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Abstract

SwinIR is a recent image restoration method based on the Swin Transformer architecture. In
contrast to other traditional convolutional neural networks, SwinIR is capable of capturing
sophisticated attention between image patches, leading to remarkable results. In this paper, we
focus on the aspect of single-image super-resolution by SwinIR. We discuss the characteristics
of the architecture of this algorithm and compare it to other deep learning methods.

Source Code

The source code and documentation for this algorithm are available from the web page of
this article1. Usage instructions are included in the README file of the archive. The original
implementation of the method is available here2.
This is an MLBriefs article, the source code has not been reviewed!

Keywords: single image super-resolution; vision transformer; Swin transformer

1 Introduction

Single image super-resolution (SISR) is a fundamental problem in computer vision that aims to ob-
tain a high resolution (HR) output from its degraded low-resolution (LR) counterpart. Recently,
deep-learning methods have outperformed traditional SISR algorithms by a huge margin in both
quantitative and qualitative results. As a matter of fact, SISR can be seen as an interpolation
problem since SISR tries to recover pixels in the HR from their neighboring pixels in the LR im-
age. Being a local problem, SISR has been dominated by convolutional neural networks (CNN).
In particular, [13] uses dilated convolution to increase the receptive field over twice and get better
results. RDN [15] proposes a residual dense network to exploit the hierarchical features from the
convolutional layers. RCAN [14] adds an attention mechanism inside the CNN framework to exploit
better feature representation produced by the channels.

1https://doi.org/10.5201/ipol.2022.430
2https://github.com/JingyunLiang/SwinIR
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On the other side of deep-learning, Transformer is the backbone of natural language processing
(NLP). Since its invention in 2017, Transformer with its powerful self-attention mechanism has
refreshed and dominated all modern architectures in NLP. The question we all wanted to ask is
whether Transformer could be applicable to computer vision. One naive approach is to consider image
pixels as tokens and put all of them into the self-attention mechanism. However, this approach is
intractable due to the enormous amount of pixels in natural images. To this aim, Dosovitskiy et al. [3]
introduce the Vision Transformer (ViT) which applies Transformer directly on non-overlapping image
patches. Achieving state-of-the-art performance in image classification, ViT is very promising in
computer vision. Notwithstanding its great potential, the limitation of the ViT resides in its quadratic
computational complexity on image size, which makes it unscalable to higher-resolution images.
Another related work IPT [2] uses a pretrained Transformer model to perform image processing
tasks. Like other Vision Transformer-based models, IPT is computationally intensive and requires a
large training dataset. Liu et al. [6] propose the Swin Transformer to overcome the main drawbacks of
the Vision Transformer and achieve state-of-the-art results in image classification, object detection,
and semantic segmentation. The Swin Transformer alleviates the computational burden of the ViT
by computing self-attention only locally, but also models long-range dependency by using the shifted
window scheme. The Swin Transformer is used in many state-of-the-art super-resolution methods,
including stereo image super-resolution [4] and burst raw super-resolution [9].

Recently, Liang et al. [5] proposed SwinIR, an excellent baseline for image restoration based on
the Swin Transformer. SwinIR is actually a hybrid model with two CNN modules (shallow feature
extraction and high-quality image reconstruction) at the two ends, and specially a Swin Transformer-
based module (deep feature extraction) as the crucial component of the method. SwinIR is proven
to achieve state-of-the-art performance on single image super-resolution, image denoising, and JPEG
artifact removal with a reasonable number of parameters. In this project, we analyze the performance
of SwinIR on SISR and examine whether long-range information by the Transformer is beneficial to
such a local problem.

2 Method

2.1 SwinIR Architecture

As shown in Figure 1, SwinIR has a hybrid architecture consisting of three modules: shallow feature
extraction (CNN), deep feature extraction (Swin Transformer), and high quality image reconstruction
(CNN). In this project, we focus on two SwinIR networks: classical SR and realistic SR. The classical
model is a medium-sized network designed and trained for quantitative measurement. The realistic
model is larger and is trained to perform real-world super-resolution.

Shallow feature extraction. The shallow feature extraction can be considered a preprocessing
step, which serves to map the LR image ILR ∈ RH×W×3 to a richer dimensional feature space with C
feature channels. The shallow feature extraction is a convolutional layer HSF with kernel size 3× 3

F0 = HSF (ILR), (1)

where F0 ∈ RH×W×C is the shallow extracted feature. Applying an early small convolutional layer at
the beginning of the Vision Transformer was reported to help the training to stabilize and converge
faster [11]. The embedded dimension C is set to 180 for the classical model and 240 for the realistic
model.
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Figure 1: SwinIR architecture.

Deep feature extraction. The deep feature extraction, composed of K residual Swin Transformer
blocks (RSTB) and a CNN, comes after the shallow layer HSF . The value of K is set to 6 in the
classical model and 9 in the realistic model. Concretely, first these blocks RSTB compute the
transitional features F1, F2, . . . , FK sequentially

Fi = HRSTBi
(Fi−1), i = 1, 2, . . . , K, (2)

where HRSTBi
denotes the i−th RSTB. And then a small CNN HCONV at the end extracts the

output deep feature FDF

FDF = HCONV (FK). (3)

This CNN is presumed to introduce the image domain-specific inductive biases into the Transformer.
The CNN in the classical model is just a simple convolutional layer that keeps the embedded dimen-
sion C = 180. For the realistic model, it is an hourglass-shaped CNN with 3 convolutional layers
and hidden dimension 60 in order to save parameters and memory.

High resolution image reconstruction. Finally, the reconstruction module HREC produces the
high resolution output from the computed shallow and deep features,

IHR = HREC(F0 + FDF ). (4)

The shallow features and the deep features contain mainly the low-frequency and the high-frequency
information, respectively. While the former is pretty simple to extract with a convolutional layer,
the latter is much more sophisticated to reconstruct. Hence, a long skip connection from F0 up to
FDF is used to help the deep feature extraction focus on recovering the high frequency details. The
reconstruction module HREC is built from an upsample operator (pixel shuffle [10] in the classical
model, and nearest-neighbor interpolation in the realistic model) and several convolution layers.

2.2 Residual Swin Transformer Block

Each residual Swin Transformer block (RSTB) is composed of L (L = 6 for the two models) Swin
Transformer Layers (STL) followed by a CNN (Figure 1a). More specifically, given the input feature
Fi,0 of the i−th RSTB, the intermediate features Fi,1, . . . , Fi,L by L STL are computed as

Fi,j = HSTLi,j
(Fi,j−1), j = 1, 2, . . . , L, (5)
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where HSTLi,j
is the j−th STL of the i−th RSTB. Then a CNN is applied to enhance the translation

equivariance of the Swin Transformer just before the residual connection

Fi,out = HCONVi
(Fi,L) + Fi,0, (6)

where HCONVi
is the CNN in the i−th RSTB. Note that this CNN has the same architecture as

the HCONV in (3). The residual connection stabilizes the training and allows the accumulation
of the features at different depths. It is worth noticing that unlike the original Swin Transformer
architecture, in the RSTB there is no patch-merging operation (i.e., combine 2 × 2 image patches
into a larger patch) between STL. Moreover, the embedded dimension is kept constant through the
layers.

Swin Transformer layer. The Swin Transformer Layer (Figure 1b) has the same structure as
in [6]. Basically, first the input features of a STL are partitioned into non-overlapping M ×M local
windows (M = 8 pixels). Then the standard multi-head self-attention (MSA) is computed for the
patches in each window. The number of heads h is fixed to 6 in the classical model and 8 in the realistic
model. Next a multi-layer perceptron (MLP) with 2 connected layers (the hidden dimension is two
times the embedded dimension C) and GELU non-linearity is used for further feature transformation.
LayerNorm (LN) is applied before both MSA and MLP, and the residual connection is applied after
both modules. The whole process is then repeated but with the shifted window mechanism (that is,
by cyclic shifting the windows by M

2
in each direction) to enable cross-window connections.

3 Training Details

3.1 Training Set

For the classical model, the authors use two datasets DIV2K3 (800 images), and DIV2K + Flickr2K4

(2650 images), with bicubic downsampling to create training sets. They observe that the model
trained with more data has better PSNR performance (+0.3dB) when tested on the dataset Manga1095.
On the other hand, a large collection of diverse datasets (DIV2K +Flickr2K + OST6 (10324 im-
ages, nature) + WED7(4744 images) + FFHQ8 (first 2000 images, face) + Manga109 (manga) +
SCUT-CTW15009 (first 100 images, texts)) are used to train the realistic model. Furthermore, a
sophisticated degradation model from [12] is adopted to simulate real-world scenarios.

3.2 Training Loss and Optimization

The classical model is trained with a simple L1 loss, while the realistic model is trained with a
combination of L1 loss, GAN loss, and perceptual loss to obtain better visual quality. The two
models are both trained 106 epochs on 8 GPUs. They are optimized using Adam solver (initial
learning rate = 1e − 4) and MultiStepLR learning rate scheduler with 5 steps and γ = 0.5. The
batch size is set to 32 and the LR image size is 64× 64 pixels.

3https://cv.snu.ac.kr/research/EDSR/DIV2K.tar
4https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
5https://drive.google.com/file/d/13NsteslsUnPj6_Z4wKJg9J1i3eXokCyC/view
6https://drive.google.com/drive/folders/1iZfzAxAwOpeutz27HC56_y5RNqnsPPKr
7http://ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar
8https://drive.google.com/drive/folders/1tZUcXDBeOibC6jcMCtgRRz67pzrAHeHL
9https://universityofadelaide.box.com/shared/static/py5uwlfyyytbb2pxzq9czvu6fuqbjdh8.zip
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4 Experiments

In the demo, we fix the super-resolution factor to 4 since the authors only provide the x4 pretrained
model for the realistic SwinIR.

4.1 Real-World Super-Resolution

This section presents the qualitative performance of the realistic model on real-world images. Note
that the realistic model is trained to perform not only super-resolution but also image denoising and
JPEG artifacts removal, which makes it particularly suitable to restore old pictures or to enhance
the quality of natural images. Figure 2 shows the super-resolution reconstruction of the realistic
model on real images. Generally, SwinIR excels at removing noise, JPEG artifacts, and producing
plausible high-frequency details. But we also notice that when dealing with highly compressed or very
noisy images, SwinIR may present unwanted artifacts such as residual noise or cartooned textures,
respectively.

(a) Lincoln LR (b) Landscape LR (c) House LR

(d) Lincoln SR (e) Landscape SR (f) House SR

Figure 2: Visual quality of SwinIR super-resolution on real-world images. Top line corresponds to the LR input. Bottom
line shows the x4 SR reconstruction of SwinIR.

4.2 Auto-Similarity and Single Image Super-Resolution

We know that SISR is a local problem per se. In this experiment, we want to study the impact of
self-attention in the Swin Transformer in the Urban100 dataset. We choose this dataset because it
contains a lot of auto-similar structures. The importance of auto-similarity in image restoration was
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first exploited in the Non-Local Means denoising method [1]. The authors of [1] demonstrate that we
can reduce the noise of an image patch by aggregating its similar patches, which are not necessarily
spatially close to the patch of interest. Since this work, auto-similarity has become more and more
popular in image processing. Recently, ESRT [8] exploits auto-similarity to train a Transformer
network for single-image super-resolution. It is arguable that Transformer (and Swin Transformer)
can make use of attention in similar patches to get a better SR reconstruction, especially in the
low-contrast or aliased regions. We also compare these Transformer networks with RCAN [14], a
classic CNN for SISR.

We use bicubic interpolation to create low-resolution images from the Urban100 dataset. Note
that we do not include recent GAN-based state-of-the-art methods in this study since they will
hallucinate low-contrast details. Both ESRT and RCAN are trained with L1 loss on the DIV2K
dataset with bicubic degradation. The classic Swin Transformer model is trained with L1 loss but
on the DIV2K + Flickr2K dataset.

Figure 3 shows the comparison between the two SwinIR models, RCAN and ESRT on the Ur-
ban100 dataset. First, we observe that the SwinIR realistic model is not reliable for recovering the
true details due to its generative nature (Figure 3d). Second, we expected ESRT to perform better on
this particular test set using global attention (compare for example, Figure 3b and Figure 3c). Maybe
the performance of ESRT is restricted by its capacity (ESRT is a lightweight network). Finally, the
classical SwinIR network recovers genuinely the low-contrast and aliased textures and achieves the
best results. Unfortunately, we could not claim whether this boost of performance comes from the
long-range dependency mechanism. First, the window size of SwinIR is really small (8 pixels), which
makes SwinIR a rather local network. Second, the classical SwinIR is trained on a larger dataset.
Finally, this gain in performance may be due to the advance in network design (i.e., large kernel
size, GELU activation, Layer norm, etc) rather than the superiority of Transformer over traditional
CNN [7]. In conclusion, SwinIR is a promising and powerful method for SISR, but we still need to
carry out more experiments to fully understand its competence.

5 Conclusion

In this paper, we analyzed SwinIR – a Swin Transformer network for image super-resolution. We
also discussed how Transformer would benefit from auto-similarity in natural images to get a better
performance in SISR. Overall, SwinIR achieves remarkable performance in both synthetic and real-
world images, and it has great potential to become a popular backbone in computer vision.
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SwinIR10 original architecture

Dataset RealSRSet+5images11

Internet Media12

Dataset Urban10013

10https://arxiv.org/abs/2108.10257
11https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/RealSRSet+5images.zip
12https://www.zastavki.com/eng/Nature/Nature/Seasons/Summer/wallpaper-78337-12.htm
13https://drive.google.com/file/d/1UlNulSoyflrEObwu19BBlT7f2_Wxycga/view?usp=sharing
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(a) Urban100 LR 078 (b) RCAN (c) ESRT (d) SwinIR Realistic (e) SwinIR Classical (f) Urban100 HR 078

(g) Urban100 LR 044 (h) RCAN (i) ESRT (j) SwinIR Realistic (k) SwinIR Classical (l) Urban100 HR 044

(m) Urban100 LR 073 (n) RCAN (o) ESRT (p) SwinIR Realistic (q) SwinIR Classical (r) Urban100 HR 073

Figure 3: Qualitative comparison between the two SwinIR models, RCAN, and ESRT on the Urban100 dataset.
Super-resolution by factor of 4.

References

[1] A. Buades, B. Coll, and J-M. Morel, Non-local means denoising, Image Processing On
Line, 1 (2011), pp. 208–212. https://doi.org/10.5201/ipol.2011.bcm_nlm.

[2] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and
W. Gao, Pre-trained image processing transformer, in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 12299–12310. http://dx.doi.org/10.

1109/CVPR46437.2021.01212.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale,
2020. https://doi.org/10.48550/arXiv.2010.11929.

[4] K. Jin, Z. Wei, A. Yang, S. Guo, M. Gao, X. Zhou, and G. Guo, SwiniPASSR:
Swin Transformer Based Parallax Attention Network for Stereo Image Super-Resolution, in
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2022, pp. 920–929. https://doi.org/10.1109/CVPRW56347.2022.00106.

[5] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, SwinIR: Im-
age Restoration using Swin Transformer, in IEEE/CVF International Conference on Computer

588

https://doi.org/10.5201/ipol.2011.bcm_nlm
http://dx.doi.org/10.1109/CVPR46437.2021.01212
http://dx.doi.org/10.1109/CVPR46437.2021.01212
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/CVPRW56347.2022.00106


A Brief Analysis of the SwinIR Image Super-Resolution

Vision Workshops (ICCVW), 2021, pp. 1833–1844. https://doi.ieeecomputersociety.org/
10.1109/ICCVW54120.2021.00210.

[6] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer:
Hierarchical vision transformer using shifted windows, in IEEE/CVF International Conference
on Computer Vision (ICCV), 2021, pp. 10012–10022. https://doi.ieeecomputersociety.

org/10.1109/ICCV48922.2021.00986.

[7] Z. Liu, H. Mao, C-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, A ConvNet for
the 2020s, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022, pp. 11976–11986. https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.
01167.

[8] Z. Lu, J. Li, H. Liu, C. Huang, L. Zhang, and T. Zeng, Transformer for single im-
age super-resolution, in IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2022, pp. 457–466. https://doi.ieeecomputersociety.org/10.1109/
CVPRW56347.2022.00061.

[9] Z. Luo, Y. Li, S. Cheng, L. Yu, Q. Wu, Z. Wen, H. Fan, J. Sun, and S. Liu, BSRT: Im-
proving Burst Super-Resolution with Swin Transformer and Flow-Guided Deformable Alignment,
in IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2022, pp. 998–1008. https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.

00113.

[10] W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network, in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 1874–1883. https://doi.ieeecomputersociety.org/10.1109/CVPR.
2016.207.

[11] T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollár, and R. Girshick, Early
convolutions help transformers see better, Advances in Neural Information Processing Systems,
34 (2021), pp. 30392–30400. https://doi.org/10.48550/arXiv.2106.14881.

[12] K. Zhang, J. Liang, L. Van Gool, and R. Timofte, Designing a practical degradation
model for deep blind image super-resolution, in IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2021, pp. 4791–4800. https://doi.org/10.48550/arXiv.2103.14006.

[13] K. Zhang, W. Zuo, S. Gu, and L. Zhang, Learning deep CNN denoiser prior for image
restoration, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 3929–3938. https://doi.org/10.1109/CVPR.2017.300.

[14] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, Image super-resolution using
very deep residual channel attention networks, in European Conference on Computer Vision
(ECCV), 2018, pp. 286–301. https://doi.org/10.1007/978-3-030-01234-2_18.

[15] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, Residual dense network for image
super-resolution, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 2472–2481. http://dx.doi.org/10.1109/CVPR.2018.00262.

589

https://doi.ieeecomputersociety.org/10.1109/ICCVW54120.2021.00210
https://doi.ieeecomputersociety.org/10.1109/ICCVW54120.2021.00210
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00986
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00986
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01167
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01167
https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.00061
https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.00061
https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.00113
https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.00113
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.207
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.207
https://doi.org/10.48550/arXiv.2106.14881
https://doi.org/10.48550/arXiv.2103.14006
https://doi.org/10.1109/CVPR.2017.300
https://doi.org/10.1007/978-3-030-01234-2_18
http://dx.doi.org/10.1109/CVPR.2018.00262

	Introduction
	Method
	SwinIR Architecture
	Residual Swin Transformer Block

	Training Details
	Training Set
	Training Loss and Optimization

	Experiments
	Real-World Super-Resolution
	Auto-Similarity and Single Image Super-Resolution

	Conclusion

