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Abstract

Guided Aggregation Net for End-to-end Stereo Matching (GANet) is a stereo matching method
that uses Deep Neural Networks (DNN) to compute a disparity map from a pair of images of a
scene. As other classic and DNN stereo methods, it follows the traditional stereo steps: dense
features are extracted from both images, the cost of matching the features at different disparities
is organized in a Cost Volume (CV) which is regularized by aggregation and local filtering and
finally a map with minimal cost is derived from the CV. In GANet, the aggregation of the CV
is done by a Semi-Global Guided Aggregation layer (SGA) which implements a differentiable
approximation of the well known Semi-Global Matching (SGM) algorithm. SGA is followed by
a Local Guided Aggregation layer (LGA) that performs a local filtering. SGA and LGA weights
are generated by an auxiliary guidance subnet fed with the original reference image and its
extracted features. This article presents an overview of GANet. An online demo, running on
CPU, is made available.

Source Code

The source code and documentation for this algorithm are available from the web page of
this article!. Usage instructions are included in the README file of the archive. The original
implementation of the method is available here?.

This is an MLBriefs article, the source code has not been reviewed!
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1 Introduction

Stereo vision is an area that has been extensively researched and multiple algorithms have been
proposed over the last decades [23, 12, 16]. Given two images of a scene from different known
viewpoints, the objective of stereo is to estimate the most likely 3D shape or depth that explains
those images. The change in viewpoint induces a relative displacement of the objects in the scene
causing that closer objects move more than far ones in the images of the pair. This apparent motion
between the two views (disparity) is inversely proportional to the depth.

In [23], the authors point out that most stereo algorithms perform these four steps: (1) matching
cost computation, (2) cost aggregation, (3) disparity computation, (4) disparity refinement.

The first step implies finding sparse or dense correspondences between the images. In the sparse
case, characteristic points along with their local features are extracted and compared. In the dense
approach, image patches in both images are compared computing the cost of matching the patches
for different possible disparities. The search of corresponding patches is simplified by the geometric
constraints of the stereo pair (epipolar constraints). Instead of a 2D search for correspondences, the
epipolar constraints restrict the search for corresponding image points from the entire image plane
to a single line. Moreover, the images can be resampled (stereo-rectification) in such a way that
corresponding points are located on the same row.

The matching information is organized usually in a cost volume that stores the costs C,(d) of
matching the position p of the reference image with p + d in the second image for all the considered
possible disparity values d.

Matching at the correct disparity is challenging in real life due to the photometric and geometric
distortions introduced by the change of viewpoint and by ambiguities due to occlusions, low texture
or repetitive patterns in the scene. The step of cost aggregation tries to overcome this difficulty by
imposing spatial coherence to the matching. This can be done by a simple local filtering of the cost
volume or, in a more comprehensive approach, by formulating a global energy minimization problem
with a regularization term that enforces the regularity of the disparity map.

Once the cost volume has been regularized, the disparity values can be estimated by processing the
volume using argmin (usually mentioned as winner-takes-all), soft-argmin or a maximum a posteriori
approximation.

The resulting disparity map may still have erroneous and missing values and several algorithms
(filtering, interpolation, inpainting and others) for the post-processing of depth and/or disparity
maps have been proposed in the literature [1].

1.1 Global Energy Minimization Methods

This section presents an overview of global energy minimization methods based on [8], where the
reader is referred to for more details.

Global methods formulate stereo matching as a global energy minimization problem that includes
a regularity term. The energy E is defined on the graph G = (V, )

E(D) = Z Cp(Dp) + Z V(Dp, Dg), (1)

peV (p,9)e€

where Cp(d) is a unary data term that represents the pixel-wise cost of matching p with disparity
d € D (the cost volume), where D = {dpin, - ,dmax} defined on a discrete search space (often
denoted label set). The pairwise terms V' (Dp, Dq) enforce smoothness of the solution by penalizing
changes of neighboring disparities on the edge set £, which is usually the 4-connected image graph.

Popular choices of regularity are
V(d,d)=1|d—d|, (2)
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or
0 ifd=d
V(d,d’): Pl ifld-d|=1 . (3)
P2 otherwise

The latter imposes a small penalty P1 for small jumps in disparity (up to one pixel), which are
common on slanted surfaces, and a constant penalty P2 (with P2 > P1) accounts for larger disparity
jumps.
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Figure 1. Approximations of the 2D MRF energy using trees [2, 4, 13, 9, 24]. Reproduced from [8].

The exact minimization of energy (1) on a 2D graph is NP-hard, except for some particular
cases [20, 15].

On the other hand, when defined on acyclic graphs, the energy (1) can be minimized exactly in
polynomial time using dynamic programming.

Tree-based dynamic programming approaches allow to incorporate more regularity (illustrated in
Figure 1), leading to better approximations of the problem (1). Some methods build a single tree that
spans the entire image [24]. Others construct trees that vary their grid structure with the position of
the pixel [4, 13, 9]. The Semi-Global Matching (SGM) algorithm [13] is equivalent to optimizing an
energy restricted to a star-shaped graph centered at the current pixel. Even though these algorithms
do not yield the most accurate reconstructions, they produce very fast and high-quality results.

1.2 Semi-Global Matching Algorithm

Semi-Global matching [13] proposes to approximately minimize energy (1) with the smoothness
term of (3). Semi-Global matching approximation consists in dividing the grid-shaped problem into
multiple (Ng,) one-dimensional problems defined on scanlines, which are straight lines that run
through the image in 4, 8 or 16 cardinal directions (illustrated in Figure 2). For simplicity, here we
will consider only Ny, = 4 directions.

For each cardinal direction r € {(1,0),(—1,0),(0,1),(0,—1)} SGM computes a matrix of costs
C#A. The costs CZ(p,d) are computed recursively starting from the image borders along a path in
the direction r

CA(p.d) = Co(d) + min(CA(p — x.d) + V(d,d)). (1)

This recursion is in fact a dynamic programming algorithm that solves the problem restricted to
the directed graph induced by the scanline p — Nr = {p — kr|k € N}.
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Figure 2: Semi-Global matching aggregates the results of scanline optimization performed along 8 or 16 different
orientations. This is equivalent to solving the problem restricted to a star-shaped graph associated to each pixel.
Figures reproduced from [13]. Caption text reproduced from [8].

In the case of SGM, with the regularity term as in (3), the aggregated cost volume along each of
the directions can be computed as

Cf(p - I‘,d),
CMp—r,d—1)+ P
A _ ‘ g ’ 7
C(r (p7d) _C(p,d)—len Of(p—r,d‘f'l)"i_Ph (5)

min C{(p — r,i) + P.

These costs computed in each direction r are then added to obtain an aggregated cost volume

S(p,d) = _ CHp.d) — (Naw — 1)Cyp(d). (6)

The subtraction of (Ng, —1)Cp(d) is an over-counting correction analogous to the correction proposed
by Drory et al. in [7] and that is not present in the original SGM description [13].

The final disparity for each pixel is then selected by winner-takes-all with respect to d on the
aggregated cost S(p,d). This amounts to minimizing a different problem at each pixel defined as a
restriction of energy (1) to the star-shaped graph illustrated in Figure 2.

2 GANet Method

The method addressed in this article, Guided Aggregation Net for End-to-end Stereo Matching
(GANet) [25] is a stereo matching method that uses Deep Neural Networks (DNN) to compute a
disparity map. Figure 3 depicts the architecture overview.

As other DNN methods [16] it follows the traditional stereo steps: dense features are extracted
from both images, the cost of matching the features at different disparities is organized in a Cost
Volume (CV), which is regularized by aggregation and local filtering and finally a map with minimal
cost is derived from the CV.

In most DNN based stereo methods, cost aggregation is done by 3D convolutions, usually in an
hourglass configuration [16]. 3D convolutions imply large memory requirements; the computational
burden restricts the size of the images that can be processed.

GANet, despite using also some 3D convolutions, takes a different approach for the aggregation
by introducing a Semi-Global Guided Aggregation layer (SGA) which implements a differentiable
approximation of Semi-Global Matching (SGM) [14]. SGA is followed by a Local Guided Aggregation
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(b) Semi-Global Guided Aggregation (SGA) (c) Local Guided Aggregation (LGA)

Figure 3: GANet architecture overview.
Reproduced from [25].

layer (LGA) that performs a local filtering. SGA and LGA weights are generated by an auxiliary
“guidance subnet” fed with the input reference image and its extracted features.

2.1 Semi-Global Guided Aggregation (SGA)

Inspired by SGM, GANet introduces the SGA step which supports backpropagation. The SGA step
that aggregates along a direction is

wi(p,T) - CrA(p —r,d),
Ao wa(p,r) - C(p —1,d = 1),
Cr(p.d) =Clp.d) tsumy 0y CAp —r,d + 1), "
wa(p,r) - max Ci(p —1,1).

and presents several differences with respect to (5).

The main difference with the SGM approach is that the weights are learnt and hence adaptive
and more flexible compared to the user-defined parameters from (3). Other changes can be noted
between (5) and (7): (a) the outer min is changed to a weighted sum making the step all convolutional,
(b) noting that the learning target of GANet is to maximize the probabilities at the ground truth
depths and not to directly minimize the matching costs, the authors also change the inner min to a
max.

Considering that the sum on a path can lead to large values, the weights are normalized. In
practice, (7) is finally implemented as

(wo(p, 1) - C(p, d),
wi(p,r) - C4(p —1,d),
CAp.d) =sum{ wo(p,r) - Cll(p—1,d = 1), st Y wipr)=1 (8)
ws(p,r) - CHp —r,d+1), i=0,1,2,3,4
| wa(p,T) - miafo‘(p—r,i).
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2.2 Network Architecture
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Figure 4 shows the main blocks of the GANet architecture and Table 1 lists their layers and param-
eters for the “GANet-deep” model.

2.3 Data

HxW l HxW HxW l

dispO disp1 disp2

X image pair y
HxWx3 HxWx3 HxWx3
conv_start Feature Feature
1 1/3Hx1/3Wx32 1/3Hx1/3Wx32
conv_refine conv_x conv_y
1/3Hx1/3Wx32
interpolate 1/3Hx1/3Wx32 1/3Hx1/3Wx32
HxWx32
bn-relu — GetCostVolume [~
HxWx32 HxWx32
Ccv
— concat [ 1/3Hx1/3Wx64x(MAX_DISP/3+1)
HxWx64
. SGA, LGA ) prediction .
Guidance weights CostAgreggation —r disp2
training estimated
disparity

l

loss

Figure 4: GANet architecture overview. The main blocks of the net are depicted in color.

GANet developers present in [25] the evaluation on three datasets: SceneFlow [18], KITTI2012 and
KITTI2015 [10, 19]. The SceneFlow dataset contains stereo frames rendered from various synthetic
sequences. The KITTI datasets comprise images from urban and road scenes taken from the view-
point of a car. In all the cases they are close range images where the camera, real or virtual, is close
to the scene. The main characteristics of the images of these datasets are shown in Tables 2 and 3.
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Layer id | Inputs | Layer description | Output tensor Output
Feature extraction
input image HxWx3
1 image conv HxWx32
2 1 conv 1/3Hx1/3Wx32
3 2 conv 1/3Hx1/3Wx32
4 3 conv 1/6Hx1/6Wx48
5 4 conv 1/12Hx1/12W x64
6 5 conv 1/24Hx1/24W x 96
7 6 conv 1/48Hx 1 /48W x 128
8 7,6 deconv / concat / conv 1/24Hx1/24W %96
9 8,5 deconv / concat / conv 1/12Hx1/12Wx 64
10 9,4 deconv / concat / conv 1/6Hx1/6Wx48
11 10,3 deconv / concat / conv 1/3Hx1/3Wx32
12 11,10 deconv / concat / conv 1/6Hx1/6W x48
13 12,9 deconv / concat / conv 1/12Hx1/12W x 64
14 13,8 deconv / concat / conv 1/24Hx1/24W x96
15 14,7 deconv / concat / conv 1/48Hx1/48Wx128
16 15,14 deconv / concat / conv 1/24Hx1/24W x96
17 16,13 deconv / concat / conv 1/12Hx1/12Wx64
18 17,12 deconv / concat / conv 1/6Hx1/6W x48
19 18,11 deconv / concat / conv 1/3Hx1/3Wx32 feature
Guidance branch
input concat 1 and up-sampled feature as input | HxWx64
(1) 3x3 conv HxWx16
(2) 5x5 conv, stride 3 1/3Hx1/3Wx32
(3) 3%3 conv 1/3Hx1/3Wx32
(4) 3x3 conv (no bn & relu) 1/3Hx1/3W x640
(5) split, reshape, normalize 4x1/3HXx1/3Wx5x32 sgl
(6) from (3), 3x3 conv 1/3Hx1/3Wx32
(7 3%3 conv (no bn & relu) 1/3Hx1/3W x640
(8) split, reshape, normalize 4x1/3Hx1/3Wx5x32 sg2
(9)-(11) (6) from (6), repeat (6)-(8) 4x1/3HXx1/3Wx5x32 sg3
(12) 9) from (9), 3x3 conv, stride 2 1/6Hx1/6Wx48
(13) 3x3 conv 1/6Hx1/6W x48
(14) 3%3 conv (no bn & relu) 1/6Hx1/6W x 960
(15) split, reshape, normalize 4x1/3Hx1/3Wx5x48 sgll
(16) (13) from (13), 3x3 conv 1/6Hx1/6W x48
17) 3x3 conv (no bn & relu) 1/6Hx1/6W x960
(18) split, reshape, normalize 4x1/6Hx1/6W x5x48 sgl2
(19)-(21) | (16) from (16), repeat (16)-(18) 4x1/6Hx1/6Wx5x48 sgl3
(22)-(24) | (19) from (19), repeat (19)-(21) 4x1/6Hx1/6W x5x48 sgl4
(25) (1) from (1), 3x3 conv HxWx16
(26) 3x3 conv (no bn & relu) HxWxT75 gl
(27)-(28) repeat (25)-(26) HxWxT75 1g2
Cost aggregation
input 4D cost volume 1/3Hx1/3Wx64x(MAX_DISP/3+1)
1) cv 3%x3x3, 3D conv 1/3Hx 1/3Wx32x(MAX_DISP/3+1)
2] [1] SGA layer: weight matrices from (5) 1/3Hx1/3Wx32x(MAX_DISP/3+1)
3x3x%3, 3D to 2D conv, upsampling HxWx(MAX_DISP+1)
output softmax, regression HxWx1 disp0 (for training loss)
[3] 2] 3x3x3, 3D conv, stride 2 1/6Hx1/6W x48x(MAX_DISP/6+1)
4] [3] SGA layer: weight matrices from (15) 1/6Hx1/6W x48x(MAX_DISP/6+1)
[5] (4] 3x3x3, 3D conv, stride 2 1/12Hx1/12W x 64x(MAX_DISP/12+1)
6] [5],4] 3x3x3, 3D deconv, stride 2 1/6Hx1/6W x48x(MAX_DISP/6+1)
(7] [6] SGA layer: weight matrices from (18) 1/6Hx1/6W x48x(MAX_DISP/6+1)
8] [71,12] 3%x3x3, 3D deconv, stride 2 1/3Hx1/3Wx32x(MAX_DISP/3+1)
9] 2] SGA layer: weight matrices from (8) 1/3Hx1/3Wx32x(MAX_DISP/3+1)
3x3x%3, 3D to 2D conv, upsampling HxWx(MAX_DISP+1)
output softmax, regression HxWx1 disp1 (for training loss)
[10] [9] 3x3x3, 3D conv, stride 2 1/6Hx1/6W x48x(MAX_DISP/6+1)
[11] [10] SGA layer: weight matrices from (21) 1/6Hx1/6Wx48x(MAX_DISP/6+1)
[12] [11] 3x3x3, 3D conv, stride 2 1/12Hx1/12W x 64x(MAX_DISP/12+1)
(13] [12],[11] | 3x3x3, 3D deconv, stride 2 1/6Hx1/6W x48x(MAX_DISP/6+1)
[14] 13] SGA layer: weight matrices from (24) 1/6Hx 1/6W x48x(MAX_DISP/6-+1)
[15] [13],]9] 3%x3x3, 3D deconv, stride 2 1/3Hx1/3Wx32x(MAX_DISP/3+1)
(16] [15] SGA layer: weight matrices from (11) 1/3Hx1/3Wx32x(MAX_DISP/3+1)
[17] [16] 3%x3x3, 3D to 2D conv, upsampling HxWx(MAX_DISP+1)
(18] [17] LGA layer: weight matrices from (26) HxWx(MAX_DISP+1)
[19] [18] softmax HXxWx(MAX_DISP+1)
(20] [19] LGA layer: weight matrices from (28) HxWx(MAX_DISP+1)
output [20] normalization, regression HxWx1 disp2 (estimated disparity)

Table 1: Network layers of the main blocks of the “GANet Deep” model
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Input stereo pair Target disparity
Product name “RGB images (finalpass)” “Disparity”
File format PNG PFM
Channels 3 (RGB) 1
Pixel depth (type) 8 bits (unsigned byte) 32 bits (floating point)
Image size 960x540 960x540

Table 2: SceneFlow data characteristics

Input stereo pair Target disparity
Channels 3 (RGB) 1
Pixel depth (type) 8 bits (unsigned byte) 32 bits (floating point)
Image size 1240x376 1240x376

Table 3: KITTI2012 and KITTI2015 data characteristics

2.4 Training

Table 4 presents the training parameters on the SceneFlow, KITTI2012 and KITTI2015 datasets.
The authors of the method have disclosed “GANet-deep” models trained on these datasets on their
Github page?.

Dataset SceneFlow KITTI2012 / KITTI2015
Training set size (stereo pairs) 35454 194 / 199
Hardware 8 GPUs (*) 8 GPUs (*)
Batch size 16 (**) 16 (**)
Image size (W x H) 576x240 random crops 576x240 random crops
Image preprocessing Per channel image normalization (***) Per channel image normalization (***)
Initial weights Random From training on SceneFlow
Optimizer Adam (B, = 0.9, B2 = 0.999) Adam (81 = 0.9, B> = 0.999)
Learning rate 0.001  0.001 (first 300 ep.), 0.0001 (remaining ep.)
Epochs 10 640
(*) P40 - 22GB (*) P40 - 22GB

(**) 8 for the disclosed pretrained models (**) 8 for the disclosed pretrained models

(***) subtract mean divide by std (***) substract mean divide by std

Table 4: Training parameters on SceneFlow, KITTI2012 and KITTI2015

3 Results

The GANet method has achieved very good results on the KITTI2012 and KITTI2015 [10, 19]. The
original model and other more recent variants based on GANet are placed high on the rankings of
these benchmarks®.

In the KITTI benchmarks, specific training on the concrete datasets was performed. But GANet
also exhibits great generalization abilities and can perform well on other datasets without a spe-
cific training or fine tuning. Some result examples are presented by the authors of GANet on the
Cityscapes [5] and the Middlebury [22] datasets on their Github page®. Figure 6 shows the result on
one of the images of the Middlebury dataset computed with the demo associated to this article (see
Section 4) that uses a model trained on SceneFlow.

The generalization ability of the method was also pointed out in [11] where a model trained on
SceneFlow (comprised of close range images) was used on satellite images with encouraging results.
Despite the current popularity of deep learning stereo matching methods, they are still not the

3https://github.com/feihuzhang/GANet [Accessed on June 2022].
Yhttp://www.cvlibs.net/datasets/kitti/eval_stereo.php [Accessed on June 2022].
Shttps://github.com/feihuzhang/GANet [Accessed on June 2022].
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preferred matching option in satellite stereo pipelines [6, 3, 21, 17]. Satellite images have specific
characteristics that hinder the adaptation of well established methods used on close range images:
a) the extremely small ratio between the depth range and the distance from the camera to the
scene implies working with a camera model that deviates from the standard pinhole and deals with
structures that occupy few pixels in the images; (b) the images for a certain location can only
be acquired through several sweeps which may be days, weeks or even months apart, introducing
variability in illumination, seasonal changes and man-made changes, among others. The variability
poses important challenges for the matching of correspondent regions across the images. Despite
the differences between the train and test sets, [11] shows that reconstruction results with GANet,
used as the matching step in the S2P [6] satellite pipeline, were comparable to the results with the
classic matching counterpart [9] currently in use in the pipeline. It is interesting to note that part
of the internal structure of GANet mimics SGM [14] which has been extensively used as the main
aggregation strategy in classic matching methods of satellite stereo pipelines.

4 Demo

The ITPOL demo related to this article can be accessed at the web page of this article®.

The demo uses the “GANet-deep” model trained on SceneFlow mentioned in Section 2.4.

To run the demo the users must first select a pair of images from the gallery, or upload their own
images. The gallery (see Figure 5) has also the ground truth for the disparity, which can be compared
with the result of an execution. In the case of uploaded images the ground truth is optional.

Adirondack Jadeplant PianoL

Select input(s) Upload data

Figure 5: Gallery of available image pairs. The demo also allows to upload images.

Results
Result

Reference image Reference image

Disparity (jet
colormap

Disparity (jet
colormap

Ground truth (jet

Ground truth (jet
colormap)

colormap)

Disparity (gray
colormap)

Disparity (gray
colormap)

Ground truth ggrayr

Ground truth ggrayr
colormap

colormap

Compare

Figure 6: Results section and a side-to-side comparison of the computed disparity and the ground truth.

Once the input images are selected, they can be inspected. Next, the parameter must be selected
and the Run button must be pressed. The max_disp parameter controls the number of disparity

Shttps://doi.org/10.5201/ipol.2023.441
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steps considered in the reconstruction. Smaller values of this parameter result in shorter running
time but coarser results.

When the execution is finished, the computed disparity map can be inspected in the Results
section by alternating the images (hovering over the buttons) or by a side-to-side comparison as
shown in Figure 6.

Image Credits

All images by the author except:

T Reproduced from (8]
Reproduced from [13]

Reproduced from [25]

Middlebury dataset [23] ”
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