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Abstract

Multi-stage progressive image restoration network (MPRNet) is a three-stage CNN (convolu-
tional neural network) for image restoration. MPRNet has been shown to provide high per-
formance gains on several datasets for a range of image restoration problems including image
denoising, deblurring, and deraining. The network is interesting because it manages to remove
the three kinds of artifacts with a single architecture. Here, we provide an overview of the
network and study its performance and computational complexity in comparison with other
state-of-the-art methods.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. The source code is borrowed from the MPRNet original code and pre-trained models2.
Usage instructions are included in the README.txt file of the archive.
This is an MLBriefs article, the source code has not been reviewed!

Keywords: image restoration; denoising; deblurring; deraining

1 Introduction

Image restoration is about restoring clean images by removing distortions such as blur, noise, and
raining artifacts. There are several common causes of these artifacts in images. For instance blur
artifacts may result from camera movement, subject movement, scattered light distortion, insufficient
depth of field, and lens softness. Noise refers to the random appearance of undesired traces and
variations in the brightness or color information. Images are inevitably contaminated by noise during
acquisition and transmission. The level of noise typically varies with the length of exposure, physical

1https://doi.org/10.5201/ipol.2023.446
2https://github.com/swz30/MPRNet
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temperature, and sensitivity setting of the camera. Depending on the noise source there are a few
types of noises, such as: white Gaussian noise, impulse noise, periodic noise and banding noise. Here,
we focus on Gaussian noise as a common sensor and electronic circuit noise that may also arise due
to poor illumination or high temperature. Gaussian noise is a random statistical noise having a
normal probability density function. Finally, in applications like video surveillance and self-driving
cars, one has to process images and videos containing undesirable raining artifacts that may affect
performance of the processing algorithm. Therefore, pre-processing steps to remove these artifacts
are crucial.

Deblurring is about recovering a sharp image from a blurred input, and is inherently an in-
verse problem and hence does not have a unique solution. Image deblurring has been studied for
decades. There are numerous image deblurring algorithms, from classic methods, e.g. [2, 4, 11],
which mathematically estimate the blur kernel and then reverse its effect, to more recent machine
learning based methods which benefit from recent advances in machine learning and deep learning,
e.g. [17, 21, 23, 16, 5]. Anger et al [2] provide a blind kernel estimation and deblurring method
based on the `0 gradient prior. The first step of this method is to estimate the blur kernel by al-
ternating between a sharp image prediction using the `0 prior on the gradient image and a kernel
estimation in a multi-scale manner. Once the kernel is estimated, a sharp image is predicted using
a standard non-blind deconvolution method and the estimated kernel from the previous stage. For
more mathematical details of the method, we refer to [2]. Since our main focus in this study is
analyzing the MPRNet method [21] in deblurring mode, we compare the results experimentally with
the other two deep networks, i.e. scale-recurrent network (SRN) [17] and multi-input multi-output
U-net (MIMO-UNet) [5].

SRN [17] is one of the previous efforts besides MPRNet to bring the multistage design to image
deblurring. Multi-scale networks followed the coarse-to-fine approaches in optimization based frame-
works. SRN employs an encoder-decoder architecture which is effective in encoding broad contextual
information but unreliable in preserving spatial image details. On the other hand, compared to other
multi-stage methods SRN has a simpler network structure and a smaller number of parameters and
hence, it is easier to train. Differently, MIMO-UNet [5] adopted the single-stage design of U-net
and achieved competitive results. We also compare MPRNet results with MIMO-UNet as another
coarse-to-fine network. MIMO-UNet proposed an architecture that facilitates information flow across
different image resolutions in a multi-scale U-net, but it introduced complicated connections between
various sized feature maps.

Additive white Gaussian noise is the classic noise model adapted to most digital cameras. The
model assumes that noise at each pixel is an independent additive Gaussian normal random variable.
Its variance is often assumed to be constant over all pixels, which is ensured if a previous Anscombe
transform has been applied to the raw image. There are a wide range of classic image denoisers that
try to model image noise mathematically, e.g. [6, 12, 8, 20]; and there are also many recent solutions
motivated by recent advances in machine learning and deep learning, e.g. [21, 18, 7, 3]. Multi-scale
discrete cosine transform (DCT) denoising is a classic denoising algorithm with low computational
complexity [12]. Here, it is employed in our experimental results section for comparison. The
original DCT denoising algorithm starts by thresholding a patch-wise DCT of the noisy input image
and then aggregating the resulting patches. There are variants of DCT denoising. A two-step multi-
scale version proposed in [12] enhances the performance of the original method significantly and also
reduces halo artifacts in the denoised image.

We compare MPRNet denoising performance with non-linear activation free network (NAFNet) [3]
that is trained on a similar dataset. The NAFNet is a deep learning model for image restoration
based on the U-shaped network and contains a variable number of width and number of enclos-
ing/decoding/middle blocks. The architecture has been shown to maintain a relatively small memory
footprint while achieving exceptional output performance.
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The last restoration mode of MPRNet is deraining. Beside MPRNet, image deraining has been
studied in a few other efforts [22, 9, 13]. In this paper, we compare the performance of the density-
aware image de-raining method with a multistream dense network (DID-MDN) [22] method. DID-
MDN consists of two main stages architecture: a residual-aware rain-density classification (i.e. heavy,
medium or light) and a multi-stream densely-connected network rain streak removal. For more
technical details, we refer to [22].

In this paper, we first explain the MPRNet algorithm with complete detail in Section 2. Then,
in Section 3 the MPRNet method is compared with three recent well-known restoration algorithms:
SRN [17] and MIMO-UNet [5] deblurring, NAFNet [3] denoising and DID-MDN deraining [22].
Section 4 concludes the paper.

2 MPRNet Restoration Network Architecture

Over the past few years, data-driven CNN architectures have demonstrated superiority over conven-
tional restoration approaches. In this paper, we are interested in a CNN model that can be applied
to three restoration tasks: deblurring, denoising, and deraining. The multi-stage progressive image
restoration network (MPRNet) [21] consists of three stages to progressively restore images, as shown
in Figure 1. The first two stages have an encoder-decoder model based on the standard U-net [15]
and learn the full contextual information of the input image. In the last stage, the original resolu-
tion subnetwork (ORSNet) operates at the original image resolution to generate spatially accurate
outputs for a pixel-to-pixel correspondence between the input and output images.

Figure 1: Multi-stage architecture for progressive image restoration of MPRNet (printed from [21]). The input image is
divided into non-overlapping patches: four for stage 1, two for stage 2 and the original image for the final stage.

Among convolutional networks, encoder-decoder-based U-net architectures have been mainly
studied for restoration due to their hierarchical multi-scale representation and computational effi-
ciency. In order to selectively attend to relevant information, spatial and channel attention modules
have also been incorporated. MPRNet presented an improved multi-layer architecture that is de-
signed to take into account both high level global features as well as local details. In order to keep the
same spatial resolution at different scales, and thus reduce the expensive runtime of the deconvolu-
tion/upsampling operation, MPRNet introduced a multi-patch hierarchy as an input. In addition, by
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varying the patch count at each scale, the coarser scales concentrate on local information, producing
residual information for the following finer scale.

In the encoder-decoder sub-network, features are extracted at each stage using channel attention
blocks (CABs) and upsampled using bi-linear interpolation followed by a convolution layer. In the
ORSNet stage of MPRNet we do not observe any down-sampling operation. High-resolution features
are calculated using multiple original resolution blocks (ORBs), each of which further contains CABs.

Between every two stages, a cross-stage feature fusion (CSFF) module is introduced as shown in
Figure 2. This makes the overall network more robust through several up- and down-sampling, and
more stable as it eases the flow of information.

Figure 2: MPRNet cross-stage feature fusion (CSFF) modules. (Left) CSFF between stage 1 and stage 2. (Right) CSFF
between stage 2 and ORSNet. (Printed from [21]).

Finally, a supervised attention module (SAM) is defined between every two stages, which results
in significant performance gain. Figure 3 shows SAM components with the two main benefits. First,
SAM provides ground-truth supervisory signals for restoration of the progressive image at each stage.
Second, it suppresses features at the current stage through the attention maps and only passes useful
features to the next stage.

Figure 3: MPRNet supervised attention module (SAM) (printed from [21]).

In a nutshell, MPRNet multi-stage structure provides several key features:

1. An encoder-decoder for learning multi-scale contextual information in the first two stages.

2. Preservation of fine spatial details of the input image by operating on the original image
resolution in the last stage.

3. A supervised attention module (SAM) that enables progressive learning.
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4. Cross-stage feature fusion (CSFF) to propagate multi-scale contextualized features from early
to late stage.

3 Experimental Results

MPRNet is trained for the three image restoration tasks: deblurring, denoising, and deraining, over
different datasets. For deblurring, the network is trained using the GoPro dataset [10] with 2,103
pairs of clean-blur synthetically generated images. The network also is evaluated using 1,111 pairs
from the same dataset. In the original paper, it has been experimentally proved that the trained
model works well on images from the RealBlur dataset [14] that are captured in real-world conditions.
For denoising, training is performed using 320 high-resolution images of the SIDD-Medium dataset [1]
(gamma-corrected sRGB images are used) and is evaluated using 1,280 patches from the same dataset
in addition to 1,000 patches from the DND dataset. Finally, deraining employed 13,712 clean-rain
image pairs from multiple datasets for training like Rain100L dataset [19]. While in this paper,
we evaluate the MPRNet performance using the pre-trained and available models from the original
paper, the interested reader might re-train the network on other sets of images using the instructions
that are provided in the public git that we introduced earlier in the source code section.

3.1 Deblurring

Deblurring is the first image restoration operation that we investigate using MPRNet. Here, we
are interested in comparing the MPRNet deblurring algorithm with another deep learning based
deblurring methods, i.e. SRN and MIMO-UNet. We introduced both methods briefly in Section 1.
The output results of the SRN and MIMO-UNet methods were generated using their corresponding
demos3 or original source codes4.

We compared the performance of MPRNet with SRN and MIMO-Unet over four images from
the test category of the GoPro dataset as it is displayed in Figure 4. Note that the three methods
have been trained over the same dataset and hence the models are completely comparable. MPRNet
works subjectively better than the other two methods. In terms of PSNR, MPRNet outperforms
MIMO-UNet on average by 0.51 dB and SRN by 1.39 dB. All the PSNRs are calculated over the
large images and not the selected patches.

3.2 Denoising

The next restoration function of MPRNet is denoising. The MPRNet denoising method, as for its
other functionalities, is fully blind. It works without any knowledge of the noise level. The only input
of the network is a noisy image. In this section, we compare the denoising performance of MPRNet
with another method based on deep learning, i.e. NAFNet [3]. Both MPRNet and NAFNet were
trained over the SIDD dataset and hence their performance are comparable. For NAFNet, we perform
the experiments using its original source code5.

We examined the denoising power of the algorithms for three different noise levels: 10, 20, and 40
in terms of Gaussian standard deviation. Figures 5 to 7 show the accuracy comparison in terms of
PSNR and visual quality using the four images from public datasets. While for low levels of noise we
observe that NAFNet performs better than MPRNet, both visually and in PSNR, for higher levels,
MPRNet outperforms NAFNet significantly by 0.31 to 1.51 dB for different images. We have to

3https://github.com/jiangsutx/SRN-Deblur
4https://github.com/chosj95/MIMO-UNet
5https://github.com/megvii-research/NAFNet
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(a) GOPR0384 11 00 000001

Reference Blurred SRN MIMO-UNet MPRNet

PSNR(dB) 31.51 33.55 34.60 35.52

(b) GOPR0384 11 05 004001

Reference Blurred SRN MIMO-UNet MPRNet

PSNR(dB) 32.77 34.15 34.96 35.02

(c) GOPR0385 11 01 003018

Reference Blurred SRN MIMO-UNet MPRNet

PSNR(dB) 30.14 31.92 32.74 33.33

(d) GOPR0385 11 01 003096

Reference Blurred SRN MIMO-UNet MPRNet

PSNR(dB) 32.43 34.68 35.50 35.98

Figure 4: Visual and PSNR comparison of deblurring results using SRN, MIMO-UNet and MPRNet over four images from
the GoPro dataset [10]. The size of the original images is 1280×720 and each patch is 256×144.
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mention that the images are from public sources and not included in training and validation steps
and are not even similar to the datasets that the network was trained on.

(a) Alley

Reference Noisy NAFNet MPRNet

PSNR(dB) 30.48 32.46 29.81

(b) Boats

Reference Noisy NAFNet MPRNet

PSNR(dB) 30.37 32.62 32.56

(c) Building

Reference Noisy NAFNet MPRNet

PSNR(dB) 30.52 32.40 30.31

(d) Computer

Reference Noisy NAFNet MPRNet

PSNR(dB) 30.51 32.35 30.26

Figure 5: Visual and PSNR comparison of denoising results using NAFNet and MPRNet over four images from a public
dataset with Gaussian noise level σ = 10. The size of each patch is 256×144.

146



An Analysis of Multi-stage Progressive Image Restoration Network (MPRNet)

(a) Alley

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.89 30.59 29.53

(b) Boats

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.78 30.64 31.20

(c) Building

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.92 30.37 29.96

(d) Computer

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.93 30.00 28.89

Figure 6: Visual and PSNR comparison of denoising results using NAFNet and MPRNet over four images from public
dataset with Gaussian noise level σ = 20. The size of each patch is 256×144.
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(a) Alley

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.21 28.85 29.16

(b) Boats

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.10 28.89 30.40

(c) Building

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.25 28.51 29.55

(d) Computer

Reference Noisy NAFNet MPRNet

PSNR(dB) 28.26 28.52 29.11

Figure 7: Visual and PSNR comparison of denoising results using NAFNet and MPRNet over four images from public
dataset with Gaussian noise level σ = 40. The size of each patch is 256×144.
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3.3 Deraining

For removing undesirable raining artifacts from input images, we compared the MPRNet performance
with the density-aware image de-raining method using a multistream dense network (DID-MDN)
method [22]. Figure 8 shows results over five synthetic rainy images from the Rainy100L dataset [19]
and its test category. Both MPRNet and DID-MDN networks have been trained on the Rain100L
dataset. As it is clear MPRNet removes rain artifacts better than DID-MDN in almost all images.
Note that the results of MDN-DID were calculated using an online demo6 of the original source
code7.

(a) Reference (b) Rainy (c) MPRNet (d) DID-MDN

Figure 8: Visual comparison of deraining results using MPRNet and DID-MDN method over five rainy images from the
Rainy100L dataset [19]. The size of the images is 480×320.

6https://saiwa.ai/app/free/base-service/deraining
7https://github.com/hezhangsprinter/DID-MDN
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4 Conclusion

In this paper, we investigated MPRNet method for image restoration with three functionalities, i.e.
deblurring, denoising and deraining. The method is fully blind and works well without any knowledge
of input artifact parameters like: blur kernel type and size or noise standard deviation. The MPRNet
performance seems inferior to other restoration methods that we employed in this paper.
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