregistered objects in the pair, Ren et al. [37] propose to compare the two latent
images produced by an optimized GAN model. The largest values of the absolute difference between
these last ones compose the change map. Oriented to change object-based detection in HR images,

627



Tristan Dagobert, Rafael Grompone von Gioi, Carlo de Franchis, Charles Hessel

Ji et al. [23] propose an architecture composed by a Mask R-CNN network for object-based instance
segmentation and a multi-scale full convolutional network for pixel-based semantic segmentation
while Peng et al. [36] present UNet++ an encoder-decoder, where change maps could be learned
from scratch using available annotated datasets. Daudt et al. [8] show two fully connected deep
siamese networks trained on the Onera satellite change detection dataset [7] composed of Sentinel-2
pairs.

Change detection on image time series. In the domain of the data transfer, Kohonen and
Oja [25] proposed an orthogonalizing filter that extracts the updated parts of an input image, with
respect to previously learnt patterns. They applied this method on a set of typographic letters
composed by binary black and white patterns.

Verbesselt et al. [42, 43] define a season-trend model, called BFAST, with a linear trend and a
harmonic season so that the time series data are modeled by a discrete sine truncated series. To
measure the discrepancy between the model and the measurements for the monitored period, the
BFAST resorts to moving sums. A break is declared if the moving sum statistics (MOSUM) of Chu
et al. [12] exceeds some boundary that is asymptotically only crossed with a 5% probability. In [20],
Hamunyela et al. adapt the BFAST method to take into account the spatial coherence.

With a similar approach, Zhu et al. [50] propose a regression model based on the first Fourier
coefficients called the Continuous Change Detection (CCD) algorithm, which takes into account the
seasonality and the trend of the surface reflectance over years. The model is fitted to a Landsat
multi-spectral dataset with a RMSE loss. When the residual of new fitted observations exceeds three
consecutive times the learned RMSE, the pixel is considered as a change. Several algorithms reuse this
method. Liu et al. [29] use spatio-temporal rules and dense time series stacks of a Landsat dataset.
First, a stable area mask based on image classification in the start and the end years is generated
to remove pixels that are persistent or spatially irrelevant. Then the CCD method is employed to
determine the change points when non-impervious cover converts to an impervious surface based on
the property of temporal irreversibility.

In [2] Brooks et al. first apply a harmonic regression model to the data in the CCD fashion, then
test the deviation of the fitted residuals aggregated by an exponentially weighted moving average.
In order to robustify the CCD method, Bullock et al. [4] combine it with the change point CUSUM
method of Brown et al. [3], then remove their false positives with the Chow test [11]. In [15] Deng
et al. use the CCD as an encoder, extracting the time series model coefficients. These features then
serve as inputs for a random forest classifier.

Using a combinatorial technique, Hermosilla et al. [21] obtain a global trend of the variations
by defining first the segments between each temporal sample pixel, then by merging each pair of
adjacent segments according to a bottom-up strategy. The changes are identified as the segment
extremities. In [5] Cai et al. propose a non parametric method with a two time scale strategy to
detect land cover changes. In the first step a pair of time series of neighboring years are compared
thanks to the two-sample Kolmogorov-Smirnov (KS) test. In the second step they detect changes
within years with a threshold on the difference images. In [35], Papadomanolaki et al. present a
deep learning framework for urban change detection which combines a U-Net-like network for the
feature representation and a recurrent network for the temporal modeling. While learning is made
with several dates, testing is performed on Sentinel-2 pairs.

Change detection in multivariate time series. In [6], Carlstein proposes a method to estimate
the change time θ, assumed unique, of a time series (Xn)1≤n≤N . The only requirement is that the
cumulative distribution functions F and G, representing respectively the data behaviour before and
after the change, differ on a set of positive probability. Defining an estimator D(tn) based on the
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absolute differences |Ftn(Xn) − Gtn(Xn)|, where the empirical CDF Ftn and Gtn are built for all
1 ≤ tn ≤ N , the author shows that the tn that maximizes D(tn) is the closest estimator of θ.

Nielsen et al. [34] introduce the multivariate alteration detection (MAD) transformation over
multispectral (k bands) data, which is based on the established canonical correlations analysis. It
also proposes using postprocessing of the change detected by the MAD variates using maximum
autocorrelation factor (MAF) analysis. The goal is to concentrate information on change, by an ade-
quate linear transformations of the image data difference made thanks to the MAD transformation.
This ensures a spatial coherence thanks to the MAF transformation.

In [26] Lavielle and Teyssière consider the multiple change-point problem for a m−variate time
series {Y = Y1,t, . . . , Ym,t}, including strongly dependent processes, with an unknown number K of
change-points. They assume that the covariance structure of the series changes abruptly at some
unknown common change-point times τ = (τ1, . . . , τK). Defining the contrast function to minimize
as U(τ ) = J(τ ,Y) + βR(τ ) with J the data-fit function and R the penalization function, they
propose a method able to detect changes in multivariate i.i.d., weakly and strongly dependent series
with adaptive approaches to estimate both β and K.

In [33] Matteson and James propose an a-posteriori (i.e. offline) method to estimate the K
different change times τ = (τ1, . . . , τK) of a m-variate time series {X = X1,t, . . . , Xm,t}. They do
not make any assumptions regarding the nature of the change in distribution or any distribution
assumptions beyond the existence of the αth absolute moment, for some α ∈]0, 2[. Estimation is
based on a hierarchical clustering where they first iteratively divide, then agglomerate intervals
where one change-point was located. In [18], Eichinger and Kirch investigate statistical properties of
change point estimators based on the MOSUM statistics [12]. They consider a multiple mean change
model with possible time series errors and prove that the number and location of change points are
estimated consistently.

Our approach. Among the methods considered above, a major drawback of methods based on
pairwise comparison is that they generally use an arbitrarily chosen reference image. The rela-
tionships between all the images are therefore not taken into account, which constitutes a serious
information loss. On the contrary, the advantage of the novelty filter of Kohonen et al. [25] is that
it compares each single image to a set of reference images; we borrow this powerful idea for our
elementary estimator. We also strengthen change detection, by taking up the idea of Carlstein [6] of
temporally symmetrizing the change estimator.

The other methods dealing with image time series are essentially based on techniques for detecting
change in univariate series such as the MOSUM [12] or CUSUM [3] statistics. Roughly speaking, this
leads to define a null hypothesis testing H0 specific to each pixel x, where one assumes that a pixel
observation Yx follows a distribution fx. This amounts in fine to assume that fx has an analytic
shape (generally Gaussian) and that the N times series is long enough to estimate its parameters
µx, σx from the samples (yx)2≤n≤N . The implicit assumption is that a pixel x undergoes few variations
during the considered time period, so that the estimates µx, σx are reliable. This approach has a
major limitation because:

• the sample length is in practice quite small to finely estimate the parameters. For example,
in temperate or tropical environments image samples are too often perturbed by large cloud
cover. In more favourable regions, one observes only between 10 and 30 cloud free samples over
a year;
• one does not know a priori where the region changes are located;
• one ignores the frequency of changes given the position.

This sample scarcity leads to consider a distribution f applicable to all pixels and where its param-
eters, if any, can be computed from a large sample. This is what we will show in the next section
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by defining a H0 distribution based on the maximal acceptable number of changes per pixel over the
time.

3 Algorithm Description

3.1 Overview

Our algorithm consists of two parts. The first one performs the actual detection from a time series.
The detection is based on an estimator constructed from residuals calculated by the novelty filter.
The second part classifies the changes according to their nature: unique or permanent.

The algorithm is summarized in Algorithm 1 and its parameters in Table 2. We consider an
input multi-spectral time series (uraw

c,n )1≤c≤C
1≤n≤N of N ≥ 3 images composed by C channels and defined

on the same discrete domain Ω = [W ]× [H] where W (resp. H) are the images width (resp. height).
We suppose in addition that these images have been jointly subpixel registered; for this task we
used the method of Hessel et al. [22]. Pixel positions are denoted by x = (x1, x2)> for all x1 ∈ [H]
and x2 ∈ [W ]. To each image uc,n we associate its vector representation vc,n such that vc,n(x) =
vc,n(x1W + x2) = uc,n(x1, x2).

As the noise of satellite images naturally follows a Poisson law, we apply a pseudo gamma cor-
rection to make its standard deviation approximately constant. So we set

vγc,n =
√

vc,n. (1)

Notice that in Equations (2), (3) and (4) which follow, the expressions are general enough to be
applied indifferently to the series (vc,n)1≤c≤C

1≤n≤N or (vγc,n)1≤c≤C
1≤n≤N .

3.2 Novelty Filtering

The change detection or change point detection tries to identify times when the probability dis-
tribution of a stochastic process or time series changes. Changes can be detected by linear novelty
filters [32], first introduced by Kohonen and Oja [25]. We present a variant of the original formulation,
described as follows:

Definition 1. Let v1, . . . ,vM ∈ R|Ω| be M distinct Euclidean vectors spanning a positive convex
cone Lc, i.e. the sub-space such that for all α and β in R∗+, and for all v and w in Lc, αv+βw ∈ Lc.
Then any vector v ∈ R|Ω| can be uniquely written as

v = v̂ + r, (2)

where v̂ ∈ Lc is the closest vector to v in Lc and r is the residual i.e. the novelty.

The computation of the novelty r corresponds to the non-negative least-square (NNLS) problem

r = v −Az∗,

s.t. z∗ = arg min
z
‖v −Az‖`2 , z ≥ 0.

(3)

where the vector Az∗ represents v̂ and the matrix A = [v1 . . .vM ] is the concatenation of the column
vectors (vm)1≤m≤M . The resolution of (3) can be made by the Lawson and Hanson [27] numerical
method. Definition 1 differs from the original version [25] where there was no constraint on z. In
particular, some of its components could be negative. The reason why we impose the non negativity
is that, at least in visible bands, landscape images should only result in a superimposition of the past
component images with positive contrasts.
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3.3 Sliding Change Estimator

General formulation. We consider the multi-spectral series (vc,n)1≤c≤C
1≤n≤N in its vector representa-

tion. We denote by rbc,n,V (resp. rfc,n−1,V ) the time backward (resp. forward) residual vector computed
according to (3) where the vector v of this equation corresponds to vc,n (resp. vc,n−1), the matrix
A to the matrix [vc,n−V . . .vc,n−1] (resp. [vc,n . . .vc,n+V−1]) and V to the number of basis vectors
composing the matrix A. This leads to define for all n ≥ 2 the scalar estimator

rc,n− 1
2
,V (x) =

1

2

(
|rbc,n,V (x)|+ |rfc,n−1,V (x)|

)
. (4)

By convention the vectors vc,1 and vc,N are replicated as many times as necessary when the
windows depending on V exceed the boundaries of [N ]. We use the half index n − 1

2
, first to

emphasize that the change occurs between times n− 1 and n, secondly to have a symmetric formula
according to the backward and forward temporal directions (see Figure 2). Concerning the parameter
V , the larger the temporal window V , the more it captures the variations before or after the change.
In addition, it is easy to check that if a single change occurs at time n0, then the residual rc,n0− 1

2
,V (x)

is a global maximum of the time series.

Pixel value

n0

Residual

ε

δ

1 N

Pixel value

n0

Residual

ε

δ

1 N

Figure 2: On the left, in black, temporal value profile of a pixel which belongs to a permanent surface change ω appearing
from n0; in red, its temporal residual value. On the right, in black, temporal value profile of the pixel which belongs to the
same surface ω appearing only once at n0. The squares (resp. the discs) indicate the pixels belonging to the basis (resp.
the projected) vectors, for V = 3. In green (resp. in blue), those implied in the left (resp. right) elementary residual of (4).

Experiments conducted by Dagobert et al. [13] show that two complementary estimators can
be defined: a hue-change estimator which captures mainly the landscape variations and a contrast-
based estimator which captures mainly the urban changes. Sticking to this idea, we propose here an
enhancement of both estimators as well as an analytic interpretation.

Hue-change estimators. To justify our purpose we first clarify the meaning of the terms “hue”,
“chrominance” and “lightness”. According to Fairchild [19], the hue of a color is “the degree to
which a stimulus can be described as similar to or different from stimuli that are described as red,
orange, yellow, green, blue, violet” [19, p. 85], the chrominance (or chroma) is the “colorfulness of
an area judged as a proportion of the brightness of a similarly illuminated area that appears white
or highly transmitting” [19, p. 87] and the lightness is “the brightness of an area judged relative to
the brightness of a similarly illuminated area that appears to be white or highly transmitting” [19,
p. 86]. Consequently colors can keep the same hue while their lightness and chrominance may vary,
which one can see on Figure 3 where the color set is represented geometrically by a bicone.

From these considerations and in order to catch better the hue variations, we first change of color
space: we transform the RGB (or the RGBI) representation of the image vγn into a luminance (i.e
lightness) plus chrominance representation, which can be seen as a YUV transformation generalized
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to the infrared channel and such that
vlum
n (x)

vchr
R,n(x)

vchr
B,n(x)

vchr
I,n(x)

 =


1/C 1/C 1/C 1/C

1− 1/C −1/C −1/C −1/C
−1/C −1/C 1− 1/C −1/C
−1/C −1/C −1/C 1− 1/C




vγR,n(x)
vγG,n(x)
vγB,n(x)
vγI,n(x)

 . (5)

Figure 3: Representation of the colors according to their hue, chrominance and lightness properties such as described by
Joblove and Greenberg [24, fig.5].

From this transformation, we define two related estimators : a luminance-based and a chrominance-
based. Concerning the luminance, we compute the residuals related to (vlum

n )1≤n≤N according to (3)
then apply (4) which yields the series (rlum

n−1/2,V )1≤n≤N .
For the chrominance, the computation is more subttle. We first form the vectors by concatenating

the chrominance channels together so that

vchr
n = [vchr>

R,n ,v
chr>
B,n ,v

chr>
I,n ]>. (6)

From these concatenated vectors, we then compute the residuals according to (3) then split them
again into their channels and apply the relation (4) to obtain the residual series of each channel
namely (rchr

R,n−1/2,V )1≤n≤N , (rchr
B,n−1/2,V )1≤n≤N and (rchr

I,n−1/2,V )1≤n≤N .

As all the chrominance channels of a basis vector vchr
k are scaled by the same scalar zk according

to (3) (i.e. keep the same direction in the bicone), then low values of the residuals indicate only
change of chrominance. On the contrary, if we observe significant values of these residuals, then a
local change in the orientation of the chrominance occurred, which can be interpreted as an evolution
of the hue. That’s why we call them “hue-change” estimators.

We can interpret the novelty filter applied on the images (vγn)1≤n≤N as an optimal adjustment, in
the sense of the NNLS, of the luminance and the chrominance of the basis vectors according to those
of vγn. It follows from this observation that the estimators (rlum

n−1/2,V )1≤n≤N are invariant to positive
independent multiplicative factors of the luminance for each time, while the others are invariant to
independent positive multiplicative factors of the chrominance.

To homogenize the notation in Algorithm 1, we set

rhue
2,n− 1

2
,V
≡ rchr

R,n− 1
2
,V
, rhue

3,n− 1
2
,V
≡ rchr

B,n− 1
2
,V
, rhue

4,n− 1
2
,V
≡ rchr

I,n− 1
2
,V

and rhue
1,n− 1

2
,V
≡ rlum

n− 1
2
,V

(7)

knowing that the last relation is an abuse of notation because luminance and hue are conceptually
different (we set the same exponents because luminance and chrominance terms where computed at
the same time in (5)).

Detecting local chrominance changes is interesting in the landscape context, but may be less
effective in the urban context. Indeed, local variations of the greyish urban environment mainly
impact their luminance.
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Contrast-based estimator. Because the two previous estimators are not well designed to measure
single channel variations between times, we introduce another estimator. We consider here the RGB
(or RGBI) space color, and process independently the channels as we do not want to miss changes
occurring in a single one. Starting from the gamma corrected series (vγc,n)1≤c≤C

1≤n≤N defined in (1), we

rename it as the series (vcon
c,n )1≤c≤C

1≤n≤N and consider the decomposition vcon
c,n = scon

c,n + v̄con
c,n where v̄con

c,n is
the spatial mean. We then define the time backward residual by

rcon,b
c,n,V =

(
v̄con
c,n −

1

V

n−1∑
k=n−V

v̄con
c,k

)
+
(
scon
c,n −Az∗

)
, (8)

where z∗ = arg min ||sc,n−Az|| and A = [scon
c,n−V , . . . , s

con
c,n−1]>. We express the time forward residual in

the same way and from (4) we construct the contrast-based estimator series (rcon
c,n− 1

2
,V

)1≤c≤C
1≤n≤N . On the

one hand, we can interpret the right term of the right member, the novelty filter applied on the images
sc,n as an optimal adjustment, in the sense of the NNLS, of the spatial contrast of the basis vectors ac-
cording to that of scon

c,n . Indeed as the basis vector scon
c,k is zero-centered and scaled by the scalar zk, we

update in some way the variance of the image vcon
c,k . On the other hand, the left term of the right mem-

ber quantifies a mean luminance variation between the tested vector and the averaged basis vectors.

Notice that in our implementation one can use both the hue-change and contrast-based estima-
tors together or only one of the two. Indeed as they capture variations of quite different natures,
their individual results also are different.

3.4 Multi-Scale and Shift Patch Strategy

When there is no change in the considered domain Ω, then one can roughly consider that the residuals
are of the same order of magnitude as the ones caused by noise. By noise, we mean not only Poisson
observation noise, but also the casual small luminance and hue variations at different dates. Let
ε denote their order of magnitude. Inherently, the novelty filter incorrectly calculates the residuals
when there is an area ω with significant change in the domain Ω. Indeed, when there is a perturbation
in ω its residual has an order of magnitude of δ � ε and in Ω \ ω of order η & ε as showed Figure 4-
left. Moreover, if the perturbation is not negligible, then δ ≥ η � ε so that we cannot discriminate
the changes anymore (see Figure 4-right).

In order to attenuate this behavior and increase the precision of the residuals of the unchanged
domain Ω \ ω, we propose to compute several residuals over patches of different sizes and positions.
The idea is that among the different patches, one contains the lowest possible change surface ω.
Consequently for a given position x we take the minimal residual computed over the set of patches
containing x. Formally, we denote by Tq,d1,d2 the tiling of Ω as the set of the patches {ωi+d1,j+d2} of
size 2q × 2q

Tq,d1,d2 = {ωi+d1,j+d2} for all i ∈ {0 + d1, . . . , 2
q + d1, . . . ,W − (W mod 2q) + d1},

j ∈ {0 + d2, . . . , 2
q + d1, . . . , H − (H mod 2q) + d2},

(9)

where d1 and d2 are two shifts and with the convention that Ω has a toric extension. Let rq,d1,d2
c,n− 1

2
,V

(x)

be the residual computed at position x from the tiling Tq,d1,d2 according to (4) and (8). We then
assign the minimal value among the set of residuals obtained by the various scales and shifts to form
the multi-scale and shift (MSS) residual

rMSS
c,n− 1

2
,V

(x) = min
q,d1,d2

rq,d1,d2,V
c,n− 1

2

(x). (10)
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Figure 4: Effect of the global approach on the residual estimation. On the left, a profile where the vector v for which
novelty is estimated is different on a short interval with width (20), relatively to the width (100) of the whole tile. The
profile vectors Ai represent the ground at different times; they fluctuate so that their variations are of order ε around the
average. The residual vector |r| located along the change part, i.e. in [40; 60] has an amplitude of order δ while the ground,
i.e. [0; 40] ∩ [60; 100], is of order η < δ. On the right, when the change profile is large according to the width tile, the
amplitude of the residual is no longer distinctive as η ∼ δ.

This leads to define the set of tilings T = {Tq,d1,d2 ,∀q0 ≤ q ≤ qmax,∀d1 ∈ D1,∀d2 ∈ D2}∪I where
I is the image tiling, q0 is a parameter, qmax is such that 2qmax ≤ min(H,W ), D1 = {2qi1/S,∀i1 ∈
{0, . . . , S − 1}} and D2 = {2qi2/S,∀i2 ∈ {0, . . . , S − 1}} with S the number of shifts. From the
estimator formulation (10) we then define the hue-change and contrast-based versions which are
respectively rMSS, hue

i,n− 1
2
,V

for 1 ≤ i ≤ C and rMSS, con

c,n− 1
2
,V

for 1 ≤ c ≤ C.

3.5 Hypothesis Testing

The NFA Framework. For each pixel of Ω, and times n = 2, . . . , N we consider an a contrario
ground stochastic model

H0 : Yn,x ∼ f, (11)

where Yn,x is the random variable associated to x at time n and f is the probability density function
modeling the pixel behavior in the absence of change. In the case of a simple binary decision,
hypothesis testing would lead to threshold the p-value defined by

P(Yn,x ≥ yn|H0) = 1− F (yn) (12)

where yn is the observed value of Yn,x and F the cumulative distribution function related to f .
However, as this test is applied separately on each pixel, i.e. more than 100,000 times per image,
chances that false rejections of H0 appear are huge. To overcome this situation by controlling the
total number of false rejections several approaches exist (see [44, § 10.7]). Our method computes a
number of false alarms (NFA)

NFAn− 1
2
(x) = #T ×P(Yn,x ≥ yn|H0) = #T × (1− F(yn)) (13)

where #T is the number of tests; in the present case #T = Ω.

Law under the null hypothesis. In order to estimate in a robust way the changes, we consider
independently the hue and contrast based estimators, then combine their observable residuals before
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applying the hypothesis testing (13). We therefore proceed as follows. First, for each channel c,
we define the empirical probability density functions f̂c related to the null hypothesis. Assuming
that there is at least, for each x, a proportion Q of times where there is no change, then it is quite
reasonable to assume that the Q smallest values of the residuals correspond to the stable states,
while the great values to change states. Consequently, we consider that f̂c can be represented by the
set

{Q((rc,n− 1
2
,V (x))c,2≤n≤N), x ∈ Ω}. (14)

Introducing the random variable Xc,n,x associated with the observable value of the residual rc,n(x),
we have, under the null hypothesis:

Xc,n,x ∼ f̂c, for c = 1, . . . , C. (15)

As the shapes of the empirical cumulative distribution function F̂c associated with the probability
density functions f̂c may vary according to c, we transform first the random variables into uniform
variables by setting

Yc,n,x = F̂c(Xc,n,x). (16)

As a result the distributions of Yc,n,x are uniform and defined on [0, 1].

Estimator combination. Among the different possible strategies to mix together the channels
of the hue and contrast estimators one catches our attention. First, if one channel among the
others presents a significant change, then this change should be highlighted whatever the residual
values of the others. While the averaging of the channel residuals would not express a significant
variation, the choice of the maximum would. Secondly, the hue and constrast based estimators play a
complementary role for detecting at the same time the landscape and urban changes. Consequently,
the choice of the maximum operator seems pertinent. These two reasons lead to define the formulation

Yn,x = max{Y hue
1,x , . . . , Y

hue
C,x , Y

con
1,x , . . . , Y

con
C,x }. (17)

Under the null hypothesis and according to (17), the random variable Yn,x follows the law whose
associated cumulative distribution F is defined by

F(t) = t2C (18)

so that the final formulation of the NFA is

NFAn− 1
2
(x) = |Ω|(1− Y 2C

n,x ). (19)

Once the NFA series is computed, the meaningful changes are detected thanks to a threshold ε which
becomes our decision parameter; for commodity we use the log of the NFA. Finally the Boolean
detection masks (Bn− 1

2
)2≤n≤N are defined by

Bn− 1
2
(x) = 1{log NFAn− 1

2
(x) ≤ log ε}, (20)

where 1 is the indicator function.

3.6 Morphological Post-Processing

A number of false or no detection areas may appear spatially isolated in the Boolean maps (Bn− 1
2
)2≤n≤N

defined by Equation (20). These are generally detection errors that can be easily eliminated by con-
sidering a surface threshold α ≤ |Ω| consistent with the image resolution and the minimal acceptable
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surface of change. DenotingR the set of all connected regions ω of image Bn− 1
2
, we fill the undesirable

holes according to

∀ω ∈ R,∀x ∈ ω, B̃n− 1
2
(x) =

{
1−Bn− 1

2
(x) if |ω| < α,

Bn− 1
2
(x) otherwise.

(21)

This task is performed thanks to the Boolean image partitioning approach of Tarjan and Endre [39].
Numerically it is computed by the module ccproc of the imscript library2.

V The number of vectorized images of the time series.
q0 The exponent of the minimal dyadic square patch of side 2q0 .
S The number of shifts in each direction.
Q The quantile of sample used to form the empirical law.
ε The NFA threshold.
α The surface threshold of the change detection post-processing.

Table 2: Table summarizing the parameters of the proposed method.

3.7 Change Classification

The classification of changes consists in attributing a duration label to each of the related regions ω
defined as a connected set of pixels x where B̃n0− 1

2
(x) = 1 at time n0. To realize this classification

we compare the values of the pixels of ω at time n0 with their past and future values (uraw
c,n )1≤c≤C

1≤n≤N .
We first introduce a metric based on the zero-normalized cross-correlation (ZNCC)

κω(m,n) =
1

C|ω|

C∑
c=1

∑
x∈ω

(uc,m(x)− ūc,m)(uc,n(x)− ūc,n)

σuc,mσuc,n
, (22)

where ūc,m, ūc,n are the average values computed on the domain ω. We then test the times n for
n0 < n ≤ N while

κω(n0, n) ≥ ϑ. (23)

In this study, the threshold ϑ is set to 1
2

which is a rough but intuitive value. We make no difference
between the negative values of κω(m,n) and the zero values because they carry the same idea, namely
a great dissimilarity between the surfaces ω at times m and n. This method then gives us the duration
of each stable texture. We show the associated color code in Figure 5.

1 2 3 4 5 6 7 8 9<=

Duration

Figure 5: Color code of the estimated duration appearance of the surface ω.

2https://github.com/mnhrdt/imscript
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Algorithm 1: Computation of the change detection NFA time series.

Input: (vc,n)1≤c≤C1≤n≤N the multi-spectral time series of N ≥ 3 images, composed by C channels and defined
over the discrete domain Ω = J1, HK,×J1,W K.

Input: V the number of vector images composing the basis.
Input: q0 The exponent of the minimal dyadic square patch of side 2q0 .
Input: S The number of shifts in each direction.
Input: Q The quantile of sample used to form the empirical law.
Input: log ε the log NFA threshold.
Input: α the post-processing connected component area threshold.
Output: (B̃n− 1

2
)2≤n≤N the change detection Boolean series.

// Preprocessing
for c = 1, . . . , C do

for n = 1, . . . , N do
Pseudo gamma correction
vγc,n ←

√
vc,n

Pseudo YUV transformation

vhue
c,n ← according to (5) [vγc,n)]

Renaming
vcon
c,n ← vγc,n

// Computation of the residual series
Computation of the tile set
T← according to (9)[q0, S]
for c = 1, . . . , C do

for n = 2, . . . , N do
Computation of the estimators per tile
for T ∈ T do

for x = 1, . . . , |Ω| do
rhue,q,d1,d2c,n (x)← according to (4) [vhue

c,n , V ]

rcon,q,d1,d2c,n (x)← according to (8)[vcon
c,n , V ]

Computation of the global estimators (10)

rMSS, hue

c,n− 1
2 ,V

(x)← min
q,d1,d2

rhue,q,d1,d2c,n (x)

rMSS, con

c,n− 1
2 ,V

(x)← min
q,d1,d2

rcon,q,d1,d2c,n (x)

// Hypothesis testing
for c = 1, . . . , C do

Computation of the empirical H0 law

f̂c according to Q and (14)
Uniformization of the random variables
for n = 2, . . . , N do

for x = 1, . . . , |Ω| do
for type=hue, con do

ytypec,n ← F̂c(r
MSS, type

c,n− 1
2 ,V

(x)) according to (16)

for n = 2, . . . , N do
for x = 1, . . . , |Ω| do

Computation of the combined estimator

yn,x ← max{yhue1,x , . . . , y
hue
C,x, y

con
1,x , . . . , y

con
C,x}

Computation of the NFA map series

NFAn− 1
2
(x)← |Ω| × (1− y2Cn,x)

Computation of the unfiltered Boolean map series
Bn− 1

2
(x)← 1{log NFAn− 1

2
(x) ≤ log ε}

Computation of the filtered Boolean map series

B̃n− 1
2
(x)← according to (21)[Bn− 1

2
, α]

return B̃
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3.8 Time Complexity Analysis

To simplify our estimation, we restrict our time complexity analysis to the trivial case where there
is no tiling split, i.e. T = I. The computation of the Boolean series defined by Equation (21)
requires four steps. The time complexity of the first step, namely the luminance centering is in
O(C(N − 1)|Ω| log |Ω|). The second step is mainly based on the non negative linear square (NNLS)
method by Lawson and Hanson [27, chap. 23]. It is difficult to give a precise time complexity of
this part because theoretically, the NNLS requires a QR matrix decomposition in O(|Ω|3) at each
of its iterations, and would need L2 iterations for an input matrix A ∈ M|Ω|,L(R). However, the
authors observed that the NNLS converges on average in L/2 iterations, and they carry out the QR
decomposition only once, recomputing partially some terms over the iterations. As NNLS is computed
according to V at each time n and channel c, we can roughly estimate the complexity of this step to
be in O(C(N −1)(|Ω|3 +V/2)). The third step is the hypothesis testing whose complexity is globally
O(C(N−1)|Ω|). The fourth step computes the NFA maps in O((N−1)|Ω|C logC), their binarization
in O((N−1)|Ω|) and the region removal takes constant time (see [39]), then in O((N−1)|Ω|). Finally,
the overall Boolean masks creation has complexity in O(CN(|Ω|3 + |Ω| log |Ω| + |Ω| logC)) and for
N � |Ω| is dominated by O(CN |Ω|3).

4 Experiments

4.1 Our Testing Dataset

We built a dataset of 28 series of 20 images each, of size 480× 480, composed of the four bands red
(B04), green (B03), blue (B02) and near-infrared (B08) from Sentinel-2 data. The series represent
different locations over the world between 01/01/2016 and 01/01/2020. Some of the locations coincide
with those of the dataset built by Daudt et al. [8]. Images were subpixel registered, and are cloudless
and shadow free. In Appendix B we give an overview of the scenes (Figure 12) as well as the
geographic coordinates of the image centers before the subpixel registration (Table 3).

Since the notion of change can have different semantic levels (pixel difference, texture or object
based, etc.) depending on the objectives to be achieved, this database does not contain ground truth.

4.2 Qualitative Results

We compared our detection method with the MOSUM approach of Eichinger and Kirch [18]. This
algorithm can be found as a Gnu R package3. As the implemented version does not take into account
the image colors and processes each pixel independently as a univariate time series, we proceed as
follows. We first split the image channels red, blue and green into three gray-level series, from which
we compute three change map series. We finally merge these series with a median filter over the
three channels. We used the method MOSUM as it was, applying, if possible, the parameter values
indicated in the papers. In order to compare only the raw temporal change detectors, we did not
apply our morphological post-processing. The results are shown in Figures 6 and 7. On Figure 6
we present the five first images of the Al Wakrah time series (300 × 300 cropped areas). At times
2, 3 and 4, our method detects the real important changes, in particular at the image center where
several building were demolished and in the highway region. The MOSUM is totally blind at times
2, 3 and under-detects strongly at times 4 and 5. The same behaviour of both algorithms can be
observed on Figure 7 with the Las Vegas time series. At times 2 and 4, our method detects the most
relevant changes while MOSUM detects nothing. Moreover, at time 5, MOSUM detects doubtful
changes (bottom left).

3https://CRAN.R-project.org/package=mosum
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n = 1 — —

n = 2 — —

n = 3 — —

n = 4 — —

n = 5 — —

Figure 6: Comparison between our method (second column) and MOSUM (third column) on the five first images
of the Al Wakrah time series (300× 300 cropped areas). For our method, no morphological post-processing was
applied, V = 5, T = I, S = 2, Q50 and log ε = 1. For the MOSUM GMOSUM = 0.2 and αMOSUM = 0.001 (the
empirical best value found).
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n = 1 — —

n = 2 — —

n = 3 — —

n = 4 — —

n = 5 — —

Figure 7: Comparison between our method (second column) and MOSUM (third column) on the five first images
of the Las Vegas time series (300× 300 cropped areas). For our method, no morphological post-processing was
applied, V = 5, T = I, S = 2, Q50 and log ε = 1. For the MOSUM GMOSUM = 0.2 and αMOSUM = 0.001 (the
empirical best value found).
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We also illustrate the efficiency of the multi-scale patch residual strategy discussed in Section 3.4
in Figure 8. It shows the Chaco time series at times 6 to 10 where we have to deal with extreme
cases where changes are global and very frequent. When the changes are spatially global and also
the tiling i.e. T = I (middle column), some no change regions are considered as such: see the two
central rectangles at times 8 and 9. When the domain is tiled with 64× 64 patches, the resulting log
NFA maps (right columns) estimate best the unchanged regions.

We present the influence of the number V of vectors composing the basis on Figure 11 on the 9th

frame of the Las Vegas time series. We choose this frame to avoid the influence of the frame boundary
replication. We observe that globally the number of change surfaces decrease when the number of
vectors increase. We can explain this by the fact that the more we introduce basis vectors, the more
their linear combination fits with the tested frame. The residual values would decrease both for real
changes and for noisy variations. Consequently, if increasing the number of basis vectors is a good
thing to remove the noise changes, increasing it too much would attenuate the detection of the real
changes which are weakly stable. Only the stable changes would stay observable.

Concerning the change duration estimation, we show examples on Figures 9 and 10. Figure 9
deals with the five first images of the Piraeus time series (300× 300 cropped areas). The durations
are globally well estimated; some duration errors can appear when two ships are merged into the
same region. In absence of a reference image, the return to the initial state (i.e. the sea) is considered
as a change itself, what we can observe with the grey region at time n = 4. Figure 10 shows the
evolutions of the Las Vegas time series (300 × 300 cropped areas) at times 1 to 5. The results are
coherent with the visual observations: most of the buildings are definitive so that their color are grey
while transitory constructions are in red.

5 Conclusion

In this work we first proposed to detect changes in satellite time series thanks to a statistics defined
by the novelty filter and applied on the full sequence. This statistics is composed by a backward
and a forward novelty term which summarizes the temporal information of the whole time series.
Significant changes are then detected by hypothesis testing. The study of the influence of the time
series length and qualitative results lead to conclude that the approach is efficient for all scenes
when handling at least ten images, provided the changes are spatially sparse in relation to the size
of the tiles. We secondly proposed to classify the changes according to their duration, thanks to
a metric based on the zero-normalized cross-correlation. The results are also coherent with the
visual observations. The last innovation of this paper consists in the creation of an open dataset of
time series fairly representative of the regions of the world, subpixel registered and not containing
atmospheric alterations.

Future work will focus on the extension of the method to sequences composed of images acquired
by satellites with different spectra and resolutions.

641



Tristan Dagobert, Rafael Grompone von Gioi, Carlo de Franchis, Charles Hessel

— — —

— — —

— — —

— — —

— — —

Figure 8: Example of the Chaco time series at times 6 to 10 where the log NFA maps represent the changes in blue tones.
We used V = 3, T = I, S = 2, Q25 (middle column) and V = 3, T64, S = 2, Q25 (right column).
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n = 1 — —

n = 2 — —

n = 3 — —

n = 4 — —

n = 5 — —

Figure 9: Log NFA maps (second column) and change maps (third column) obtained on the five first images of
the Piraeus time series (300×300 cropped areas) according to the color code of the Figure 5 with the parameters
V = 5, T = I, S = 2, Q25 and log ε = 1.
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n = 1 — —

n = 2 — —

n = 3 — —

n = 4 — —

n = 5 — —

Figure 10: Log NFA maps (second column) and change maps (third column) obtained on the five first images
of the Las Vegas time series (300 × 300 cropped areas) according to the color code of the Figure 5 with the
parameters V = 5, T = I, S = 2, Q25 and log ε = 1.
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V = 3 —

V = 5 —

V = 7 —

V = 9 —

Figure 11: Log NFA maps (left column) and change maps (right column) obtained on the 9th frame of the Las
Vegas time series (300 × 300 cropped areas) for different number of basis vectors V . To highlight the change
detected surfaces, no morphological post-processing was applied, T6 (64× 64 tiles), S = 2, Q50 and log ε = 1.
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A Synthetic Dataset

To observe more easily the influence of the various parameters, in particular the hue-change and
contrast estimators, we added in the IPOL demonstrator some toy examples made of synthetic
examples. These images do not contain infrared bands and have values in [0, 255]: one should
neither apply the gamma correction nor the normalization.

The sets named A to H are composed by images of size 512 × 512 containing 64 time varying
patches. The set A is made of grayscale images while the set B contains luminance variations with
the same hue. In both cases, the multi-scale strategy, with the 64 choice and no shift, should fail to
detect if the hue-change estimator is selected solely and succeed if the contrast-based estimator is.
The set C contains hue variations with the same luminance: the hue-change estimator should detect
these variations better than that of contrast. The set D is intended to test the variation of patch
size in the multi-scale strategy. The set E contains variable size changes with some shifts. The sets
F, G and H have various change durations to check the classification.

B Real Dataset

We show on Figure 12 a frame representing each time series of our real RGBI (bands 2, 3, 4 and 8)
Sentinel-2 dataset.

Figure 12: First images of the 28 time series composing the dataset.
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Location Longitude Latitude

Abudhabi 54◦34′38.03′′ E 24◦19′44.22′′N
Al Wakrah 51◦34′38.41′′ E 25◦10′04.64′′N
Austin 97◦52′40.40′′W 30◦13′41.70′′N
Beijing airport 116◦35′51.38′′ E 40◦04′35.87′′N
Cachan 02◦19′42.80′′ E 48◦47′49.94′′N
Cape Town 18◦26′36.86′′ E 34◦04′19.89′′S
Chaco 60◦18′22.83′′W 22◦17′35.30′′S
Cupertino 122◦00′48.71′′W 37◦20′57.84′′N
Cushing 102◦21′20.42′′W 32◦03′05.63′′N
Darwin 130◦54′41.49′′ E 12◦25′32.41′′S
Dublin 06◦19′57.41′′W 53◦23′53.08′′N
Karalee 152◦48′23.35′′ E 27◦34′46.60′′S
Koto 139◦48′54.10′′ E 35◦39′03.05′′N
Las Vegas 115◦13′37.27′′W 36◦04′49.41′′N

Location Longitude Latitude

Livermore 121◦42′52.54′′W 37◦40′38.96′′N
Ljubljana 14◦33′06.31′′ E 46◦03′43.72′′N
Los Paseos 121◦46′31.10′′W 37◦13′52.22′′N
Montevideo 56◦16′31.05′′W 34◦51′08.17′′S
Morandi 08◦53′18.84′′ E 44◦25′33.42′′N
Musashino 139◦31′28.10′′ E 35◦39′55.76′′N
Phoenix 112◦12′28.67′′W 33◦33′30.32′′N
Piraeus 23◦37′54.44′′ E 37◦56′49.47′′N
Pohang 129◦22′49.44′′ E 35◦57′52.92′′N
Rennes 01◦42′13.84′′W 48◦05′20.57′′N
Saclay 02◦10′28.22′′ E 48◦43′30.82′′N
Sanshui 112◦52′21.49′′ E 23◦12′00.84′′N
Sant Jordi 02◦09′02.70′′ E 41◦21′48.01′′N
Tuzla 36◦34′16.70′′ E 45◦15′03.90′′N

Table 3: Geographic coordinates of the 28 locations (image centers) constituting the dataset.

Image Credits

All images in this manuscript (in particular Figures 1, 6, 7, 8, 9, 10 and 12) were produced by the authors

(license CC-BY-SA) except the scheme of Figure 3 (license CC-BY-SA 3.0).
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