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Abstract

This article presents an implementation of the chromatic aberration correction technique of
Chang et al. [Correction of Axial and Lateral Chromatic Aberration with False Color Filtering,
IEEE Transactions on Image Processing, 2013]. This method decomposes aberration correction
into a cascade of two 1D filters. The first one locally sharpens the red and blue edges such
that they have similar profiles to that of the green channel serving as guiding image throughout
restoration. The second one shifts the red and blue corrected edges to the location of the green
ones to remove the color fringes. These two successive estimates are ultimately merged into a
final prediction, free of most chromatic aberrations.

Source Code

An implementation of the algorithm, together with an online demo, are available at the asso-
ciated web page1. The code is implemented in Cython to accelerate the implementation of the
separable filters. The latest version of the code can be found at the Github repository2.

Keywords: chromatic aberration; separable filters

1 Introduction

Optical aberrations (OA) are unavoidable artifacts caused by the refraction of the light rays inside
the thick lens put in front of the camera sensor. In particular, chromatic aberrations (CA) are the
resulting unnatural color artifacts in the photograph caused by the wavelength-dependent paths of
the rays within the lens. These latter analog phenomena come in two sorts: lateral aberrations
causing a color point to have its red, green and blue components being focused at different locations
on the sensor plane, and the axial aberrations causing a color point to have its red, green and blue
components being focused at different depths along the optical axis. In the captured photograph, the
first causes color fringes next to the most salient edges, and is mostly located next to the corners,
i.e., the farther from the optical center. The latter generates color-dependent blur everywhere on
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Figure 1: Illustration of the chromatic aberrations in photographs. From left to right: a lateral aberration shifting the
colors foci on the sensor plane, an axial aberration shifting the colors foci along the optical axis, and a combination of both
displacing the red and blue foci with 3D shifts. We assume the sensor plane corresponds to that of the focus of the green
image.

the camera field-of-view. Figure 1 illustrates the two chromatic aberrations and the combination of
both, which is what is usually observed in the photographs.

The absence of the OA, in particular the CA, is an important criterion to assess of the visual
quality of a photograph. Their compensation can be achieved by using top-of-the-line lenses that may
be bulky and/or expensive, or by postprocessing algorithms in the digital camera pipeline, a more
accessible option for most photographers. An interesting line of work to OA removal that leverages the
properties of the aberrations consists in decomposing the correction into sharpening/blind deblurring
to compensate the loss of contrast [3, 8, 9, 5], and CA compensation by inverse warping or edge
correction [1, 7, 4].

In this article, we present the algorithmic solution of [2] targeting CA correction from a single
RGB image via edge-aware filtering. It consists in a series of two 1D filters applied sequentially to
the rows and columns of the image. They are designed to first make the red and blue edge profiles
fit that of the green, thus compensating local color-specific blurs, and, second, correct the differences
of color magnitudes next to the salient edges leading to color fringes. Since the second filtering stage
may over-compensate the color fringes by turning into gray color gradients that are actually part
of the scene, a final arbitration module combines the outputs of the two filtering stages into a final
image with correct color fringe correction. Figures 2, 3 and 4 are examples throughout the paper of
what can be expected after each stage of the algorithm.

We will strive throughout this article to alleviate confusions and ambiguities in the original paper
that made the reimplementation of this method tedious, especially because no official code is available
online. We hope this endeavor will facilitate future possible extensions based on this work.

The rest of this paper is organized as follows. In Section 2 we present the different stages of the
method, in Section 3 we present several qualitative results and discuss the strengths and limits of
the method, and finally in Section 4 we conclude this article.

2 Method

The presented technique first applies two 1D 2L + 1 filters: transient improvement (TI) and false
color (FC) filtering sequentially in the horizontal and vertical directions. The filter radius L is the
main parameter that should be tuned prior to running the algorithm, and may be different for the
horizontal and the vertical passes. We derive each individual equation throughout the section, and
summarize in Algorithm 5 the full approach.

1https://doi.org/10.5201/ipol.2023.443
2https://github.com/teboli/chromatic_aberration_filtering
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2.1 Transient Improvement Filter

The first stage is a kind of local edge sharpener for the red and blue channels Rin and Bin with the
corresponding green one Gin acting as a guide. Indeed, the widely-used Bayer pattern has twice the
amount of green pixels than red or blue ones, and the three color channels are focused at different
depths on the optical axis because of the wavelength-dependent refraction inside the lens. Thus,
most of the camera manufacturers make sure that the green channel is focused on the sensor plane.
The red and blue channels are thus focused at slightly different depths, causing additional defocus
blur for these two color channels [10].

In this stage, red and blue filtering are done in two intermediate steps. Since the red and blue
color corrections are the same and independent, the filter is applied to these two channels separately.
In the rest of this article, we will dub X either the red R or blue B channel to write once the
equations that are the same for these two colors. In this note, we will have to handle both 2D images
and 1D subarrays centered at each pixel location (i, j) in the image domain (that we also refer by

“1D slices” in the rest of the paper). We respectively call X the image, and X̂ the 2L+ 1 1D slices
within.

As for any window-based approach, a technical question is about the edges of the images. Nothing
is said in the original paper so we simply adopt a “valid” approach: We restore the inner sub-image
cropped by L on each side and simply copy-paste the missing edges from the original image. Other
edge-handling approaches may be adopted if needs be, without changing the core of the method.

The first step in TI filtering consists in computing a prefiltered image 2L + 1 horizontal slice,
defined for a location (i, j) in the input, and for ℓ in the set {−L, . . . , L}

X̂h
pf (ℓ) =

{
ρ0X

h
max(i, j) + ρ1Xin(i, j + ℓ) + ρ2X

h
min(i, j) if Xin(i, j) > Gin(i, j),

ρ0X
h
min(i, j) + ρ1Xin(i, j + ℓ) + ρ2X

h
max(i, j) otherwise,

(1)

with predefined weights ρ0, ρ1 and ρ2 summing to 1 to preserve the local mean value. In the original
paper [2], these values are set to −0.25, 1.375 and −0.125 respectively. The uneven shape of this local
filter is deemed important by the authors of the original paper to efficiently remove colored fringes
in practice. For instance in a blue fringe region, the dot product leads to 0.25Bmax to be larger than
0.125Bmin, thus to compensate the blue color, we have to give more importance to the removal of
Bmax. In the opposite case where the green color is more important than the blue one, removing
instead 0.125Bmax and 0, 25Bmin increase the value of the blue component, thus also turning the
pixel color into a more achromatic value. The explanation in the original paper is not clear so we
simply replicated their filter for the sake of reimplementation.

In this equation and in the rest of the paper, the index ℓ has negative values, whereas we should
query the values in the array X̂h

pf with indices in {0, 2L} instead. We use this slight abuse of notation
the make all the presentation more concise and consistent with the queried pixel location (i, j + ℓ)
in the neighborhood of (i, j).

In the equation above, Xh
min(i, j) and Xh

max(i, j) are local minimum and maximum values in the
image 1D slice of size 2L + 1 centered at pixel location (i, j). These local extrema are computed as
follows. We first compute local minimum and maximum values on half windows of size L+ 1 to the
left and the right of the pixel location (i, j) (included in both windows), and second select a max/min
pair that maximizes the contrast between the left and right parts of the 1D slice, i.e., the maximum

200



Fast Chromatic Aberration Correction with 1D Filters

contrast at pixel location (i, j) in the horizontal direction. Formally, for ℓ in {−L, . . . , L}

XE,max = max
0≤ℓ≤L

Xin(i, j + ℓ), (2a)

XE,min = min
0≤ℓ≤L

Xin(i, j + ℓ), (2b)

XW,max = max
−L≤ℓ≤0

Xin(i, j + ℓ), (2c)

XW,min = min
−L≤ℓ≤0

Xin(i, j + ℓ), (2d)

(
Xh

max

Xh
min

)
=


(
XE,max

XW,min

)
if XE,max −XW,min ≥ XW,max −XE,min(

XW,max

XE,min

)
otherwise.

(2e)

With these two local extrema, and after computing the prefiltered image slice with Equation (1), we

proceed to the second step of TI filtering. We clip the entries of X̂h
pf accordingly with the limits set

by Xh
min, X

h
max and the guiding green image Gin. The thresholds are tailored for each pixel location

(i, j) and for ℓ in {−L, . . . , L} as

(
X̂h

TI,max(ℓ)

X̂h
TI,min(ℓ)

)
=


(

Xin(i, j + ℓ)
max(Xh

min, Gin(i, j + ℓ))

)
if Xin(i, j) > Gin(i, j),(

min(Xh
max, Gin(i, j + ℓ))
Xin(i, j + ℓ)

)
otherwise.

(3)

The values in the prefiltered slice Xpf are finally clipped to prevent over and under-shooting, and
mimic the green channel’s edge profile, yielding the TI horizontally filtered signal centered in (i, j)
for ℓ in {−L, . . . , L}

X̂h
TI(ℓ) =


X̂h

TI,max(ℓ) if X̂h
pf (ℓ) > X̂h

TI,max(ℓ)

X̂h
TI,min(ℓ) if Xh

pf (ℓ) < X̂h
TI,min(ℓ)

X̂h
pf (ℓ) otherwise.

(4)

The central value of this 2L+1 image slice, is stored at the location (i, j) in the 2D array Xh
TI(i, j) =

X̂h
TI(0) (or X

v
TI and X̂v

TI during the vertical pass) that will be used in the final arbitration module.

Recall that X̂h
TI is a function of the location (i, j). We drop this dependency in what follows for

conciseness’ sake. We now detail how the TI-filtered slices are further processed with the FC filter.
This subroutine is summarized in Algorithm 1 illustrating the pseudo-code for the

TransientImprovement1D function.
In prevision of the arbitration stage in Section 2.3, we have to compute the images Xv

TI and

Xh
TI . After each call to TransientImprovement1D which returns the 2L+ 1 1D slices X̂v

TI and X̂h
TI

centered at the pixel location (i, j), we store in arrays Xv
TI and Xh

TI at the location (i, j) the central
value of the slice which is the locally filtered version of the channel Xin

Xh
TI(i, j) = X̂h

TI(0). (5)

This operation is repeated to the vertical directional image Xv
TI from the slices X̂v

TI . Recall that we
vary ℓ in {−L, . . . , L}, thus the index of the central value in the slice is 0.

2.2 False Color Filter

The second stage further refines the TI results by getting rid of the remaining color fringes next to
the most contrasted edges. In [2], the resulting color fringes are called “false colors”, for which a
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Algorithm 1: TransientImprovement1D

input : Color image Xin, Green image Gin, Radius L, Pixel location (i, j), Coefficients
(ρ0, ρ1, ρ2)

output: TI horizontally filtered 2L+ 1 1D slice X̂h
TI , Local horizontal minimum Xh

min(i, j),
Local horizontal maximum Xh

max(i, j)

X̂h
pf = zeros(2L+ 1) ▷ Initialize

X̂h
TI = zeros(2L+ 1) ▷ Initialize

XE,max = max0≤ℓ≤LXin(i, j + ℓ) ▷ Max on the right (Equation (2a))

XE,min = min0≤ℓ≤L Xin(i, j + ℓ) ▷ Min on the right (Equation (2b))

XW,max = max−L≤ℓ≤0Xin(i, j + ℓ) ▷ Max on the left (Equation (2c))

XW,min = min−L≤ℓ≤0Xin(i, j + ℓ) ▷ Min on the left side(Equation (2d))

if XE,max −XW,min > XW,max −XE,min then
Xh

max(i, j) = XE,max ▷ Select best max/min pair (Equation (2e))

Xh
min(i, j) = XW,min

else
Xh

max(i, j) = XW,max

Xh
min(i, j) = XE,min

if Xin(i, j) > Gin(i, j) then
for ℓ ∈ {−L, . . . , L} do

X̂pf (ℓ) = ρ0X
h
max(i, j) + ρ1Xin(i, j + ℓ) + ρ2X

h
min(i, j) ▷ Update prefiltered signal

(Equation (1))

X̂h
TI,max(ℓ) = Xin(i, j + ℓ)

X̂h
TI,min(ℓ) = max

(
Xh

min(i, j), Gin(i, j + ℓ)
)

▷ Compute local limits (Equation (3))

else
for ℓ ∈ {−L, . . . , L} do

X̂pf (ℓ) = ρ0X
h
min(i, j) + ρ1Xin(i, j + ℓ) + ρ2X

h
max(i, j) ▷ Update prefiltered signal

(Equation (1))

X̂h
TI,max(ℓ) = min

(
Xh

max(i, j), Gin(i, j + ℓ)
)

X̂h
TI,min(ℓ) = Xin(i, j + ℓ) ▷ Compute local limits (Equation (3))

for ℓ ∈ {−L, . . . , L} do

if X̂h
pf (ℓ) > X̂h

TI,max(ℓ) then

X̂h
TI(ℓ) = X̂h

TI,max(ℓ) ▷ Prediction clipping (Equation (4))

else if X̂h
pf (ℓ) < X̂h

TI,min(ℓ) then

X̂h
TI(ℓ) = X̂h

TI,min(ℓ)

else

X̂h
TI(ℓ) = X̂h

pf (ℓ)
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numerical definition is given. Chang et al. claim that in the false color regions: (i) the gradients of
each RGB channel is large since we look at salient edges, and (ii) the color differences between the
channels are large since the color-specific edges are not at the same locations. The FC filter discussed
below leverages these two remarks to efficiently get rid of the color fringes.

In this section again, we present only the process along the horizontal direction since in the
vertical direction it is exactly the same. In practice, the FC 1D filter is applied to transformed values
of the RGB images, converted to a luma-chroma domain. The chroma signals are in practice cheap
and effective detectors of the CA [7, 4]. Indeed, an edge in a natural image is mostly a contrasted
interface between two regions of different colors and intensity. The slopes of the transitions may vary
for each color but they should be at the same locations for the three channels. The color fringes
are caused by the color-specific displacement of this interface between two regions, leading to the
unnatural larger and brutal variations in the chroma signals that are thus good detectors of CA.

As a result, at the beginning if this stage the RGB signal produced by the TI earlier step is
first converted within a certain luma-chroma domain. In [2], the authors chose the following simple
conversion Gin(i, j + ℓ)

K̂h
b,T I(ℓ)

K̂h
r,T I(ℓ)

 =

0 1 0
0 −1 1
1 −1 0

 R̂h
TI(ℓ)

Gin(i, j + ℓ)

B̂h
TI(ℓ)

 . (6)

It leaves untouched the green signal that can be seen as the luma signal in the decomposition since
it serves as a guide of the image geometry in this work. It also separately blends the green image
with either the red or the blue one, which are the corresponding chroma signals of the decomposition
K̂h

r,T I(ℓ) and K̂h
b,T I(ℓ), with ℓ in {−L, . . . , L}. Recall that these image slices are implicit functions of

(i, j) with our notations.

The horizontal filter applied to the K̂h
r,TI or K̂h

b,T I component, simply dubbed K̂h
TI since the

following steps are the same for the two chroma images, takes the form at any location (i, j) of a
local average

Kh
FC(i, j) =

∑L
ℓ=−L w(ℓ)c

(
K̂h

TI(ℓ)
)

∑L
ℓ=−L w(ℓ)

, (7)

where Kh
FC is the horizontally-filtered image after false color correction. In this equation, the w’s

are the coefficients of a 2L + 1 1D filter specific at the location (i, j) in the image domain, and c is
a clipping function defined as

c
(
K̂h

TI(ℓ)
)
=


min(K̂h

TI(ℓ), K̂
h
TI(0)), if K̂h

TI(0) > 0,

max(K̂h
TI(ℓ), K̂

h
TI(0)), if K̂h

TI(0) < 0,

K̂h
TI(0) otherwise.

(8)

The 2L+ 1 filter’s coefficients read, for ℓ in {−L, . . . , L} and every pixel location (i, j)

w(ℓ) =
s(ℓ)

|∇hGin(i, j + ℓ)|+ |Yin(i, j + ℓ)− Yin(i, j)|+DX(ℓ)
, (9)

where

s(ℓ) =

{
1 if [sign(K̂h

TI(0)) = sign(K̂h
TI(ℓ))] or |K̂h

TI(ℓ)| < τ,
0 otherwise,

(10)

and
DX(ℓ) = max(|∇hXin(i, j + ℓ)|, αX |K̂h

TI(ℓ)|). (11)

As stated above for the slices X̂h
TI , the weights w in the merging scheme (7) are dependent on the

local position (i, j). In the equations above, ∇hGin is the horizontal gradient of the input green
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channel, Yin = 0.299Rin + 0.587Gin + 0.114Bin is the luma channel of Iin. In the original paper,
no details are given regarding the computation of the gradients ∇hG and ∇hXin. We simply used
a finite-difference scheme corresponding to the convolution with filters [−1, 1] and [−1, 1]⊤. This
simple approach leads to satisfactory enough visual results in practice.

The binary weight s discards, from the averaging in Equation (7), the pixels in the 1D slice
that have chroma values deemed too different from that of the pixel of interest when their signs are
different. Yet, the nearly achromatic pixels with possibly a different sign, i.e., Kh

TI is close to 0 up
to the threshold τ , are also retained. With this scheme, if a pixel is accepted by s, its weight is then
inversely proportional to the finite differences or the gradients of the guide images Gin and Yin, and
the chroma contrasts estimated either by the image K̂h

TI or the gradients of Xin, i.e., large variations
of the colors and geometry. Thus, the more different the color of a neighboring pixel is, the smaller w
will be, which corresponds to rejecting the pixels that are parts of the false color regions as claimed
by the definition we gave earlier.

Lastly, αX is a pre-defined scalar introduced by the authors to scale the ℓ-th entry of the TI-
filtered slice K̂h

TI . In the original paper, the authors handtuned the values for the red and blue
channels to be respectively αR = 0.5 and αB = 1.0. The decision of choosing different values for each
color is not explained, we simply employ this strategy to be as faithful as possible to the original
work, but other values may also be valid in practice. We have not explored such direction during
our reimplementation.

Filtering in the horizontal direction Kh
TI and vertical direction Kv

TI ultimately leads to two images
Kh

FC and Kv
FC . The final corrected chroma image KFC is built by selecting the most achromatic

pixel, i.e., selecting the most possible aggressive color correction, at each location (i, j) among the
vertical and horizontal images. Formally, it reads

KFC(i, j) = min(|Kh
FC(i, j)|, |Kv

FC(i, j)|). (12)

Applied to the red and blue chroma components, Equation (7) to (12) yield two filtered chroma
images Kr,FC and Kb,FC . In the next section, we present how to efficiently merge the predictions of
the TI and FC stages into the final estimate.

This subroutine is summarized in Algorithm 2 illustrating the pseudo-code for the FalseColor1D
function.

2.3 Arbitration

Since the FC stage may over-compensate the correction of color fringes, leading to too-achromatic
edges where in the latent signal there are actually colored elements, we must combine the results
from the TI and FC stages into a single prediction with reasonable chroma signals. This stage is
called “arbitration” in the original paper [2].

First, the TI stage results in two independently filtered images Kh
TI and Kv

TI , via the slice-to-
image relationship in Equation (5), that are further gathered into a single frame in a manner similar
to Equation (12) for all pixel location (i, j)

KTI(i, j) = min(|Kh
TI(i, j)|, |Kv

TI(i, j)|), (13)

As a result, KTI is an image with the most achromatic content from the vertical and horizontal
independent estimates. Similar to the previous section, KTI refers indistinctly to Kr,T I or Kb,T I , i.e.,
the chroma images predicted by the TI stage.

For the sake of the arbitration process, we also have to build the local minima and maxima images
Xmax and Xmin from the directional images Xv

max, X
vmin, Xh

max and Xh
min. It is not detailed in the
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Algorithm 2: FalseColor1D

input : Color input Xin, Green input Gin, Luma input Yin, TI color slice X̂h
TI , Radius L,

Pixel location (i, j), Color weight αX , Contrast threshold τ
output: FC horizontally filtered entry Kh

FC(i, j)
s = zeros(2L+ 1) ▷ Initialize

for ℓ ∈ {−L, . . . , L} do

K̂h
TI(ℓ) = X̂h

TI(ℓ)−Gin(i, j + ℓ) ▷ Color conversion (Equation (6))

for ℓ ∈ {−L, . . . , L} do

if [sign(K̂h
TI(0)) = sign(K̂h

TI(ℓ))] or |K̂h
TI(ℓ)| < τ then

s(ℓ) = 1 ▷ Update binary rejection (Equation (10))

DX(ℓ) = max
(
|∇hXin(i, j + ℓ)|, αX |K̂h

TI(ℓ)|
)

▷ Local maximum color contrast (Equation (11))

w(ℓ) =
s(ℓ)

(|∇hGin(i, j + ℓ)|+ Yin(i, j + ℓ)− Yin(i, j) +DX(ℓ))
▷ Build weights (Equation (9))

if K̂h
TI(0) > 0 then

c(Kh
TI(ℓ)) = min

(
K̂h

TI(ℓ), K̂
h
TI(0)

)
▷ Input clipping (Equation (8))

else if K̂h
TI(0) < 0 then

c(Kh
TI(ℓ)) = max

(
K̂h

TI(ℓ), K̂
h
TI(0)

)
else

c(Kh
TI(ℓ)) = K̂h

TI(ℓ)

Kh
FC(i, j) =

∑L
ℓ=−Lw(l)c(K

h
TI(ℓ))/

∑L
ℓ=−L w(ℓ) ▷ Local averaging (Equation (7))

original publication, and we propose the simple following approach that works well in practice for all
pixel location (i, j)

Xmin(i, j) = min
(
Xv

min(i, j), X
h
min(i, j)

)
, (14a)

Xmax(i, j) = max
(
Xv

max(i, j), X
h
max(i, j)

)
. (14b)

Based on these intermediate fused images, the arbitration takes the form of a pixelwise convex sum
of the TI and FC results

Kout(i, j) = (1− αK(i, j))KTI(i, j) + αK(i, j)KFC(i, j). (15)

The fusion scheme is indeed simple, the bulk of this part being computing the local weights αK that
are specific to each location (i, j) in the image domain. These coefficients measure the contributions
of the images FC and TI based on which image has the most important contrasts to prevent grayish
colors, particularly favored by the FC stage.

The arbitration process, through the design of αK , leverages two additional properties of false
color regions: (iii) the false color regions are located next to the most contrasted edges, and (iv)
the false colors are mostly spotted next to the latent achromatic edges. Property (iii) differs from
(i) since it states that the aberrations will be even more pronounced next to the edges that contain
enough high frequencies in their spectra. Consequently, an extra care must be given to these edges
preserved from blur. Property (iv) claims that the color fringes are more visible at edges where the
interface between two regions is at the same location for the three channels, otherwise we cannot
as easily tell if the color fringes are caused by the signal or the aberrations. Chang et al. [2] thus
proposed a weight function of the contrast, and the extrema previously computed during the TI stage
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that further enforces these two additional properties. Recall that the two first ones resulted in KFC .
The weights αK leveraging properties (iii) and (iv) are defined as

αK(i, j) = min

(
max(Xcontrast(i, j), 0)

min(max(Xmax(i, j)−Xmin(i, j), γ2), γ1)
, 1

)
, (16)

where Xmax(i, j) and Xmin(i, j) are the pointwise respective maximum and minimum values of the
pairs

(
Xh

max(i, j), X
v
max(i, j)

)
, and

(
Xh

min(i, j), X
v
min(i, j)

)
, computed during the TI stage in Equa-

tion (2e). The clipping values γ1 and γ2 are scalars set in the original paper to 0.5 and 0.25 respec-
tively.

The Xcontrast image is obtained with similar local max/min computations shown below for all
pixel location (i, j)

X ′
E,max = max

0≤ℓ≤L
Xin(i, j + ℓ)− βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)|, (17a)

X ′
E,min = min

0≤ℓ≤L
Xin(i, j + ℓ) + βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)|, (17b)

X ′
W,max = max

−L≤ℓ≤0
Xin(i, j + ℓ)− βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)|, (17c)

X ′
W,min = min

−L≤ℓ≤0
Xin(i, j + ℓ) + βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)|, (17d)

Xh
contrast(i, j) =

{
X ′

E,max −X ′
W,min if X ′

E,max −X ′
W,min ≥ X ′

W,max −X ′
E,min

X ′
W,max −X ′

E,min otherwise,
(17e)

In the equations above, and in contrast to Equations (2a), (2b), (2c) and (2d), the local computations
of the max and min values on the half windows now features regularization weights βR and βB

considering the differences of intensities between the input green and red/blue channels. These
additional terms in the half-windowed local max/min values are here to measure if a local signal is
actually an achromatic edge. Similarly to Equation (2e), a pair of max/min values is chosen to detect
the maximum contrast between the left and right-parts of the 1D slice in Equation (17e), resulting in
the horizontal contrast image Xh

contrast. Repeated for all the locations but with slices on the vertical
direction yields the companion vertical image Xv

contrast.
The two images Xh

contrast and Xv
contrast are finally merged by selecting the larger value of contrast

between the two directions for all pixel location (i, j) as follows

Xcontrast(i, j) =

{
Xh

contrast(i, j) if Xh
contrast(i, j) > Xv

contrast(i, j),
Xv

contrast(i, j) otherwise.
(18)

This blended image is finally fused into Equation (16) to predict the local weights αK(i, j). After
applying the convex sum of Equation (15), the arbitrated image is converted back to the RGB format
for all pixel location (i, j) Rout(i, j)

Gout(i, j)
Bout(i, j)

 =

1 0 1
1 0 0
1 1 0

 Gin(i, j)
Kb,out(i, j)
Kr,out(i, j)

 , (19)

which yields the final prediction.
This subroutine is summarized in Algorithm 4 illustrating the pseudo-code for the Arbitration

function. We also present in Algorithm 3 the pseudo-code of the companion subroutine dubbed
Contrast1D for computing the contrast array Xh

contrast.
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Algorithm 3: Contrast1D

input : Input color Xin, Green color Gin, Gradient weight βX , Radius L, Pixel location (i, j)
output: Directional contrast entry Xh

contrast(i, j)
XE,max = max

0≤ℓ≤L
Xin(i, j + ℓ)− βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)| ▷ Max on the right (Equation (17a))

XE,min = min
0≤ℓ≤L

Xin(i, j + ℓ) + βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)| ▷ Min on the right (Equation (17b))

XW,max = max
−L≤ℓ≤0

Xin(i, j + ℓ)− βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)| ▷ Max on the left (Equation (17c))

XW,min = min
−L≤ℓ≤0

Xin(i, j + ℓ) + βX |Xin(i, j + ℓ)−Gin(i, j + ℓ)| ▷ Min on the left (Equation (17d))

Xh
contrast(i, j) = max (XE,max −XW,min, XW,max −XE,min) ▷ Select best max/min pair (Equation (17e))

Algorithm 4: Arbitration

input : Input color Xin, Green color Gin, TI image KTI , FC image KFC , Local maxima
Xmax, Local minima Xmin, Gradient weight βX , Contrast coefficients (γ1, γ2), Window
radii (Lhor, Lver)

output: Arbitrated image Kout

Xcontrast = zeros like(Xin) ▷ Initialize

Kout = zeros like(Xin) ▷ Initialize

foreach pixel position (i, j) do
/* Computing the directional contrast arrays (Algorithm 3) */

Xh
contrast(i, j) = Contrast1D(Xin, Gin, βX , Lhor, (i, j))

Xv
contrast(i, j) = Contrast1D(Xin, Gin, βX , Lver, (i, j))

/* Building pixelwise weights and arbitration */

Xcontrast(i, j) = max(Xh
contrast(i, j), X

v
contrast(i, j)) ▷ Merge directional contrasts (Equation (18))

αK(i, j) = min
(

max(Xcontrast(i,j),0)
min(max(Xmax(i,j)−Xmin(i,j),γ2),γ1)

, 1
)

▷ Compute the arbitration weight (Equation (16))

Kout(i, j) = (1− αK(i, j))KTI(i, j) + αK(i, j)KFC(i, j) ▷ Arbitration (Equation (15))

2.4 Full Approach

We present in Algorithm 5 the full approach, built on top of Algorithms 1, 2, 3 and 4. The full
method takes as input the aberrated RGB Iin and auxiliary parameters for computing the 1D filters,
and returns a RGB aberration-compensated variant Iout of the same dimension.
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Algorithm 5: Method

input : Image Iin, Horizontal size Lhor, Vertical size Lver, Coefficients (ρ0, ρ1, ρ2), Contrast
threshold τ , Color weights (αR, αB), Gradient weights (βR, βB), Contrast coefficients
(γ1, γ2)

output: Corrected image Iout
Rin, Gin, Bin = Iin ▷ Extract the three channels

Yin = 0.299Rin + 0.587Gin + 0.114Bin ▷ Luma (Y in YUV format) of the input for FC filtering

Kr,T I = zeros like(Rin) ▷ Initialize

Kr,T I = zeros like(Bin) ▷ Initialize

Kr,FC = zeros like(Rin) ▷ Initialize

Kb,FC = zeros like(Bin) ▷ Initialize

Rmin = zeros like(Rin) ▷ Initialize

Rmax = zeros like(Rin) ▷ Initialize

Bmin = zeros like(Bin) ▷ Initialize

Bmax = zeros like(Bin) ▷ Initialize

foreach pixel location (i, j) do
/* TI horizontal filtering (Section 2.1 and Algorithm 1) */

R̂h
TI , R

h
min(i, j), R

h
max(i, j) = TransientImprovement1D (Rin, Gin, Lhor, (i, j), (ρ0, ρ1, ρ2))

B̂h
TI , B

h
min(i, j), B

h
max(i, j) = TransientImprovement1D (Bin, Gin, Lhor, (i, j), (ρ0, ρ1, ρ2))

/* FC horizontal filtering (Section 2.2 and Algorithm 2) */

Kh
r,FC(i, j) = FalseColor1D

(
Rin, Gin, Yin, R̂

h
TI , Lhor, (i, j), αR, τ

)
Kh

b,FC(i, j) = FalseColor1D
(
Bin, Gin, Yin, B̂

h
TI , Lhor, (i, j), αB, τ

)
/* TI vertical filtering (Section 2.1 and Algorithm 1) */

R̂v
TI , R

v
min(i, j), R

v
max(i, j) = TransientImprovement1D

(
R⊤

in, G
⊤
in, Lver, (i, j), (ρ0, ρ1, ρ2)

)
B̂v

TI , B
v
min(i, j), B

v
max(i, j) = TransientImprovement1D

(
B⊤

in, G
⊤
in, Lver, (i, j), (ρ0, ρ1, ρ2)

)
/* FC vertical filtering (Section 2.2 and Algorithm 2) */

Kv
r,FC(i, j) = FalseColor1D

(
R⊤

in, G
⊤
in, Y

⊤
in , R̂

b
TI , Lver, (i, j), αR, τ

)
Kv

b,FC(i, j) = FalseColor1D
(
B⊤

in, G
⊤
in, Y

⊤
in , B̂

v
TI , Lver, (i, j), αB, τ

)
/* Merge horizontal and vertical TI predictions (Equation (13)) + color conversion (Equation (6)) */

Kr,T I(i, j) = min
(
R̂h

TI(0), R̂
v
TI(0)

)
−Gin(i, j)

Kb,T I(i, j) = min
(
B̂h

TI(0), B̂
v
TI(0)

)
−Gin(i, j)

/* Merge horizontal and vertical local maxima and minima */

Rmin(i, j) = min
(
Rh

min(i, j), R
v
min(i, j)

)
Rmax(i, j) = max

(
Rh

max(i, j), R
v
max(i, j)

)
Bmin(i, j) = min

(
Bh

min(i, j), B
v
min(i, j)

)
Bmax(i, j) = max

(
Bh

max(i, j), B
v
max(i, j)

)
/* Merge horizontal and vertical FC predictions (12) */

Kr,FC(i, j) = min
(
K̂h

r,FC(i, j), (K̂
v
r,FC)

⊤(i, j)
)

Kb,FC(i, j) = min
(
K̂h

b,FC(i, j), (K̂
v
b,FC)

⊤(i, j)
)

/* Arbitration stage (Section 2.3 and Algorithm 4) */

Kr,out = Arbitration (Rin, Gin, Kr,T I , Kr,FC , Rmax, Rmin, βR, γ1, γ2, Lhor, Lver)
Kb,out = Arbitration (Bin, Gin, Kb,T I , Kb,FC , Bmax, Bmin, βB, γ1, γ2, Lhor, Lver)
Iout = [Kr,out +Gin, Gin, Kb,out +Gin] ▷ inverse color conversion (Equation (19))
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3 Experiments

We run the code on the companion demo on three real-world images to illustrate the pros and cons of
this technique. We also show the intermediate results of the TI and FC stages, prior to arbitration,
to qualitatively monitor the impact of each step.

We run the demo with the default advanced parameters: τ = 0.059, αR = 0.5, αB = 1.0,
βR = 1.0, βB = 0.25, γ1 = 0.5, γ2 = 0.25, ρ0 = −0.25, ρ1 = 1.375 and ρ2 = −0.125. Note that, in
most cases, these values are relevant, and we assume the users will hardly have to tune them. The
most important parameters are the window radii that have two values for the horizontal and vertical
directions: Lhor and Lver. In practice, these values are by default set to 7px and 4px, and handle
well sharper color fringes caused by lateral chromatic aberrations. In case of severe aberrations, we
advise to increase these values such that the correction window contains the whole support of the
fringes. In all the examples, the algorithm runs in less than one second, even for several megapixel
images. The algorithm is naturally parallelizable, which explains the good speed of the method.

Lateral CA correction. When there are more important lateral CA than axial CA, most of the
restoration work is done by the FC stage. We show in Figures 2 and 3 two instances of almost-pure
lateral CA compensation from the Facade and Bridge images from [9] and [8] respectively.

(a) Input. (b) TI filtering.

(c) FC filtering. (d) Output.

Figure 2: Example of pure lateral CA removal from the Facade image from [9]. The TI stage slightly narrows the color
fringes but the bulk of the work is performed by the FC stage that gets rid of most fringes.

In both examples, it can be observed that the TI result is almost identical to the input image,
confirming the relatively uselessness of the TI stage for purely-lateral aberration removal. However,
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the FC-filtered result does not contain the color fringes, at the cost of wiping out colors of the signal
as well. For instance note the loss of colors on the “Merlon” sign on the boat in Figure 3. This is
less pronounced in the other example that has no noticeable colors besides the aberrations next to
the window frames. The final images after arbitration show no fringes, and even bring the colors of
the latent clean image back in the final estimates compared to their FC counterparts. This validates
the importance of the validation step in the restoration process.

(a) Input. (b) TI filtering.

(c) FC filtering. (d) Output.

Figure 3: Example of pure lateral CA removal from the Boat image from [8]. The TI stage slightly narrows the color fringes
but most of the work is performed by the FC stage that gets rid of most fringes. Note however that “true” colors are
also removed by the FC stage, highlighting the importance of the final arbitration stage that restores the red color on the
“Merlon” boat sign.

Axial CA correction. In the context of more important axial over lateral CA, the TI stage be-
comes more important in the restoration process. When inspecting Figure 4 featuring the Telephone
image from [6], it can be seen that the TI stage noticeably reduces the support of the axial CA next
to the salient edges such as the writings, or at the silver/black color interface of the phone booth. The
subsequent FC step removes the remaining artefacts that are slim color fringes, especially compared
to that of the input image. In this case, both filtering steps equally contributed to the restoration
process. Note that the final result retains some of the aberrations wiped out by the FC stage, and
thus may appear slightly worse, but it is because the latent image in this crop is mainly monochro-
matic, thus favoring the FC solution. However, as noted in the previous examples, the arbitration
stage is crucial to retain some of the colored elements that may be generally over-compensated by
the FC stage.
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(a) Input. (b) TI filtering.

(c) FC filtering. (d) Output.

Figure 4: Example of pure axial CA removal from the Telephone image from [6]. In that case, the TI stage importantly
diminishes the CA in the image. The subsequent FC step gets rid of the remaining fringes. The method overall returns a
more likely image compared to the input.

Limitations. The presented method is not perfect and has a couple of flaws that we list below.
The first con concerns the choice of the Lhor and Lver parameters, setting the size of the filters’
supports. Figure 5 compares on the Coins image the result with the default parameters Lver = 4px
and Lhor = 7px compared with the one of the previous paragraph: Lver = 8px and Lhor = 14px.
One can see that the support of the filter for the default parameters is too short, and thus the result
retains some artifacts that are not seen in the image with the filters with the larger supports. Indeed,
setting larger values for Lver and Lhor as a rule of thumb may alleviate the problems but in that case
the filter’s support may be too large and thus take into account other edges in the neighborhood that
may alter the prediction. There is thus no universal choice of parameters for a faster and efficient
algorithm.

The second con of the method is the number of hyper-parameters. Besides the simple-to-
understand parameters Lhor and Lver, there are several thresholds and weighting terms that are
hard to handtune. Their tuning is however crucial to achieve satisfactory results. Figure 6 shows a
consequence of a bad choice of these advanced parameters, that are here set to the default values.
When not well-tuned, the parameters may lead to washed-out colors like the red cars in the figure.
This was discussed in the previous examples such as that of the boat in Figure 3. Better tuning may
alleviate the result but at the cost of considering 10 parameters, which is a combinatorial problem on
its own. More recent works such as [5], better at disambiguating the part of chromatic aberrations
in an aberrated image, may lead to better results.
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(a) Input. (b) Lver = 4px, Lhor = 7px. (c) Lver = 8px, Lhor = 14px.

Figure 5: Example of a failure case caused by too small values of Lver and Lhor in the Telephone image. In the middle
image, we use the default parameters recommended in [2], whereas in the right image we doubled these values. Since we
address here axial CA removal that may blur the edges on a large area, it is important to use a larger filter size like in the
right image. Otherwise the final result retains colored artifacts like in the middle image.

(a) Input. (b) TI filtering.

(c) FC filtering. (d) Output.

Figure 6: Example of a failure case caused by the advanced parameters in the FC stage in the Bridge image from [9].
Despite satisfactory correction of artifacts next to the poles on the right, the cars on the left have less pronounced red colors
after correction. This is caused by the FC stage that considers these too-strong colors to be artifacts instead of part of the
signal. This behavior may be lessened with more careful, but cumbersome, tuning of the advanced parameters.

4 Conclusion

In this article, we have presented a lightweight and fast algorithm for chromatic aberration compen-
sation in a single RGB image. It consists of a series of two 1D filters that first gradually sharpen the
red and blue edges, and second compensate the remaining color fringes in a luma-chroma domain
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with local adaptive averages. The two intermediate estimates are merged in a final arbitration stage.
We have illustrated in the experimental section the performance of the technique, with the specific
behaviors of the approach for pure axial or lateral chromatic aberrations in real-world images, draw-
ing conclusions on the usefulness of each 1D filter. We finally show limitations of the technique, in
particular the important number of parameters that are hard to fine-tune altogether.
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