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Abstract

Federated Learning (FL) is a learning paradigm where multiple nodes collaboratively train a
model by only exchanging updates or parameters. This enables to keep data locally, therefore
enhancing privacy – statement requiring nuance, e.g. memorization of training data in language
models. Depending on the application, the number of samples that each node contains can be
very different, which can impact the training and the final performance. This work studies the
impact of the per-node sample size distribution on the mean squared error (MSE) of the one-shot
federated estimator. We focus on one-shot aggregation of statistical estimations made across
disjoint, independent and identically distributed (i.i.d.) data sources, in the context of empirical
risk minimization. In distributed learning, it is well-known that for a total number of m nodes,
each node should contain at least m samples to equal the performance of centralized training. In
a federated scenario, this result remains true, but now applies to the mean of the per-node sample
size distribution. The demo enables to visualize this effect as well as to compare the behavior of
the FESC (Federated Estimation with Statistical Correction) algorithm – a weighting scheme
which depends on the local sample size – with respect to the classical federated estimator and
the centralized one, for a large collection of distributions, number of nodes, and features space
dimension.

Source Code

The source code and documentation for the algorithm described in this article are available from
the web page1. Usage instructions are included in the README file of the archive. The original
implementation of the algorithm is available here2.

This is an MLBriefs article, the source code has not been reviewed!

Keywords: federated learning; distributed learning; supervised learning; one-shot learning;
empirical risk minimization; mean squared error

1https://doi.org/10.5201/ipol.2023.440
2https://github.com/gonzaq94/one-shot-fed-learning

Marie Garin, Gonzalo Iñaki Quintana, Incidence of the Sample Size Distribution on One-Shot Federated Learning, Image Processing On
Line, 13 (2023), pp. 57–64. https://doi.org/10.5201/ipol.2023.440

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2023.440
https://doi.org/10.5201/ipol.2023.440
https://github.com/gonzaq94/one-shot-fed-learning
https://doi.org/10.5201/ipol.2023.440
https://github.com/gonzaq94/one-shot-fed-learning


Marie Garin, Gonzalo Iñaki Quintana

1 Introduction

Machine learning algorithms are typically trained in a centralized way, where data is collected from
possibly multiple sources and stored at a central server or location, for analysis and training. However,
the data collection process can sometimes be slow, costly, and raise privacy issues. To handle the
rapidly increasing amount of data produced from a large, diverse, and heterogeneous number of
sources, researchers study more distributed architectures. Federated learning (FL) [4, 5] has stood
out as a promising field of growing emphasis, advocating for an alternative to centralized learning.

FL consists of a set of m nodes that contain local datasets and computing capabilities, which
enable them to collectively train a machine learning model. The nodes exchange only model updates
or gradients, and the data never leaves its sources (which partially alleviates the data privacy issues).
We focus on the server orchestrated setting [3], in which a central server collects and aggregates the
updates produced locally by the nodes to provide a global outcome. Each of the m nodes contains a
variable number of observations ni, that make up the local dataset. When performing a distributed
training, the distribution of the sample size across the nodes (i.e., ni) raises new statistical challenges.

In this demo, we focus on one-shot federated learning [2, 8, 6], where the aggregation of the
computations of all the nodes is made on one communication round, in contrast to the multi-round
setting. We provide insights on the effect of the sample size distribution on the mean squared error
(MSE), and the leverage effect obtained with the FESC algorithm [1], an aggregation procedure that
relies on the optimization of an upper bound of the MSE. We compare the behavior of two one-shot
federated learning estimators (the plain federated estimator and FESC) with the centralized one,
in the context of empirical risk minimization. The MSE of the two weighting schemes and of the
centralized estimator is plotted according to the mean of the sample size distribution: the relationship
of this quantity to the total number of nodes m plays a crucial role in the final performance. Indeed,
the regular federated estimator reaches the performance of the centralized estimator when the sample
sizes average is of the same order as m, the number of nodes [1]. The demo displays the MSE of the
three estimators with respect to the mean of the sample size distribution, for a broad collection of
distributions (e.g., log-normal, Gaussian, Pareto, etc.). It shows that the FESC weighting scheme
converges faster to the performance of the centralized estimator than the plain federated estimator.
This effect is more visible when the sample size distribution has higher variance. To perform the
simulation, we synthesize data from a linear model and estimate the sought parameter with ridge
regression. The demo enables to choose the sample size distribution, the features dimension, and the
number of nodes that participate in the training.

2 Federated Learning with Statistical Correction

In this work, the model class F is the set of parametrized linear functions given by

FΘ = {fθ : ∀x ∈ Rd, fθ(x) = xT θ, θ}, (1)

with Θ ⊂ Rd the parameter space and d the features dimension. We consider a low-dimensional
regime and an i.i.d. (independent and identically distributed) sampling. As we focus on the federated
setting, the data is distributed across m nodes. Although one of the major challenges of federated
learning is to deal with non-identically distributed sampling, the framework is restricted to the i.i.d.
hypothesis. Indeed, as this demo aims at providing some insights on the effect of the distribution
of sample sizes, we focus on this specific issue. Each node i contains a subset of ni samples of two
random variables X, with values in Rd, and Y , with values in R: {(xij, yij), 1 ≤ j ≤ ni}. Given some
loss function ℓ : R× R→ R+, the global risk is defined by
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R(θ) = E[ℓ(fθ(X), Y )], (2)

and we set θ∗ ∈ arg min
θ∈Θ

R(θ). The goal is to estimate the hidden parameter θ∗. Since the random

variable distributions are not accessible, we focus on the empirical risk, defined as

R̂(θ) =
1

N

m∑
i

ni∑
j

ℓ(fθ(xij), yij), (3)

with N =
∑

i ni the total number of samples. In the centralized setting, a widespread approach is
to estimate θ by empirical risk minimization (ERM), i.e.

θ̂c ∈ arg min
θ∈Θ

R̂(θ), (4)

with θ̂c the centralized estimator. In one-shot federated learning, each node i estimates its local
parameter θ̂i through ERM

θ̂i ∈ arg min
θ∈Θ

R̂i(θ), (5)

with R̂i the local empirical risk of node i defined as

R̂i(θ) =
1

ni

ni∑
j

ℓ(fθ(xij), yij). (6)

The final federated estimator is usually a convex combination of the locally estimated parameters

θ̂w =
m∑
i

wiθ̂i, (7)

with wi ≥ 0 and
∑

iwi = 1. By setting wi =
ni

N
, we obtain the plain federated estimator

θ̂s =
m∑
i

ni

N
θ̂i. (8)

We will use this estimator as a baseline to compare with FESC, an improved weighting scheme de-
tailed below.

The FESC aggregation algorithm selects a subset of K nodes – the nodes with the largest sample
sizes – to participate in the final aggregated parameter. The proposed weighting scheme is given by

ŵ(i) =

 n(i)

2

2+
∑K

j
1

n(j)∑K
j n(j)

− 1
2n(i)

, ∀i ≤ K

0, ∀i > K,
(9)

where n(i) are the reordered ni in descending order, i.e., n(1) ≥ · · · ≥ n(m), and ŵ(i) the corresponding
value for n(i), i.e., if n(i) = np, then ŵ(i) = ŵp. The number of nodes, K, participating in the learning
is defined as

K = arg max
k∈[m]

 1

n2
(k)

≤
2 +

∑k
j

1
n(j)∑k

j n(j)

 . (10)

The federated estimator with statistical correction is then obtained by
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θ̂ŵ =
m∑
i=1

ŵ(i)θ̂(i), (11)

where the θ̂(i) are the corresponding values for n(i). The FESC algorithm is summarized in Algo-
rithm 1.

Algorithm 1 FESC pseudo-code

1: Inputs: number of nodes m, features dimension d.
2: for each node i = 1, . . . ,m do
3: The node sends ni and θ̂i to the server
4: end for
5: Order all the ni in decreasing order.
6: K, ŵ(i) ← from Equations (9) and (10)

7: θ̂ŵ ←
∑

i ŵ(i)θ̂(i)
8: return θ̂ŵ

3 Experiments

The experiments were performed on synthetic data generated as follows. X is a random variable with
values in Rd and Y with values in R. We assume a linear model, i.e. Y = XT θ∗ + ϵ, with ϵ sampled
according to a standard normal distribution. The sought parameter θ∗ is sampled according to a
multivariate uniform distribution with support [0, 1]d and X according to a multivariate standard
normal distribution. We compare the MSE of 3 estimations of θ: the centralized θ̂c, the federated θ̂s
and the federated with statistical correction θ̂ŵ. The number of nodes m, the features dimension d
and the distribution of the sample size are parameters of the demo chosen by the user. We denote by
η the number of samples per node, which is a random variable following a sample size distribution
chosen by the user. The mean of η is expressed as a function of m

E[η] = mγ. (12)

We vary γ (and hence the mean sample size per node, as the number of nodes is fixed) from 0.2 to
1.2, in steps of 0.1. For each value of γ, we first generate the m samples sizes (Equation (12)) with the
associated samples, and estimate the hidden parameter through ridge regression in a central way and
locally at each node. We then derive the weights of the standard federated estimator and those of the
FESC algorithm using Equations (8) and (11). Finally, all the local estimations are combined with
Equation (7) and, using the ground-truth value of θ∗, the MSE is obtained. We fix the regularization
parameter of the ridge regression to the inverse of the squared root of the global sample size (λi =

1
N
),

see [7] for further explanations. For the sake of computation time, the experiments are realized in
only one run. The pseudo-code of the entire demo is shown in Algorithm 2 (see Appendix).

4 Demo

In this section, we discuss the basic aspects of the demonstration, and give insights on the required
input parameters, and the outputs it generates.
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4.1 Input Parameters

The demo takes three input parameters:
Number of nodes: the number of nodes that are involved in training. Ranges from 2 to 100,

defaults to 100.
Features dimension: the dimension of the hidden parameter vector θ. Ranges from 1 to 100,

defaults to 10.
Sample size probability distribution: the probability distribution of the sample sizes in each

node, the associated random variable being denoted by η. Several distributions are available, all of
mean E[η] = mγ. The distributions are sampled using scipy.stats with the method rvs. Defaults
to log-normal of shape parameter 1, and scale parameter set so that the mean is equal to E[η] = mγ.
The available distributions are the following:

� Log-normal of shape parameter s = 1 and scale parameter scale = mγe
−1
2 , thus E[η] = mγ

and V(η) = (es
2 − 1)e2m

γ
= (e− 1)e2m

γ
(denoted as log-normal (low variance));

� Log-normal of shape parameter s = 2 and scale parameter scale = mγe2, thus E[η] = mγ and
V(η) = (es

2 − 1)e2m
γ
= (e4 − 1)e2m

γ
(denoted as log-normal (high variance));

� Poisson of shape parameter mu = mγ, thus E[η] = mγ and V(η) = mu = mγ (denoted as
poisson);

� Gaussian of location parameter loc = mγ, scale parameter scale = 0.1mγ, thus E[η] = mγ

and V(η) = scale2 = 0.01m2γ (denoted as gaussian (low variance));

� Gaussian of location parameter loc = mγ, scale parameter scale = 0.5mγ, thus E[η] = mγ

and V(η) = scale2 = 0.25m2γ (denoted as gaussian (medium variance));

� Gaussian of location parameter loc = mγ, scale parameter scale = mγ, thus E[η] = mγ and
V(η) = scale2 = m2γ (denoted as gaussian (high variance));

� Uniform of location parameter loc = 0.5mγ, scale parameter scale = mγ, thus E[η] = mγ and
V(η) = scale2

12
= m2γ

12
(denoted as uniform (low variance));

� Uniform of location parameter loc = 0, scale parameter scale = 2mγ, thus E[η] = mγ and
V(η) = scale2

12
= m2γ

3
(denoted as uniform (high variance));

� Laplacian of location parameter loc = mγ, scale parameter scale = 0.1mγ, thus E[η] = mγ

and V(η) = 2scale2 = 0.02m2γ (denoted as laplacian (low variance));

� Laplacian of location parameter loc = mγ, scale parameter scale = 0.5mγ, thus E[η] = mγ

and V(η) = 2scale2 = 0.5m2γ (denoted as laplacian (medium variance));

� Laplacian of location parameter loc = mγ, scale parameter scale = mγ, thus E[η] = mγ and
V(η) = 2scale2 = 2m2γ (denoted as laplacian (high variance));

� Pareto of of shape parameter b = 2.5 and scale parameter scale = 0.6mγ, thus E[η] = mγ and
V(η) = scale2b

(b−1)2(b−2)
= 0.8m2γ (denoted as pareto);

� Weibull of shape parameter c = 1.5 and scale parameter scale = mγ

Γ(1+ 2
3
)
, thus E[η] = mγ and

V(η) = scale2
(
Γ(1 + 2

c
)− Γ2(1 + 1

c
)
)
= m2γ

(Γ(1+ 4
3
)

Γ(1+ 2
3
)
− 1

)
(denoted as weibull).

Increasing the parameters “number of nodes” and “features dimension” increases the computation
time. If the simulation is running too slow, you are invited to decrease the value of those parameters.
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4.2 Outputs

The demo generates two plots as outputs:

Sample size histogram: the histogram of the sample size distribution across the nodes (η
variable) for γ = 1.2 (largest γ in the simulation). This is used to illustrate the chosen probability
distribution. The choice of using the largest γ (and therefore, the largest mean) is arbitrary.

MSE vs. γ curve: this shows the variation of the MSE for the three studied algorithms (central-
ized, federated, and FESC), as a function of γ. The objective of this plot is to show the minimal value
of γ (and, therefore, of E[η]) that is needed for the federated algorithms to equal the performance of
the centralized learning.

Figure 1 shows the two outputs of the demo, when the input parameters are set to their default
values (100 nodes, features of dimension 10, log-normal distribution). In the MSE vs. γ plot, we
can see that for γ < 1 (E[η] = m), the federated algorithm cannot attain the performance of
centralized learning. The FESC algorithm manages to reduce the smallest γ necessary for equaling
the performance of centralized learning. We remark that in order to keep the execution time of the
demo under 30 seconds, we were constrained to use only one Montecarlo iteration for the simulation.
Increasing the number of Montecarlo iterations would smooth the MSE vs. γ plot, and make the
plots better coincide with the theoretical results.

Figure 1: Output plots generated by the demo for the default parameters: the sample size histogram (left), and the MSE
vs. γ curve (right).

5 Conclusions

A demo that allows to visualize the impact of the sample size distribution on the one-shot federated
estimator was constructed. The demo compares the MSE of the plain federated estimator and FESC
to that of a centralized training, varying the mean of the sample size distribution. It shows that, in
order for the federated algorithms to attain the performance of the centralized training, the mean
number of samples per node has to be at least equal to the number of nodes in the training. In order
to comply with the max execution time of the IPOL journal, the simulation uses only one Montecarlo
iteration. To obtain results that better agree with the theory, more Montecarlo iterations should be
used.
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Appendix: Demo Pseudo-Code

Algorithm 2 Demo pseudo-code

1: Inputs: number of nodes m, features’ dimension d, sample-size distribution of the random
variable η.

2: for each γ = 0.2, 0.3, . . . , 1.2 do
3: n = (n1, . . . , nm)← m realizations of η (with E[η] = mγ)
4: x, y, θ∗ ← GenerateData(d, n)
5: λ← 1√

N
▷ ridge regularization parameter

6: θ̂c ← RidgeRegression(λ, x, y) ▷ centralized estimator
7: for each node i = 1, . . . ,m do
8: θ̂i ← RidgeRegression(λ, xi, yi)
9: end for
10: θ ← [θ1, . . . , θm]
11: θ̂s ←

∑
i
ni

N
θ̂i ▷ plain federated estimator

12: θ̂ŵ ← FESC(n, θ) ▷ FESC estimator
13: MSE(θ̂c)← ∥θ̂c − θ∗∥2, MSE(θ̂s)← ∥θ̂s − θ∗∥2, MSE(θ̂ŵ)← ∥θ̂ŵ − θ∗∥2
14: end for
15: plot(MSE(θ̂c), MSE(θ̂s), MSE(θ̂ŵ), γ)
16:

17: GenerateData(n, d): ▷ n = [n1, . . . , nm] sample sizes array, d features dimensions
18: θ∗ ← from U([0, 1]d)
19: for each node i = 1, . . . ,m do
20: xi ← from N (0, 1)⊗(ni,d)

21: ϵi ← from N (0, 1)⊗ni

22: yi ← xT
i θ

∗ + ϵi
23: end for
24: x← [x1, . . . , xm], y ← [y1, . . . , ym]
25: return x, y, θ∗

26:

27: RidgeRegression(λ, x, y): ▷ x: input features, y: targets, λ regularization weight
28: w∗ ← arg min

w
(∥y −Xw∥22 + λ ∗ ∥w∥22)

29: return w∗

30:

31: FESC(n, θ): ▷ n = [n1, . . . , nm] sample sizes array, θ parameters array
32: n← sort n in decreasing order.
33: K ← from Equation (10) and n
34: ŵ(i) ← from Equation (9) and K

35: θ̂ ←
∑

i ŵ(i)θ̂(i)
36: return θ̂
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[5] J. Konečný, H.B. McMahan, D. Ramage, and P. Richtárik, Federated optimization:
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