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Abstract

In the article “Forensic Similarity for Digital Images”, O. Mayer and M. C. Stamm introduce
the forensic similarity approach, which aims at determining whether two image patches contain
the same forensic traces or not. The proposed method is based on a feed-forward neural network
which consists of two modules: a feature extraction module using a pair of CNNs in a siamese
configuration, and a three-layer neural network that maps the extracted features into a similarity
score. In this article, we explore the use of the forensic similarity score for source camera model
comparison, as one of the possible applications of such an approach suggested by Mayer and
Stamm.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.txt file of the archive. The original
implementation of the method is available here2.
This is an MLBriefs article, the source code has not been reviewed!

Keywords: image forensics; source camera; camera model

1 Introduction

Providing information about the camera with which an image was acquired can be crucial for dif-
ferent forensic applications. Indeed, it can provide clues to track pornographic content, to check for
copyright infringement, and to verify the consistency of a database. There are different approaches
that aim at describing the source device of a given image. Some of them try to identify the particular
device with which the image was taken [2, 6], while others focus on identifying the brand or model
of the source camera [10].

1https://doi.org/10.5201/ipol.2022.424
2http://omayer.gitlab.io/forensicsimilarity/
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Classic methods tackle this problem by searching for device traces. These traces include sensor
pattern noise [6], lens distortions [2], demosaicing artefacts, white balance traces [3] and compression.
Some of these features, such as the PRNU pattern [6] or radial distortion [2], are device-specific and
can lead to accurate device identification. Others are shared by different devices of the same model
or brand, and can therefore provide information about the device model rather than identifying a
particular source camera [10].

In this article we explore how the forensic similarity approach introduced in [8] can be applied for
source camera model comparison. This approach aims at determining whether two image patches
share the same forensic traces or not. Forensic traces are signals embedded in the image during
the image formation process. Indeed, from the moment the light hits the camera sensors until the
final digital file is delivered, the image undergoes several operations such as demosaicing, denoising,
gamma correction, white balance and compression. Each of these operations leaves specific artifacts
in the final image. Images acquired with devices from the same model are expected to exhibit the
same similar forensic traces, while devices from different models are expected to produce different
traces.

2 Problem Formulation

The problem can be stated as follows: Given two image patches, we want to assign a score of 0 to the
pair of patches if they have different forensic traces, and a score of 1 if they share the same forensic
traces. That is, we search for a map C : X ×X → {0, 1}, where X is the space of all image patches,
such that

C(X1, X2) =

{

0 if X1, X2 have different forensic traces,
1 if X1, X2 have the same forensic traces.

This problem can be tackled in three steps. First, a suitable set of N features capturing the
forensic information is extracted from each patch, by means of a feature extractor f : X → R

N . The
resulting feature vectors are then compared based on a similarity function S : RN × R

N → [0, 1].
Finally, the similarity measure is compared to a threshold τ so as to obtain a binary output. The
map C can be then written as

C(X1, X2) =

{

0 if S(f(X1), f(X2)) ≤ τ,

1 if S(f(X1), f(X2)) ≥ τ.

This way, the problem of finding C amounts to find two functions f : X → R
N and S : RN ×R

N →
[0, 1] such that S(f(X1), f(X2)) is as close to 0 as possible whenever X1 and X2 have different forensic
traces, and as close as possible to 1 whenever the two image patches share the same traces. Figure 2
shows the system overview.

3 Method

In [8], Mayer and Stamm propose to design both the feature extractor function f and the similarity
function S based on a learning strategy. In this section we specify the architecture as well as the
training strategies developed in their work.

3.1 Architecture

The feature extractor is based on the MISLnet architecture [1] and is depicted in Figure 1. Namely,
it consists of 5 convolutional blocks and 2 fully connected layers. Each of the convolutional layers,
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except for the first one, is followed by batch normalization, hyperbolic tangent activation and max-
pooling. The size of the convolutional filters used at each layer are 5 × 5 × 3 × 6, 7 × 7 × 6 × 96,
5×5×96×64, 5×5×64×64 and 1×1×64×128 respectively. A stride equal to 1 is used in all the
layers except for the second one, where the stride is set to 2. The last convolutional layer, which uses
1×1 kernels, can be regarded as a learned cross-feature maps association. The max-pooling operation
is performed using 3× 3 kernels. The two fully connected layers that follow the convolutional blocks
consist both of 200 neurons with hyperbolic tangent activation.
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Figure 1: Feature extractor architecture.

Two such feature extractor networks, in siamese configuration with weight-sharing, are used to
process in parallel the two patches, producing a feature vector for each patch. Then, a similarity
network takes both feature vectors as input and computes their similarity score. Figure 2 shows the
complete system overview. The first layer of the similarity network, consisting of 2048 neurons with
ReLu activation, maps each feature vector into a new feature space. The authors use a hard-sharing
siamese configuration for this first layer. Then, a new feature vector is constructed by concatenating
both feature vectors and their element-wise multiplication. This vector feeds another fully-connected
layer with 64 neurons. Finally, a single-neuron layer with sigmoid activation takes the resulting
64-dimensional vector and produces the similarity score associated to the pair of input patches3.
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Figure 2: System overview. The first module consists of a pair of feature extractor networks in siamese configuration
with weight-sharing. It takes two image patches and computes its corresponding feature vectors. These vectors are then
compared by means of the second module (the similarity network), which computes a similarity score associated to the pair
of image patches.

3In practice, the authors use two output units with softmax activation, one indicating “similar” traces and the
other one indicating “different” traces. The observed output for evaluation is the one corresponding to “similar”.
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3.2 Dataset

Mayer and Stamm collected a dataset of 47,785 images from 95 different camera models. Among
them, 26 camera models come from the Dresden dataset [4] while the rest are from the authors’
database. This dataset is divided into three disjoint subsets. Subset 1 consists of 50 camera models
selected randomly from those having at least 40,000 non overlapping 256 × 256 patches. Subset 2
comprises 30 camera models from the remaining ones having at least 25,000 non-overlapping patches.
Subset 3 comprises the remaining 15 camera models. The complete list of camera models is given in
Table 1. The camera models in blue were collected from the Dresden dataset [4].

Subsets 1 and 2 are used for training (see Section 3.3) while Subset 3 is used for evaluation, which
we will not cover here. The interested reader is referred to the original paper [8].

Subset 1

Apple iPhone 4 Agfa Sensor530s Apple iPhone 4s Canon EOS SL1
Apple iPhone 5 Canon PC1730 Apple iPhone 5s Canon A580
Apple iPhone 6 Canon ELPH 160 Apple iPhone 6+ Canon S100
Apple iPhone 6s Canon SX530 HS Canon SX420 IS Canon SX610 HS
Casio EX-Z150 Fujifilm S8600 Huawei Honor 5x LG G2
LG G3 LG Nexus 5x Motorola Maxx Motorola Turbo
Motorola X Motorola XT1060 Nikon S33 Nikon S7000
Nikon S710 Nikon D200 Nikon D3200 Nikon D7100
Panasonic DMC-FZ50 Panasonic FZ200 Pentax K-7 Pentax OptioA40
Praktica DCZ5.9 Ricoh GX100 Rollei RCP-7325XS Samsung Note4
Samsung S2 Samsung S4 Samsung L74wide Samsung NV15
Sony DSC-H300 Sony DSC-W800 Sony DSC-WX350 Sony DSC-H50
Sony DSC-T77 Sony NEX-5TL

Subset 2

Apple iPad Air 2 Blackberry Leap Apple iPhone 5c Canon Ixus70
Agfa DC-733s Canon PC1234 Agfa DC-830i Canon G10
Canon SX400 IS Canon T4i Fujifilm XP80 Fujifilm J50
HTC One M7 Kodak C813 Kodak M1063 LG Nexus 5
Motorola Nexus 6 Nikon D70 Nikon D7000 Nokia Lumia 920
Olympus TG-860 Panasonic TS30 Pentax OptioW60 Samsung Note3
Samsung Note5 Samsung S3 Samsung S5 Samsung S7
Sony A6000 Sony DSC-W170

Subset 3

Agfa DC-504 Canon Ixus55 Agfa Sensor505x Canon A640
Canon Rebel T3i LG Optimus L90 LG Realm Nikon S3700
Nikon D3000 Olympus 1050SW Samsung Lite Samsung Nexus
Samsung Note2 Samsung S6 EdgeSony DSC-T70

Table 1: Camera models used for training and evaluation. Camera models in blue come from the Dresden dataset [4].
Subset 1 is used during the first training phase. Subset 1 and 2 are used during the second training phase. Subset 3 is used
for evaluation.

3.3 Training Procedure

The system is trained in two phases. In the first phase, the feature extractor is trained by adding a
fully connected layer with softmax activation. The feature extractor is trained as a source camera
classifier, using image patches with associated labels corresponding to their source camera model.
Research indicates that the deep features associated to camera model classification provide a good
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starting point for several forensics tasks [7]. The authors use a cross-entropy loss, optimized using
stochastic gradient descent for 30 epochs, with batches of 50 images. Initially the learning rate is set
to 0.001, and is halved every three epochs. The authors train two versions of the feature extractor:
one using 128× 128 patches and another one using 256× 256 patches.

During the second training phase, the similarity network is trained to target a specific task. Here,
the task is to determine if two image patches come from the same camera model, but it could be to
determine a specific editing operation or a specific parameter given an editing operation. The labels
in the training dataset are assigned accordingly: 0 indicates that the patches come from the same
camera model, and a 1 indicates they come from different ones. During this phase, the weights of
the feature extractor are fine-tuned, i.e. they are also updated to better fit the particular task. The
similarity network is trained using stochastic gradient descent with cross-entropy loss for 30 epochs.
The learning rate is initialized to 0.005, and then is halved every three epochs.

During the first training phase, the feature extractor is trained using 40,000 randomly sampled
image patches from each of the camera models in Subset 1, giving a total of 2,000,000 image patches.
During the second training phase, the similarity network is trained and the feature extractor weights
are updated using a training dataset of pairs of image patches. This dataset is constructed using
camera models in Subset 1 and Subset 2.

4 Demo

The goal of the demo is to determine if a pair of images have been captured by the same camera
model or not. It takes as input three images: a reference image, and two test images that will be
compared to the reference one. To perform image-wise comparison built upon the patch comparison
provided by the forensic similarity approach, the user is required to choose the number of randomly
chosen patch-to-patch comparisons (ranging from 100 to 700) to be considered. The user can also
decide if these patches are taken with overlap (half of the patch size) or not. Finally, the user can
decide the patch size, being 128 and 256 the two available options.

The output of the demo is an interactive histogram showing the forensic scores obtained for each
patch-to-patch comparison, for both image comparisons. By moving the mouse over the histogram,
the user can recover the bins bounds as well as the count that corresponds to each bin. The user can
also zoom in different sections of the histogram to better visualize the results.

5 Experiments

In this section we show several experiments conducted using the demo. The images used come from
the Vision dataset [9] and the Forchheim dataset [5]. Notice that none of these datasets were used
for training: all the images used for these experiments are new to the network.

To assess the performance of the forensic similarity approach, we designed three different experi-
ments with different challenging scenarios. In the first experiment we test the approach using images
coming from camera models that were used for training. In the next experiment we compare images
coming from known models to images coming from unknown ones. Finally, we test the forensic
similarity approach on pairs of camera models that are unknown to the network.

All the experiments were conducted using the default parameters values. Namely, the number of
patch-to-patch comparisons is 300, the size of the patches is set to 256 and the patches are taken
without overlap.
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5.1 Known Camera Models

Figure 3 shows the results obtained when applying the forensic similarity approach for source camera
comparison for images taken with camera models that are known to the network. Namely, for this
experiment we use camera models that are included in Subset 1 and Subset 2 (see Table 1).

We observe that, when faced to known camera models, the similarity scores between images
coming from the same camera model concentrate around 1. Furthermore, the similarity scores
obtained when comparing images coming from different camera models concentrate around 0, except
for the case in which iPhone 6 is compared to iPhone 6s. This might be mainly due to the fact that
these two devices share similar processing pipelines. In this case we observe that the similarity scores
wrongly concentrate around 1. However, it can be also noticed that the non-matching histogram
exhibits a thicker tail than the matching one.

Reference image Test image 1 Test image 2 Histogram

Apple iPhone 6s Apple iPhone 6s LG G3 Similarity scores

Samsung S5 Samsung S5 Samsung S3 Similarity scores

Apple iPhone 4 Apple iPhone 4 Apple iPhone 4s Similarity scores

Apple iPhone 6s Apple iPhone 6s Apple iPhone 6 Similarity scores

Figure 3: Results of the forensic similarity approach applied to source camera comparison when images under test come
from camera models used during training.
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5.2 Known and Unknown Camera Models

Figure 5 shows the results obtained when applying the forensic similarity approach for source camera
comparison, to test images taken with camera models that are known to the network against images
from camera models that were not used for training. Namely, for this experiment we test camera
models that are included in Subset 1 and Subset 2 (see Table 1) against camera models that are not
part of them.

Reference image Test image 1 Test image 2 Histogram

Apple iPhone 6s Apple iPhone 6s Huawei P9 Lite Similarity scores

Samsung S5 Samsung S5 Sony Xperia E5 Similarity scores

Apple iPad Mini Apple iPad Mini Apple iPhone 4 Similarity scores

Samsung S3 Samsung S3 Samsung S3 Mini Similarity scores

Figure 4: Results of the forensic similarity approach applied to source camera comparison, when comparing images coming
from camera models used during training to images from camera models unknown to the network.

Under this setting the results are more heterogeneous. The network is able to distinguish images
coming from iPhone 6s from those coming from Huawei P9 Lite as well as those coming from Sam-
sung S3 Mini and Samsung S3. When comparing iPad Mini to iPhone 4, the network also delivers
similarity scores close to 0. However, the network is not able to identify two images taken with
iPad Mini as having similar forensic traces. On the other hand, the results obtained when comparing
Samsung S5 and Sony Xperia E5, the histogram shows that the patch-to-patch similarity scores seem
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uniformly distributed over the [0, 1] interval, therefore preventing from taking any conclusion about
their forensic similarity.

5.3 Unknown Camera Models

Figure 5 shows the results obtained when applying the forensic similarity approach for source camera
comparison to test images taken with camera models that are unknown to the network. Namely,
in this experiment we consider camera models that are not included in Subset 1 or Subset 2 (see
Table 1).

Reference image Test image 1 Test image 2 Histogram

Huawei P9 Lite Huawei P9 Lite Huawei P20 Lite Similarity scores

Sony Xperia E5 Sony Xperia E5 Wiko Lenny 2 Similarity scores

Google Pixel 3 Google Pixel 3 Google Nexus 5 Similarity scores

Motorola Z2 Play Motorola Z2 Play Motorola G8 Plus Similarity scores

Figure 5: Results of the forensic similarity approach applied to source camera comparison, when comparing images coming
from camera models that were not used for training.

In this challenging scenario, we observe degraded results with respect to the previous experiments.
Indeed, for camera models showing good results for matching images (Motorola Z2 Play and Huawei
P9 Lite), the mismatching results are incorrect. On the contrary, the devices delivering good results
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when compared to a different camera model (Google Pixel 3 and Sony Xperia E5), fail at identifying
matching images.
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