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Abstract

In this paper, we give the implementation of an image denoising algorithm based on backward
stochastic differential equations. In our algorithm, we consider two stochastic processes. One
of them has values in the image domain and determines pixels that will be involved in the
reconstruction, the second one has values in the image codomain and gives weights to values
of pixels. The reconstructed image is characterized by smoothing noisy pixels and at the same
time enhancing edges. Our experiments show that the new approach gives very good results
and can be successfully used to reconstruct images.

Source Code

The reviewed source code and documentation for this algorithm are available at the IPOL web
page of this article1. Compilation and usage instructions are included in the README.txt file of
the archive.

Keywords: denoising; stochastic process; inverse problem

1 Introduction

Let D be a bounded, convex domain in R2, u : D → R be an original image and u0 : D → R be the
observed image of the form

u0 = u+ η,

where η stands for a white Gaussian noise. We assume that u0 ∈ C1(D). We are given u0, the
problem is to reconstruct u. This is a typical example of an inverse problem [3].

The problem of image reconstruction using fully automatic and reliable methods is one of the
most important issues of digital image processing and computer vision. Efficient and effective re-
construction of images is an essential element of most image processing and recognizing algorithms.
Reconstruction algorithms allow us to make initial treatment of data for further analysis, which is
very important, especially in astronomy, biology or medicine.

1https://doi.org/10.5201/ipol.2023.467
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Various techniques have been proposed to tackle this inverse problem. One may quote the linear
filtering, DCT [57, 58], wavelets theory [23, 27], variational methods [23, 31, 51] and stochastic
modelling which are generally based on the Markov field theory and Bayesian approach [23, 30, 50].
In another class, one could include methods that take advantage of the non-local similarity of patches
in the image. Among the most famous, we can name NL-means [18, 19], BM3D [25, 26, 35], NL-
Bayes [37] and K-SVD [2, 40]. A different approach is based on neural networks [24, 61]. The concept
of deep neural networks has gained wide recognition and its later versions are successfully used to
image restoration [33, 41, 49]. The most important direction in image processing has been methods
driven by nonlinear diffusion equations [21, 46, 51, 55, 56], where a special case of this approach is
restoration based on BSDEs.

The backward stochastic differential equations (in short BSDEs) were introduced by Pardoux and
Peng [43], who proved the existence and uniqueness of adapted solutions under suitable assumptions.
Independently, Duffie and Epstein [28, 29] introduced stochastic differential utilities in economics
models, as solution of certain BSDEs. Since then, it has been widely recognized that BSDEs provide
a useful framework for formulating many problems in mathematical finance [34]. They have also
appeared to be useful for problems in stochastic control and differential games [32]. Many papers
(for instance [44]) show the connections between BSDEs driven by a diffusion process and solutions of
a large class of quasilinear parabolic and elliptic partial differential equations (PDEs). These results
may be seen as a generalization of the celebrated Feynman-Kac formula. Through all these results, a
formal dictionary of the relations between BSDEs and PDEs can be established, which suggests that
existence and uniqueness results which can be obtained on the one side should have their counterparts
on the other side. However, in our opinion, a stochastic description is more intuitive. Therefore,
we treat BSDEs as a starting point in the creation of the reconstruction model. Moreover, using
stochastic analysis yields a completely new methodology, what is more important in research.

In image processing one can find theoretical results [1] and some practical aspects [4, 6, 10, 11,
13, 16] of BSDE-based applications. In [4] the problem of reconstruction of the noisy chromaticity
is considered. The model of denoising presented there is expressed in terms of a Skorokhod problem
associated with the solution of BSDE and an epsilon neighborhood of a two-dimensional sphere.
In that paper, BSDE is driven by a trivial drift function (f ≡ 0). This means that the presented
equation is a model of forward filtering and has properties of smoothing filters. In [6] problems of
reconstruction of the noisy grayscale image (smoothing filters) and enhancing of the blurred grayscale
image (enhancing filters) are presented. A smoothing filter, similarly as in [4], models an anisotropic
forward diffusion with BSDEs with f ≡ 0. Enhancing filters presented in [6] are driven by BSDEs
with a non-trivial drift function and correspond to an inverse heat equation. This equation is a model
of backward filtering (not forward) and in consequence this model fails to perform edge enhancing of
the noisy image. The paper [13] is a generalization of [6] to images with values in Rn, in particular to
color images. The model of forward anisotropic filtering in a direction perpendicular to the gradient
and inverse anisotropic filtering in the gradient direction in terms of BSDEs was presented in [10]
and [16] for grayscale and color images respectively. An interesting work using BSDE with reflection
to reconstruct images in spaces other than Rn was presented in [11].

In this work, apart from the implementation of the BSDE algorithm, we generalize the theoretical
results from [10]. This generalization will allow us to write a simple and concise reconstruction
algorithm. The paper is organized as follows. Section 2 contains definitions and fundamental facts
of stochastic analysis. In Section 3 we briefly recall basic ideas of filtering in terms of BSDEs.
Section 4 provides new theoretical results for BSDE denoising. We define here the numerical scheme
and prove a convergence of this scheme to the continuous model. This chapter is also devoted
to presenting details of numerical approximation of the proposed method. Then in Section 5 we
introduce algorithms for grayscale images and generalize them in Section 6 to color images. In
Section 7, we provide a justification for the selection of parameter values. Finally, in Section 8
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experimental results and comparisons to other methods are presented.

2 Mathematical Preliminaries

In what follows, by (Ω,F ,P) we will denote a probability space and by W = {Wt; t ∈ [0, T ]} a
two-dimensional Wiener process starting from zero. We assume that we are given a point x0 ∈ D
and a function σ : [0, T ]×R2 → R2 ×R2. Consider the stochastic diffusion process with reflection
with values in domain D

Xt = x0 +

∫ t

0

σ(s,Xs) dWs +KD
t , t ∈ [0, T ]. (1)

Equation (1) (called reflected SDE) characterizes the behaviour of the continuous time stochastic
process X as an Itö integral. A heuristic interpretation is that in a small time interval the stochastic
process X changes its value by an amount that is normally distributed with variance σ(t,Xt) and
is independent of the past behavior of the process. This is so because the increments of a Wiener
process are independent and normally distributed. The function σ is called the diffusion coefficient.
The term KD

t is the minimal push needed to keep the process X in D. For each fixed ω ∈ Ω the
function t → Xt(ω) is called a trajectory of X and is denoted by X(ω). The proof of the existence
and uniqueness of the solution to reflected SDEs can be found in [53].

The process X can be approximated by the following numerical scheme [48, 52]

Xm
0 = X0,

Xm
tk

= ΠD[X
m
tk−1

+ σ(tk−1, X
m
tk−1

)(Wtk −Wtk−1
)], k = 0, 1, . . . ,m,

where tk = k T
m
, m ∈ N and ΠD(x) denotes a projection of x on the set D. Since D is convex, the

projection is unique.
Let (Ft) be a filtration generated by an l-dimensional Wiener process W , ξ ∈ L2(Ω,FT , P,R

k)
be a square integrable random variable and let f : Ω× [0, T ]×Rk → Rk be a Lipschitz continuous
function in the space variable.

Definition 1. A solution to the backward stochastic differential equation (BSDE) associated with ξ
and f is a pair of (Ft)-measurable processes (Y, Z) with values in Rk ×Rk×l satisfying

E

[∫ T

0

∥Zs∥2 ds
]
< ∞,

and

Yt = ξ +

∫ T

t

f(s, Ys)ds−
∫ T

t

Zs dWs, t ∈ [0, T ]. (2)

See [42] for the proof of the existence and uniqueness of the solution to BSDEs. The backward
stochastic differential equation is solved starting from t = T until t = 0. Note that at time zero
the Y0 is a deterministic value. A drift function f causes the correction of trajectories in expected
strength and direction. Later on, we are interested in the process Y , i.e. the first component of the
solution to the BSDE. The fact that every martingale on the space with Wiener filtration has a
representation as a stochastic integral implies that

Yt = ξ +

∫ T

t

f(s, Ys)ds−
∫ T

t

Zs dWs = E

[
ξ +

∫ T

t

f(s, Ys)ds|Ft

]
,
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therefore the process Y can be approximated using the formula [39]

Y m
tm = ξm,

Ŷ m
tk

= E[Y m
tk+1

|Fm
tk
],

Y m
tk

= Ŷ m
tk

+
T

m
f(tk, Ŷ

m
tk
), k = m− 1,m− 2, . . . , 0,

(3)

where tk = k T
m
. Here by E we denote the expected value and by Fm the filtration generated by the

discretization of a Wiener process.

Theorem. If ξm → ξ P − a.s. then

sup
0≤k≤n

|Y m
tk

− Ytk | → 0,

in probability.

3 Continuous Model

A general model of the image reconstruction is the following
Xt = x+

∫ t

0

σ(s,Xs) dWs +KD
t , t ∈ [0, T ]

Yt = u0(XS) +

∫ T

t

f(s, Ys, Xs)ds−
∫ T

t

Zs dWs, t ∈ [0, T ]

σ(s,Xs) =

−
(
1− c(s)

c

)
(Gγ ∗ u0)x2(Xs)

|∇(Gγ ∗ u0)(Xs)|
,
c(s)

c

(Gγ ∗ u0)x1(Xs)

|∇(Gγ ∗ u0)(Xs)|(
1− c(s)

c

)
(Gγ ∗ u0)x1(Xs)

|∇(Gγ ∗ u0)(Xs)|
,
c(s)

c

(Gγ ∗ u0)x2(Xs)

|∇(Gγ ∗ u0)(Xs)|

 ,

c(t) =

{
0 if t < S,

c if t ≥ S,

where {Xt}t∈[0,T ] is a stochastic diffusion process, {Wt}t∈[0,T ] is a two-dimensional Wiener process,

the term {KD
t }t∈[0,T ] is the minimal push needed to keep the process X in D, {Yt}t∈[0,T ] is the first

component of the solution to the BSDE, {Zt}t∈[0,T ] is the second component of the solution to the
BSDE which determines the measurability of the process Y . Gγ is a normalized 3×3 Gaussian kernel

Gγ =
1

16

 1 2 1
2 4 2
1 2 1

 ,

and S ∈ R+ < T ∈ R+, c ∈ R+ are parameters of the method. Parameter T defines the size of
the neighborhood used in the reconstruction procedure. We deblur from time T to S and smooth
out from S to 0. The parameter c is responsible for effect of edge sharpening. The values of all
parameters depend on a standard noise deviation ρ. Note that the process X has values in the
domain of the image D and is driven by some function σ. The process Y has values in the codomain
of the image and is driven by some function f .

For a fixed pixel x we consider a certain BSDE equation. The values of the process X determine
the pixels from the domain of the image D which we will use in the reconstruction procedure. We
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can say that this process determines the neighborhood of the pixel x (with irregular shape). The
reconstructed value u(x) is the sum of pixels from its neighborhood multiplied by some weights. The
weight values are determined by the process Y (driven by the function f). Appropriate definitions of
the function c(t) and f allow us to give weight values (also negative) which depend on direction and
distance from the reconstructed pixel. The value of the process Y at time t = 0 is the reconstructed
pixel u(x).

4 Approximation

Below we formulate the theorem on which the reconstruction algorithm is based. The theorem is a
generalization of results from the work [10]. We consider an additional component – the function g.
The task of the function g will be to determine the weights based on the similarity of patches like in
the NLM algorithm [18, 19]. The concept of using the similarity of patches with stochastic diffusion
was presented in [9, 12, 14, 15], but only at the numerical level. In this paper, we have taken that
idea to a BSDE continuous model (in the form of the function g).

Theorem. Let S < T , u0 : D → R, x ∈ D. Assume that ξ = u0(X
x
S), where X

x is a two-dimensional
diffusion process with reflection with values in D and starting from x and

f(t, y) =


c(t)(y − u0(X

x
t )), t ≥ S,

b(t) (g(Xx
t , u0, x)u0(X

x
t )− y) , t < S.

If (Y, Z) is a solution to the BSDE

Yt = ξ +

∫ T

t

f(s, Ys)ds−
∫ T

t

Zs dWs, t ∈ [0, T ],

then

lim
m→+∞

Y m
0 = Y0,

where

Y m
0 =

j−1∑
k=0

akE
[
g(Xx

tk
, u0, x)u0(X

x
tk
)
]
+

m−1∑
k=j

akE
[
u0(X

x
tk
)
]
, (4)

0 = t0 < t1 < · · · < tj ≤ S < tj+1 < · · · < tm = T, dt = ti+1 − ti =
T

m
,

ak =
b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)
, k = 0, 1, . . . , j − 1, (5)

aj =

j−1∏
s=0

(
1− b(ts)T

m

)[m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m

]
, (6)

ak = −
j−1∏
s=0

(
1− b(ts)T

m

)
c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)
, k = j + 1, j + 2, . . . ,m− 1. (7)
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Proof. Note that

Y m
tm = u0(X

x
tj
),

Y m
tm−1

=

(
1 +

c(tm−1)T

m

)
E
[
u0(X

x
tj
)|Fm

tm−1

]
− c(tm−1)T

m
u0(X

x
tm−1

),

Y m
tm−2

=

(
1 +

c(tm−2)T

m

)(
1 +

c(tm−1)T

m

)
E
[
u0(X

x
tj
)|Fm

tm−2

]
−
(
1 +

c(tm−2)T

m

)
c(tm−1)T

m
E
[
u0(Xtm−1)|Fm

tm−2

]
− c(tm−2)T

m
u0(X

x
tm−2

),

...

Y m
tj

=
m−1∏
r=j

(
1 +

c(tr)T

m

)
E
[
u0(X

x
tj
)|Fm

tj

]
−

m−1∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)
E
[
u0(X

x
tk
)|Fm

tj

]
− c(tj)T

m
u0(X

x
tj
)

=

[
m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m

]
u0(X

x
tj
)−

m−1∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)
E
[
u0(X

x
tk
)|Fm

tj

]
,

Y m
tj−1

=

(
1− b(tj−1)T

m

)
E
[
Y m
tj
|Fm

tj−1

]
+

b(tj−1)T

m
g(Xx

tj−1
, u0, x)u0(X

x
tj−1

),

Y m
tj−2

=

(
1− b(tj−2)T

m

)(
1− b(tj−1)T

m

)
E
[
Y m
tj
|Fm

tj−2

]
+

(
1− b(tj−2)T

m

)
b(tj−1)T

m
E
[
g(Xx

tj−1
, u0, x)u0(X

x
tj−1

)|Fm
tj−2

]
+

b(tj−2)T

m
g(Xx

tj−2
, u0, x)u0(X

x
tj−2

),

...

Y m
t0

=

j−1∏
s=0

(
1− b(ts)T

m

)
E
[
Y m
tj
|Fm

t0

]
+

j−1∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)
E
[
g(Xx

tk
, u0, x)u0(X

x
tk
)|Fm

t0

]
=

j−1∏
s=0

(
1− b(ts)T

m

)[m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m

]
E
[
u0(X

x
tj
)
]

−
m−1∑
k=j+1

j−1∏
s=0

(
1− b(ts)T

m

)
c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)
E
[
u0(X

x
tk
)
]

+

j−1∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)
E
[
g(Xx

tk
, u0, x)u0(X

x
tk
)
]

=

j−1∑
k=0

(
b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

))
E
[
g(Xx

tk
, u0, x)u0(X

x
tk
)
]

+

(
j−1∏
s=0

(
1− b(ts)T

m

)[m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m

])
E
[
u0(X

x
tj
)
]

+
m−1∑
k=j+1

(
−

j−1∏
s=0

(
1− b(ts)T

m

)
c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

))
E
[
u0(X

x
tk
)
]
.

326



Implementation of Image Denoising based on Backward Stochastic Differential Equations

Remark. Coefficients ak satisfy the condition

m−1∑
k=0

ak = 1.

Proof.

m−1∑
k=0

ak =

j−1∏
s=0

(
1− b(ts)T

m

)[m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m
−

m−1∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)]

+

j−1∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)
=

j−1∏
s=0

(
1− b(ts)T

m

)
+

j−1∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)

=

j−2∏
s=0

(
1− b(ts)T

m

)(
1− b(tj−1)T

m

)
+

j−2∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)

+
b(tj−1)T

m

j−2∏
s=0

(
1− b(ts)T

m

)
=

j−2∏
s=0

(
1− b(ts)T

m

)
+

j−2∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)

=
1∏

s=0

(
1− b(ts)T

m

)
+

1∑
k=0

b(tk)T

m

k−1∏
s=0

(
1− b(ts)T

m

)
=

(
1− b(t0)T

m

)(
1− b(t1)T

m

)
+

b(t0)T

m
+

b(t1)T

m

(
1− b(t0)T

m

)
= 1− b(t0)T

m
− b(t1)T

m
+

b(t0)T

m

b(t1)T

m

+
b(t0)T

m
+

b(t1)T

m
− b(t1)T

m

b(t0)T

m
= 1.

The property below will be used directly in the reconstruction algorithm.

Remark. Let (ak)k=0,1,...m−1 be determined by functions b(t), c(t) and let (a′k)k=0,1,...m−1 be determined
by b(t), c′(t) ≡ 0. Then

a′k =


ak k < j,

m−1∑
s=j

as k = j,

0 k > j.

(8)
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Proof.

m−1∑
k=j

ak =

j−1∏
s=0

(
1− b(ts)T

m

)[m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m

]

−
m−1∑
k=j+1

j−1∏
s=0

(
1− b(ts)T

m

)
c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)
=

j−1∏
s=0

(
1− b(ts)T

m

)[m−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m
−

m−1∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)]

=

j−1∏
s=0

(
1− b(ts)T

m

)[m−2∏
r=j

(
1 +

c(tr)T

m

)(
1 +

c(tm−1)T

m

)

−c(tj)T

m
−

m−2∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)
− c(tm−1)T

m

m−2∏
r=j

(
1 +

c(tr)T

m

)]

=

j−1∏
s=0

(
1− b(ts)T

m

)[m−2∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m
−

m−2∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)]
...

=

j−1∏
s=0

(
1− b(ts)T

m

)[j+1∏
r=j

(
1 +

c(tr)T

m

)
− c(tj)T

m
−

j+1∑
k=j+1

c(tk)T

m

k−1∏
r=j

(
1 +

c(tr)T

m

)]

=

j−1∏
s=0

(
1− b(ts)T

m

)[(
1 +

c(tj)T

m

)(
1 +

c(tj+1)T

m

)
− c(tj)T

m
− c(tj+1)T

m

(
1 +

c(tj)T

m

)]

=

j−1∏
s=0

(
1− b(ts)T

m

)
= a′j.

Using the discretization (4) the reconstructed pixel can be approximated by the following formula

u(x) ≈ Y m
0 =

j−1∑
k=0

akE
[
g(Xx

tk
, u0, x)u0(X

x
tk
)
]
+

m−1∑
k=j

akE
[
u0(X

x
tk
)
]
=

E

[
j−1∑
k=0

akg(X
x
tk
, u0, x)u0(X

x
tk
) +

m−1∑
k=j

aku0(X
x
tk
)

]
,

u(x) ≈ 1

N

N∑
n=1

[
j−1∑
k=0

akg(X
x
tk
(ωn), u0, x)u0(X

x
tk
(ωn)) +

m−1∑
k=j

aku0(X
x
tk
(ωn))

]
, (9)

where Xx(ω) means the trajectory of Xx (see Figure 1) starting from x such that

Xx
0 (ω) = x,

Xx
tk
(ω) = ΠD[X

x
tk−1

(ω) + σ(tk−1, X
x
tk−1

(ω))(Wtk(ω)−Wtk−1
(ω))],

(10)

0 = t0 < t1 < · · · < tj ≤ S < tj+1 < · · · < tm = T, ti+1 − ti =
T

m
,

and the parameter N is equal to the number of Monte Carlo iterations.
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x Xx
t1(ω1)

Xx
tj (ω1)

Xx
tm(ω1)

Xx
t1(ω2)

Xx
tj (ω2)

Xx
tm(ω2)

Figure 1: Example of two trajectories of the process Xx. From time t0 to tj trajectories have values along edges. From
time tj to tm−1 the process diffuses in the gradient direction.

Example 1. b(t) ≡ 0
Using the Markov property for diffusion process Xx the expected value can be written as

E
[
u0(X

x
tk
)
]
≈ 1

N

N∑
n=1

u0(X
x
tk
(ωn)) =

1

N0

N0∑
n0=1

(
1

Nk

Nk∑
nk=1

u0

(
X

Xx
tj
(ωn0 )

tk
(ωnk

)

))
,

where N0, Nk are numbers of Monte Carlo iterations and should be chosen so that Nk

N0
≈ tk−tj

tj
for

fixed tj.

u(x) ≈ Y m
0 ≈ 1

N0

N0∑
n0=1

(
m−1∑
k=j

Nk∑
nk=1

ak
Nk

u0

(
X

Xx
tj
(ωn0 )

tk
(ωnk

)

))

=
1

N0

N0∑
n0=1

(
aju0

(
Xx

tj
(ωn0)

)
+

m−1∑
k=j+1

Nk∑
nk=1

ak
Nk

u0

(
X

Xx
tj
(ωn0 )

tk
(ωnk

)

))

=
1

N0

N0∑
n0=1

(
aju0

(
Xx

tj
(ωn0)

)
+

1

N1

N1∑
n1=1

m−1∑
k=j+1

aku0

(
X

Xx
tj
(ωn0 )

tk
(ωn1)

))
︸ ︷︷ ︸

Deblurring in gradient direction at point Xx
tj
(ωn0 )︸ ︷︷ ︸

Smoothing out of deblurring effects in perpendicular to gradient direction

,

where N1

N0
≈ tm−1−tj

tj
.
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Example 2. g(Xx
t , u0, x) ≡ 1

u(x) ≈ Y m
0 =

m−1∑
k=j

akE
[
u0(X

x
tk
)
]
+ E

[
j−1∑
k=0

aku0(X
x
tk
)

]

=
1

N0

N0∑
n0=1

(
aju0

(
Xx

tj
(ωn0)

)
+

1

N1

N1∑
n1=1

m−1∑
k=j+1

aku0

(
X

Xx
tj
(ωn0 )

tk
(ωn1)

))
︸ ︷︷ ︸

Deblurring in gradient direction at point Xx
tj
(ωn0 )︸ ︷︷ ︸

Smoothing out of deblurring effects in perpendicular to gradient direction

+
1

N2

N2∑
n2=1

j−1∑
k=0

aku0(X
x
tk
(ωn2))︸ ︷︷ ︸

Additional smoothing in perpendicular to gradient direction with weights greater for points closer to x, i.e. a0>a1>···>aj−1

Example 3. c(t) ≡ 0, g(Xx
t , u0, x) - some measure of similarity between neighborhoods of u0(x) and

u0(X
x
t ).

u(x) ≈ Y m
0 = ajE

[
u0(X

x
tj
)
]
+ E

[
j−1∑
k=0

akg(X
x
tk
, u0, x)u0(X

x
tk
)

]

=
1

N0

N0∑
n0=1

(
aju0

(
Xx

tj
(ωn0)

))
︸ ︷︷ ︸

Smoothing in perpendicular to gradient direction

+
1

N2

N2∑
n2=1

j−1∑
k=0

akg(X
x
tk
(ωn2), u0, x)u0(X

x
tk
(ωn2))︸ ︷︷ ︸

Additional reconstruction based on a comparison of similarity of pixel neighborhoods and distance from x

Modified Diffusion with Random Terminal Time

In this section, we focus on the simulation of the trajectory Xx(ω).

In formula (10) the expression Wtk(ω)−Wtk−1
(ω) is approximated using a random number gen-

erator and is equal to two independent values obtained using a generator of the normal distribution
with parameters N (0, tk − tk−1). After considering this observation, we have a simple method of
simulation of values

Xx
t0
(ω), Xx

t1
(ω), Xx

t2
(ω), . . . , Xx

tj
(ω), . . . , Xx

tm−1
(ω), Xx

tm(ω).

The numerical scheme (10) gives good results, but only with a small value of the time-step
parameter dt = T

m
(for example dt = 0.1) – especially in the case of diffusion along edges. Calculating

the mean value using the Monte Carlo method for small dt is not effective and takes a long time. To
avoid this problem, we improve this scheme. The proposed modification is based on the following
observation: the cardinality of the deblurring times set {tj+1, tj+2, . . . , tm−1} is several times less
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A

(I)

B

A

(II)

B

A

(III)

B

Figure 2: Example of trajectories of the process (Gγ ∗ u0)(X
x
t ) from pixel A to B: (I) – using the scheme (10) and large

dt, (II) – using the scheme (11) and large dt, (III) – using the scheme (10) and small dt

than the cardinality of the smoothing times set {t0, t1, . . . , tj}. In order to reduce the size of the set
{t0, t1, . . . , tj} we use the following modification of Euler’s approximation taken from [5, 7, 8]

Xx
0 (ω) = x, Hx

tk
= ΠD[X

x
tk−1

(ω) + (Wtk −Wtk−1
)],

Xx
tk
(ω) =


Hx

tk
(ω) if Θ,

Xx
tk−1

(ω) elsewhere,

k = 1, 2, . . . , τj,

(11)

where by Θ we mean the condition

|(Gγ ∗ u0)(H
x
tk
(ω))− (Gγ ∗ u0)(X

x
tk−1

(ω))| < p,

and τj = min{k; k ≥ j and Θ is true j times}.
The condition Θ with parameter p > 0 guarantees that, if the image exhibits a strong gradient

then the process Xx diffuses as a process with a small value of the parameter dt (we need to be
careful not to lose information in the image) and at locations where variations of the brightness are
weak – for background of the image, the process Xx can diffuse with a large value of dt (for example
dt = 4). A terminal time τj provides that the numerical simulation of the diffusion trajectory gives
at least j values of Xx(ω) which differ from the value in the previous step. Figure 2 illustrates
a difference between the scheme (10) and the scheme (11). There are shown three examples of
trajectories (Gγ ∗ u0)(X

x
t ) from the pixel A to the pixel B. Trajectories (I) and (III) were generated

using the scheme (10) for large and small value of the parameter dt, respectively. Trajectory (II) was
generated using the scheme (11) for large dt. It is easy to see, that at locations where the image is
constant, trajectory (II) diffuses as trajectory (I). At locations where the image has strong gradient,
the trajectory (II) is similar to the trajectory (III). Observe, that the scheme (11) works well only if
the model of the digital image Gγ ∗ u0 is continuous. In practice, we can use linear interpolation to
get the value of the image Gγ ∗u0, for any point x ∈ D. Continuity of the function Gγ ∗u0 guarantees
that we will generate random numbers for which the condition Θ will be satisfied.

In this scheme we can also omit the σ function, or in other words we can take σ as an identity

σ(t,Xt) =

[
1 0
0 1

]
.
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The Θ condition guarantees that the diffusion motion is along the edge, and there is no need to
duplicate it with σ.

Patchwise Implementation

Let Nx,radius be the square neighborhood of a size (2 · radius + 1) × (2 · radius + 1) centered at x.
The function g(Xt, u0, x) returns the weight which is some measure of distance between intensity of
grayscale or color vectors of subimages u0(NXt,radius) and u0(Nx,radius). Once this weight has been
determined, the pixel value u(x) is modified as follows

u(x) = u(x) + weight · u0(Xt).

To reduce the number of weight calculations, we will use the same weight value for the pixels in the
neighborhood, i.e.

∀|x̂|≤radiusu(x+ x̂) = u(x+ x̂) + weight · u0(Xt + x̂).

The idea of these calculations comes from [20].

5 Algorithm

Below we give algorithms that work for fixed functions b(t), c(t). The first algorithm is an im-
plementation of Example 2, the second one is an implementation of Example 3. In the case of
Algorithm 2, we are starting from the functions b(t), c(t) and using the formula (8), we obtain the
required assumptions for the function c(t).

In the final Algorithm 3 of the BSDE method, we treat the function c(t) as a parameter. The
algorithm code is divided into two parts, depending on whether the reconstructed pixel belongs to
an edge or not. For the edge pixels, we run Algorithm 1 and for the remaining pixels, we run
Algorithm 2.

6 Generalization to Color Spaces

RGB Space

For RGB images, we need to change in the BSDE algorithm the gradient and partial derivatives to
their Rn space equivalents [54]. To do this, we will use the DiZenzo [60] geometry.

Let u : D → Rn be a vector valued image and fix x ∈ D. Consider the function Fx : V → R,

Fx(v) =
∣∣∂u
∂v
(x)
∣∣2 , where V = {v ∈ R2; |v| = 1}. We are interested in finding the arguments

θ+(u, x), θ−(u, x) and corresponding values λ+(u, x) = Fx(θ+(u, x)), λ−(u, x) = Fx(θ−(u, x)) which
maximize and minimize the function Fx, respectively. Note that Fx can be rewritten as Fx(v) =
Fx([v1, v2]

T ) = vTG(x)v, where in the useful case of color RGB images, G is defined by the following

G(x) =



3∑
i=1

(
∂ui

∂x1

(x)

)2

,
3∑

i=1

∂ui

∂x1

(x)
∂ui

∂x2

(x)

3∑
i=1

∂ui

∂x1

(x)
∂ui

∂x2

(x),
3∑

i=1

(
∂ui

∂x2

(x)

)2

 , (12)

where u((x1, x2)) = (u1(x1, x2), u2(x1, x2), u3(x1, x2)). Positive eigenvalues λ+(u, x), λ−(u, x) of G(x)
are the maximum and the minimum of Fx while the orthogonal eigenvectors θ+(u, x) and θ−(u, x) are
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Algorithm 1: Pseudo-code for Example 2.

input : u0 – noisy image, σ – standard deviation of the noise
N , j, m, dt, p – approximation parameters
(ak)k=0,1...,m−1 – coefficients defined by formulas (5), (6), (7)
output: u – reconstructed image
foreach pixel position x do

X0 = x
foreach n = 1, 2, . . . N do

weight[0] = a0
u(x) = u(x) + weight[0] · u0(x)
foreach k = 1, 2, . . . j do

/* N (0, 1) – generator of the normal distribution */

Xk = Xk−1 + dt

[
N (0, 1)
N (0, 1)

]
if |(Gγ ∗ u0)(Xk)− (Gγ ∗ u0)(Xk−1)| > p then

k = k − 1

/* Modified Diffusion with Random Terminal Time */

else
weight[k] = ak
u(x) = u(x) + weight[k] · u0(Xk)

foreach k = j + 1, j + 2, . . . j − 1 do

Xk = Xk−1 + dt

[
(Gγ∗u0)x1 (Xs)

|∇(Gγ∗u0)(Xs)|
(Gγ∗u0)x2 (Xs)

|∇(Gγ∗u0)(Xs)|

]
N (0, 1)

weight[k] = ak
u(x) = u(x) + weight[k] · u0(Xk)

foreach pixel position x do

u(x) = u(x)∑
k weight[k]

/* Normalization of weights */

the corresponding variation orientations. We use N(u, x) =
√
λ+(u, x) as a natural extension of the

scalar gradient norm and θ+(u, x) and θ−(u, x) as equivalents of a gradient and a vector perpendicular
to the gradient.

Chromaticity Space

The proposed algorithm works for the model with grayscale and RGB images. Nevertheless, it is
worth mentioning an interesting generalization, which is the reconstruction in the chromaticity space.

The chromaticity-brightness model is known to be close to human perception of colors and gives
good results [22]. The general idea of the chromaticity-brightness approach is as follows. The
brightness component is defined by the Euclidean norm |u0|. The chromaticity component is given
by u0/|u0| and takes values in S2, the unit sphere in R3. The core of this method is to restore these
two components independently. In the case of restoring the brightness, we can apply the backward
stochastic differential equations. In order to reconstruct the chromaticity component, we can use
a method driven by backward stochastic differential equations with reflection (in short RBSDEs).
Unfortunately, in the case of RBSDEs we can not apply the above reasoning directly. The problem
of the existence and uniqueness of RBSDEs for non-convex domains is presently still open [45]. To
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Algorithm 2: Pseudo-code for Example 3.

input : u0 – noisy image, σ – standard deviation of the noise
N , j, dt, p – approximation parameters
output: u – reconstructed image
foreach pixel position x do

X0 = x
foreach n = 1, 2, . . . N do

weight[0] = a0
u(x) = u(x) + weight[0] · u0(x)
foreach k = 1, 2, . . . j do

/* N (0, 1) – generator of the normal distribution */

Xk = Xk−1 + dt

[
N (0, 1)
N (0, 1)

]
if |(Gγ ∗ u0)(Xk)− (Gγ ∗ u0)(Xk−1)| > p then

k = k − 1

/* Modified Diffusion with Random Terminal Time */

else
if k == j then

weight[k] = ak
foreach i = j + 1, j + 2, . . .m− 1 do

weight[k] = weight[k] + a[i]

/* The formula (8) */

u(x) = u(x) + weight[k] · u0(Xk)

else
weight[k] = akg(Xk, u0, x)
foreach xx such that |x− xx| ≤ radius do

/* Patchwise Implementation */

u(x+ xx) = u(x+ xx) + weight[k] · u0(Xk + xx)

foreach pixel position x do

u(x) = u(x)∑
k weight[k]

/* Normalization of weights */

Algorithm 3: Pseudo-code for the BSDE method

input : u0 – noisy image, σ – standard deviation of the noise
c ≥ 0 – enhancing parameter /* Definition of the function c(t) */

output: u – reconstructed image
foreach pixel position x do

if c > 0 and |∇(Gγ ∗ u0)(x)| > σ then
u(x)=Algorithm 1(u0, σ)

else
u(x)=Algorithm 2(u0, σ)

circumvent this problem we consider a model of the chromaticity given by a convex triangle T 2 in
R3 and the brightness as a mean of red, green and blue component.

The RBSDE model to restoration of the chromaticity uc
0(x) was presented in [11] and has the
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form 
Xt = x+

∫ t

0

σ(s,Xs) dWs +KD
t , t ∈ [0, T ],

Yt = uc
0(XS) +

∫ T

t

c(s)(Ys − uc
0(Xs))ds−

∫ T

t

Zs dWs +K
T 2
ϵ

T −K
T 2
ϵ

t , t ∈ [0, T ],

where
σ(s,Xs) =

[ (
1− c(s)

c

)
θ−(Gγ ∗ uc

0, Xs),
c(s)
c
θ+(Gγ ∗ uc

0, Xs)
]
,

c(t) =

{
0 if t < S or N(Gγ ∗ uc

0, x) < d,
c if t ≥ S and N(Gγ ∗ uc

0, x) ≥ d,

and {KT 2
ϵ ∈ R3} is a correction process for values of chromaticity i.e. {Yt ∈ T 2

ϵ }t∈[0,T ]. We keep these
values in the set

T 2
ϵ = {(x1, x2, x3), 1− ϵ ≤ x1 + x2 + x3 ≤ 1 + ϵ} ,

where ϵ is a very small number needed just to obtain a domain with a non empty interior. This
assumption is required for theoretical results for RBSDEs [47].

7 Approximation Parameters

In this chapter, we will justify the choice of parameter values of the BSDE algorithm.
The primary parameter is the number of iterations of the Monte Carlo method N used to approx-

imate the values of integrals. Clearly, the higher the value of this parameter, the closer the solution is
to the ideal one. However, increasing this value also increases the time complexity of the algorithm.
We must find a balance between the algorithm’s running time and the quality of the resulting image.
We define the quality of the resulting image using the PSNR measure (Peak Signal to Noise Ratio).
In Figure 3, we can see an example of the algorithm’s behavior, specifically the PSNR value of its
result based on the number of Monte Carlo iterations. At a value of 20, the increase in PSNR is
negligible, which is why we chose this value for our implementation. In Figure 4, we can observe the
algorithm’s running time dependency on N , which is linear. Please note that reducing N to 10 will
decrease the PSNR by approximately 0.2 while doubling the algorithm’s speed.

Another parameter that plays a crucial role in approximating a continuous solution is the time
discretization, represented as dt. As previously mentioned, the denser the discretization, meaning the
smaller the value of dt, the closer we approach the limit solution. However, in the field of stochastic
methods, this parameter is pivotal, and setting it too low can disqualify the method due to excessively
long running times. To achieve a favorable reconstruction result, a value of dt = 0.05 is recommended
for the classical Euler scheme [7], albeit at the expense of running time. To address this issue, we
introduced a modified Euler scheme (as detailed in Section 4), which introduced another parameter,
denoted as p. This modification enabled us to use larger values of dt. The two parameters, dt
and p, can be viewed as a single dt with a small value for the classical Euler scheme. In Figure 5,
from [7], we can observe that implementing the modified Euler scheme resulted in a remarkable 30-
fold acceleration in the reconstruction process! The introduction of this scheme played a pivotal role
in the further development of denoising methods based on backward stochastic differential equations.
We determined the value of the p parameter to be dependent on the noise level of the input image,
with p = σ, while dt was set at 4 in accordance with recommendations from [7].

The whole time of reconstruction T was divided into two fragments. The period from 0 to tj
and the period from tj to T = tm−1. In the implementation, this means that we have two more
parameters j and m at our disposal. The parameter j is responsible for the time in which process
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Figure 3: The PSNR measure of image denoising depends on the parameter N. The algorithm was executed using a standard
Lena test image with various noise levels σ. Data analysis indicates that selecting a value of N greater than 20 does not
yield an improvement in the result’s quality.

X determines the neighborhood of the reconstructed pixel with positive weights. An example of a
boundary point for an edge point and a non-edge point is shown in Figure 6. The pixels that are
used in the reconstruction with positive weights are marked in blue. As before, we made the value
of parameter j = 10 +

√
σ dependent on the noise of the input image, following the principle that

the greater the noise, the greater the neighborhood.

The parameter k determines the number of additional steps we take with negative weights. This
procedure is aimed at counteracting the smoothing effect on the image. In implementation, we take
only two steps toward the gradient, i.e., we assume m−1 = j+2. Figure 7 illustrates the distribution
of negative weights depending on the parameter c for two different functions b(t). A higher value of
b(t) increases the significance of pixels located closer to the reconstructed one.

8 Experimental Results

In this section, we present experimental results illustrating the difference between the BSDE algo-
rithm and other methods. We use the implementation of compared methods from Image Processing
On Line: K-SVD [38], NLM [20], BM3D [36], NL-Bayes [37] and DCT [59]. Parameters of these
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N

Time in seconds
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Figure 4: The algorithm’s running time is directly proportional to the value of the N parameter. The algorithm was executed
using a standard Lena test image with various noise levels σ on a computer equipped with an Intel Core i9 processor.

(a) Original image:
50× 50 pixels

(b) Noisy image:
standard deviation of the
noise σ = 25

(c) Euler’s scheme:
dt = 0.05 (480 seconds)

(d) Euler’s scheme:
dt = 4 (7 seconds)

(e) Modified diffusion
with random terminal
time: dt = 4
(14 seconds)

Figure 5: Comparison of reconstruction results using Euler’s approximation with long and short time-step discretization and
modified diffusion with long-time-step discretization shows that the reconstructed images (c) and (e) are similar, but the
reconstruction time has been reduced.

approaches were set to the default values as recommended by the authors. Our algorithm’s param-
eter is a standard noise deviation ρ and it works for a fixed function b(t) = 0.05. Other parameters
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C

D

(a) Noisy Lena image with σ = 20

C

64 pixels

(b) Neighborhood of the reconstructed
pixel C

D

64 pixels

(c) Neighborhood of the reconstructed
pixel D

Figure 6: Here’s an example of a reconstruction neighborhood (marked as blue points) for an edge point D and a background
point C. In the case of pixel C, the neighborhood is evenly distributed around the center, while for point D, it takes the
shape of an edge.

ak

k

0.2
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m − 1

b(t) = 0.05

ak

k
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0.4

0.6

c = 0.3
c = 0.5

j

m − 1

b(t) = 0.08

Figure 7: Distribution of weights ak depending on functions b(t) and c(t) = c.

depend only on the value of ρ. Choosing their values, we followed the principle of maximizing the
Peak Signal to Noise Ratio (in short PSNR). We can also release parameter c, which is responsible
for sharpening the image. However, a too high value of this parameter has a negative impact on
the value of PSNR (although the picture is more readable for our eyes). This effect can be seen in
Figures 8 and 9.

When comparing the BSDE algorithm with other approaches, we can notice one regularity. The
BSDE method smooths out the noise more, as shown in Figure 11 and Figure 13, which may result
in a loss of detail in the image. This effect is clearly visible in Figure 11 and the inscription “SeMA”
(compare with the original and noisy images in Figure 10). The compared methods have a problem
with noise reduction around this word.

The proposed algorithm gives good results in the case of JPEG artifact reduction, which was
shown in [17]. In the case of reduction of JPEG artifacts, we have to combine the ρ parameter with
the compression quality q. In JPEG standards, the compression quality q is always known and is
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(a) Original grayscale image (b) Noisy image with σ = 5 (c) BSDE for c = 0.0

(d) BSDE for c = 0.1 (e) BSDE for c = 0.2 (f) BSDE for c = 0.3

Figure 8: Restoration of Computer image using BSDE method with different values of parameter c. A larger value of c
increases the sharpness of the image.

expressed as a percentage. An image at 100% quality has no loss. In [17] the following formula to
evaluate the ρ parameter was proposed

ρ = max{0,−0.3q + 20}, (13)

where q is a JPEG compression quality of the image. JPEG artifacts are mainly due to the coarse
quantization of the high-frequency DCT coefficients, making the decompressed image to exhibit noisy
patterns known as ringing or mosquito noise near the edge. The second type of artifacts are blocking
artifacts, which are mainly due to the coarse quantization of low-frequency DCT coefficients, making
the decompressed image like a mosaic at smooth regions. As shown in Figure 14 the BSDE method
removed artifacts very well in both cases.
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(a) Original RGB image (b) Noisy image with σ = 10

(c) BSDE for c = 0.0 (d) BSDE for c = 0.4

(e) Zoom of the original
image

(f) Zoom of the noisy image (g) Zoom of the restored
image with c = 0.0

(h) Zoom of the restored
image with c = 0.4

Figure 9: Restoration of Dice image using BSDE method. A too high value of parameter c causes that the reconstructed
image differs significantly from the original image.
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(a) Original image (b) Noisy image with σ = 15

(c) Zoom of the original image (d) Zoom of the noisy image

Figure 10: The input Book image for the compared denoising algorithms.
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Dariusz Borkowski

(a) K–SVD PSNR = 36.58 (b) DCT PSNR = 36.49

(c) BM3D PSNR = 37.67 (d) NLM PSNR = 36.26

(e) NL–Bayes PSNR = 37.18 (f) BSDE PSNR = 36.50

Figure 11: Reconstruction results for various algorithms on the Book image (see Figure 10) and a visual comparison with
the proposed method.
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(a) Original image (b) Noisy image with σ = 20

(c) Zoom of the original image (d) Zoom of the noisy image

Figure 12: The input Traffic image for the compared denoising algorithms.
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(a) K–SVD PSNR = 30.71 (b) DCT PSNR = 29.70

(c) BM3D PSNR = 30.80 (d) NLM PSNR = 30.11

(e) NL–Bayes PSNR = 31.25 (f) BSDE PSNR = 30.02

Figure 13: Reconstruction results for various algorithms on the Traffic image (see Figure 12) and a visual comparison with
the proposed method.
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(a) Original (b) JPEG (quality=10) (c) BSDE

Figure 14: Reduction of JPEG artifacts. The BSDE algorithm was applied with σ = 17 and c = 0.0.

Image Credits

by M. Colom, CC-BY

by A. Buades, CC-BY

Standard test image

Synthetic image provided by the author
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