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Abstract

We compare nine line segment detectors. The two more ancient ones are based on classical edge
growing followed by a statistically founded validation. The next six are very recent and based
on supervised deep learning. These six deep learning methods train and validate their neural
network on two datasets (YorkUrban, Wireframe); most of them compared their results with
the now classic LSD (Line Segment Detector) and EDlines, and get a better performance than
them on these datasets. The ninth paper combines deep learning and classical edge growing
to achieve a purely non-supervised method. The seven machine learning based detectors and
EDlines are described here. LSD and EDlines are parameter-free, fixed to allow for one false
alarm on average. Our experiments show that the six purely ML based line segment detectors
show a significant variability to their end-parameters, leading to apparent missed or irrelevant
detection. We also compared all nine detectors on two images: one clearly “in domain” for
the Wireframe dataset, and the other one slightly out of domain. A quantitative comparison
would be fallacious. Indeed, while differing in their search strategy, the statistical detectors
share a very similar definition and decision threshold for line segments. The purely ML-based
detectors have learned from human annotators that were directed at reconstructing architectures
as wireframes. Hence, these algorithms aim at a different goal, the architectural interpretation
of the scene. Yet, several of them have more complete goals than just line segment detection.
Indeed, several of them also associate to each segment a descriptor, and aim at making the
pair segment+descriptor fit for image matching. The readers are invited to judge by themselves
about the advantages and drawbacks of all methods by submitting their own images to the
online demos associated with the present paper.

Source Code

The source codes and documentation for the algorithms presented in this paper are available
from the web page of this article1. Usage instructions are included in the README.md file of each
archive.

The acronyms of the methods paper titles and demo links are:

1https://doi.org/10.5201/ipol.2024.481
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• LETR: Line Segment Detection Using Transformers without Edges, https://ipolcore.
ipol.im/demo/clientApp/demo.html?id=48101

• TP-LSD: Tri-Points Based Line Segment Detector, https://ipolcore.ipol.im/demo/

clientApp/demo.html?id=48102

• M-LSD: Line Segment Detection with Mobile LSD, https://ipolcore.ipol.im/demo/
clientApp/demo.html?id=48103

• SOLD2: Self-supervised Occlusion-aware Line Description and Detection, https://ipolcore.
ipol.im/demo/clientApp/demo.html?id=48104

• ULSD: Unified Line Segment Detection across Pinhole, Fisheye, and Spherical Cameras,
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=48105

• AFM: Learning Attraction Field Representation for Robust Line Segment Detection,
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=48106

• EDlines (classic procedure), https://ipolcore.ipol.im/demo/clientApp/demo.html?

id=48107

• DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients (combine
classic and deep learning), https://ipolcore.ipol.im/demo/clientApp/demo.html?id=
48108

The original implementations of the methods are available at the following links: LETR2, TP-
LSD3, M-LSD4, SOLD25, ULSD6, AFM7, EDlines8, DeepLSD9.
This is an MLBriefs article, the source codes have not been reviewed!

Keywords: line segment; detection; learning; edge; a contrario ; NFA ; wireframe; supervised
learning; supervised learning; comparison; LSD; EDlines; AFM; TP-LSD; ULSD; LETR; M-
LSD; SOLD2; DeepLSD

1 Introduction

Line segment detection in images has innumerable applications. Indeed, most human made objects
contain straight 3D edges that cause straight image edges. Along these line segments, the image
intensity changes drastically, due to different plane orientations toward the light [14, 16]. In this
paper, we compare nine line segment detectors. The two elder ones, LSD (2008) and EDlines (2011)
are based on classical edge growing followed by a statistically founded validation. We shall not
describe LSD, which is already the object of an extensive IPOL description [9]. The next six line
segment detectors where chosen because they are very recent, are based on supervised deep learning,
and were trained on the same wireframe dataset. The last one combines deep learning and classical
edge growing to achieve a purely non-supervised method. Furthermore, their experiments are repro-
ducible from public code. The six methods purely based on machine learning train and validate their
neural network on a dataset (Wireframe) and test on the testing part of the same dataset and on
another dataset, YorkUrban. The Wireframe dataset consists of 5,000 training and 462 test images of
man-made environments with manually annotated line segments. The YorkUrban dataset compiles

2https://github.com/mlpc-ucsd/LETR
3https://github.com/Siyuada7/TP-LSD
4https://github.com/navervision/mlsd
5https://github.com/cvg/SOLD2
6https://github.com/lh9171338/ULSD-ISPRS
7https://github.com/cherubicXN/afm_cvpr2019
8https://github.com/CihanTopal/ED_Lib
9https://github.com/cvg/DeepLSD
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102 images of urban environments (45 indoor images and 57 outdoor images) also manually labeled.
The original papers all compare their results with the now classic LSD (Line Segment Detector) or
with EDlines, and claim a better performance than them on these datasets.

In Sections 2 to 8, we describe in sufficient detail EDlines (2011) and the six purely machine
learning based detectors AFM (2019), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021),
SOLD2 (2021). In Section 9 we compare visually the results of the methods. LSD and EDlines
are parameter-free when allowing for one false alarm on average. We find that the six ML based
line segment detectors show a significant variability when changing their end-parameters. We also
compare all nine detectors on two images: one clearly “in domain” for the Wireframe dataset, and
the other one slightly out of domain. Since the goals of these methods and their very definition
of line segments is different, no quantitative performance seems adequate. Finally, we present the
mixed approach DeepLSD (2023) in Section 10.

2 EDlines [1, 2]

Like LSD [21, 8], EDlines [1, 2] is based on a statistical principle, often called Helmholtz principle or
a contrario method. The simple guiding idea is to count the number of aligned pixels on any possible
segment and accept the set of pixels as a line segment if the observed alignment is perceptually mean-
ingful, namely could not occur in a fully disordered (white noise) image. This principle originates in
Gestalt theory [7] and is used as a line validation method. The difference between LSD and EDlines
resides in the way candidate segments are extracted from the image. Since it would be inconvenient
to test all possible segments, LSD finds connected components of pixels sharing the same gradient
orientation up to some precision. If the shape of the component is approximately a rectangle, then
the medial axis of the rectangle is the detected segment, provided it satisfies the Helmholtz principle.
The EDlines proceeds differently and generates candidates by joining seed points that are candidates
to be tips of the segments. These candidates are once again selected by Helmholtz principle.

EDLines is comprised of three steps:

• Edge drawing. It applies the edge drawing algorithm to the input grayscale image to produce
edge segments. This algorithm first regularizes the image, computes the gradients for each
pixel, then estimates the anchor points (a set of pixels with a high probability of being part of
an edge, and finally connects the anchors by following gradients maxima.

• Line segment extraction. Using the least squares line fitting method, this step splits the
edge segments estimated in the first step into multiple lines segments. For a given edge segment,
it iteratively fits the longest line segment that follows the remaining pixels in the edge segment
until all pixels have been processed.

• Line validation. Finally, an a contrario validation step similar to LSD [21] is performed.
This means that a segment is kept if and only it verifies the NFA condition

N4
∑
i=k

n

(
n

i

)
pi(1− p)n−i < ε (1)

with N the size of the image, n the length of the segment, k the number of points in the segment
with a local gradient direction orthogonal to the direction of the segment, p the alignment
precision, interpreted as the probability of a point having a given direction (in practice it is
uniform in the set of possible directions) and ε the maximum number of false alarms.
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3 AFM [24]

This paper poses the problem of line segment detection (LSD) as a problem of region coloring. The
most attractive line segment for every pixel p is simply defined as the nearest line segment of pixel p.
By applying this criterion, the image is partitioned into as many regions of attraction as the number
of segments. The vector field associating each pixel to its closest segment is called attraction field.
In that way, the line segment map is transformed into an attraction field map (AFM). Conversely, an
AFM can be remapped to a set of line segments without loss of information by a “squeeze module”.
The squeeze module consists in grouping local points whose AFM are aligned. The final segment
candidates are then estimated as the segments that are orthogonal to the AFM of each group of
points.

The authors point out that attraction fields are actually two-dimensional feature maps, therefore
compatible with convolutional neural networks. In that way, regional attraction transforms the line
segment detection problem into a region coloring problem. The attraction field (and the subsequent
image partition) are learned from the Wireframe synthetic dataset [12]. Before training, the ground
truth AFM is computed for each image of the dataset using the ground truth annotations. For that,
the partition-region is first computed by associating to each point p its nearest line segment in the
image. Given p′ the projection of p on its nearest line segment, the AFM corresponds then to p− p′.
During training, the L1 loss between the predicted AFM and the ground truth AFM is minimized.
In the testing phase, the attraction field map computed by the network is squeezed to output line
segments.

Inspired from deep learning based semantic segmentation methods, the method learns the at-
traction field map end-to-end. Figure 1 illustrates the architecture of the proposed LSD framework
based on an encoder-decoder neural network. By the squeeze module, the obtained segments are
inserted into the input image. For the encoder-decoder architecture, the authors tested both a simple
U-Net [19] and a modified U-Net termed A-trous Residual U-Net, that takes advantage of residual
blocks [11] and the ASPP module from DeepLab v3+ [5]. Validation is performed on the YorkUrban
dataset [6].

Figure 1: Architecture of AFM.

4 TP-LSD [13]

TP-LSD is based on the concept of the tri-points representation of line segments. Contrary to
regular line segments representations based on two points, the start and end points, the tri-points
representation considers a root point, representing the “center”of the segment, as well as the two
displacements vectors to the start and the end points respectively.
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Figure 2: Architecture of TP-LSD.

The method is based on a U-Net style network that outputs a first set of shared features. These
shared features are then provided to two branches, the TP extraction branch and the line segmenta-
tion branch (see Figure 2):

1. The TP extraction branch outputs the probability of each pixel of the image being a root point
or not. In addition, it also outputs the displacements corresponding to the associated start and
end points;

2. The line segmentation branch outputs the probability of a given pixel to be on a line. This
probability is then injected into the TP extraction branch (using feature aggregation modules
and a point filter module) to improve the quality of the TP detections.

The network is trained using the Wireframe dataset. From the annotation, ground truth binary
line segments map are derived and used to train the line segmentation branch using a binary cross
entropy loss Lline. The ground truth root points are extracted as all the middle points of the ground
truth segments and the root points predictions are also trained using a binary cross entropy loss
Lroot. Similarly, displacements vectors are derived from the root points and the start and end points.
A smoothed L1 loss Ldisp is used to learn the displacement map predictions. The complete loss used
for training is then L = wrootLroot + wdispLdisp + wlineLline where (wroot, wdisp, wline) = (50, 1, 20).

The authors made available two pre-trained models. One trained on 320 × 320 images (TP320)
and the other on 512× 512 images (TP512).

5 ULSD [15]

Contrary to other methods presented in this review, ULSD [15] proposes to detect line segments
that might have been distorted by the optical system like it happens for fisheye or spherical cameras.
The model used for the detection is made of three main blocks: an encoding backbone network that
creates an intermediate feature map, a line segment proposal network and finally a classification
network (see Figure 3). These blocks work as follows:

• The input image is first given to an encoding network, a stacked hourglass network in practice,
to produce an intermediate feature map.

• The feature map is then provided to a line proposal network that creates line segment candi-
dates:
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Figure 3: Architecture of ULSD.

1. This feature map is then given to a first detection network whose job is to detect the
pixels corresponding to the end of segments, called junctions in the paper. Given that
the feature map size is smaller than the input image, this block also outputs a sub-pixel
position corresponding to the offset to exact position in the input image.

2. The second detection network predicts the location of lines. A line is comprised of a center
that is detected similarly to the end points (i.e. as a per pixel detection map and an offset
to map it to the exact sub-pixel position) as well as a series of n points (represented by
their offset to the center) that are uniformly located on the segment. The authors compare
these points to Bézier control points except these are located on the line and as such are
easier to estimate for the network since they are all located inside the image.

3. The junctions and lines are then combined to create the proposed line segment candidates.
A line candidate is said to be a line segment candidate if and only if it is possible to match
junctions to each of its endpoints.

• Finally, the line segment candidates and the feature maps are given to a final classification
network that decides whether the line segment candidate is valid:

1. For each proposed segment, line features are extracted. For this, a set of np points is
sampled uniformly on the segment. This is done by estimating a Bézier curve going
through the set of points defining the segment. The line features correspond then to a
concatenation of the interpolated features associated to these points.

2. The line features are given to a classification network that predicts whether the proposed
segment is valid.

For the pinhole model, training is done on the Wireframe dataset [12] and YorkUrban dataset [6].
For that, a loss taking into account the intermediate prediction is used. In particular, a combination
of three losses is used. The first loss is for the junction detection module. This loss is comprised of
a binary cross-entropy loss for the detection part and an L1 loss for the subpixel refinement offset
part. A similar loss is associated to the line detection network. Finally, a binary cross-entropy loss
is associated to the classification network. For that, a label (positive or negative) is given to each
detected segment based on whether it is possible to match the detection to a segment in the ground
truth. Unmatched segments from the ground truth are also added to the positive label set. Segments
from both labels are drawn so that both classes are balanced.
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Since there are no datasets available for fisheye and spherical, the authors also proposed their
own dataset based on a distorded version of the Wireframe dataset and the YorkUrban dataset using
fisheye distortion model and the manually annotated SUN360 dataset [22]. The same loss as in the
pinhole case is used for these models.

6 LETR [23]

Object detection based on CNNs works by predicting a bounding box for the detected object. How-
ever, the concepts of anchors, necessary for the bounding box detection, is difficult to use for line
segments detection. Indeed, the anchors need to be inside the bounding box found by the model,
which is difficult for small segments and segments in the image grid directions. It is for this reason
that it is not possible to directly use object detection networks to learn line segment detections. Since
the recent transformer networks for object detection, such as [4], don’t use anchors, LETR proposes
to use such an architecture instead, and predicts directly a line segment without the intermediate
bounding box step.

Figure 4: Architecture of LETR.

The architecture of LETR, represented in Figure 4, is the following:

1. The input image is provided to a first backbone network, usually a ResNet-50 or a ResNet-101.
From this backbone, two feature layers are extracted at different levels. These two feature levels
represent two different scales. Similarly to all transformer architectures, a positional encoding
is concatenated to each feature layer;

2. The coarse features are provided to a coarse transformer encoder-decoder, this outputs a first
coarse guess of the location of line segments in the image;
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3. A fine transformer encoder-decoder is then provided with the initial guess as well as the fine
features. This block then provides the probabilities that the prediction is a line segment and
the two corresponding endpoints.

During training, the predicted line segments are associated, if possible, to ground truth line
segments using the Hungarian algorithm. Once the matching between prediction and ground truth
is available, a focal loss is applied to the predicted probabilities and an L1 loss is applied between
the predicted and ground truth endpoints.

7 M-LSD [10]

One major limitation of deep learning based methods is their computation time compared to LSD [9]
and ED-Lines [1, 2], see Table 1. This is why M-LSD [10] has been proposed. The idea is to
accelerate TP-LSD [13], presented in Section 4, by replacing the U-Net and the two branches with a
single lightweight network adapted from MobileNet-v2 [20]. This lightweight U-Net outputs directly
the root points prediction as well as the displacement vectors (see Figure 5). The authors suggest to

Figure 5: Architecture of M-LSD.

add three extra terms to the loss during training compared to TP-LSD:

• A matching loss term Lmatch: TP-LSD penalizes only the value of the displacement vectors. In
M-LSD, the distance to the control points (end points and root point) is also penalized using
a L1 distance;

• A “segments of line” loss Lsol: Some segments are too long for the receptive field of the
network leading to missed detection. Similarly, segments that are too close can also interact.
The authors suggest that forcing the network to also learn how to predict segments of line
(SoL) improves the quality of segment predictions in these situations. Instead of using the
same output for both complete and incomplete segments, the network is modified (only during
training) to output two predictions: one that models the segments of lines and the other for
the complete line segments. In order to create the ground truth for the SoL prediction, the
ground truth segments are split into multiple smaller ones of same size using the same tri-points
representation. The SoL loss is the same as the one for normal detections. During evaluation,
the SoL output is discarded to only keep the prediction of the complete segments.

• A geometric loss Lgeo: The idea is to force the network to learn additional visual geometric
cues. Indeed, end points are localized on junctions points and the root point is located on the
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line itself. The ground truth for both is derived from the annotation and a binary cross entropy
is used. An L1 loss on the length and the angle of the displacement vector is also used.

The authors made multiple pre-trained models available. Two backbones are available, while both
are based on MobileNet-v2, the large version uses a 96 channels bottleneck and the tiny version uses
a 64 channels bottleneck. Additionally, the authors tested both architectures with training images
of sizes 512 × 512 (512) or 320 × 320 (320) and weights with numeric floating point precision of 32
bits (fp32) or 16 bits (fp16).

8 SOLD2 [18]

SOLD2 [18] proposes to learn a descriptor at the same time as line detection. The goal is to be
able to use line segments together with their descriptors for image matching. Contrary to the

Figure 6: Architecture of SOLD2.

previous methods, lines in SOLD2 are represented using only their two endpoints. The architecture,
represented in Figure 6, is the following:

1. The input image is first given to an encoding backbone producing a set of intermediate features.

2. The intermediate features are then given to the junction branch that outputs the probability
that a pixel is a junction.

3. At the same time, the heatmap branch produces the probability that a given pixel is in a line.

4. The junction and line probabilities are fed into the line detection module. It first applies a
threshold on the line probabilities and keeps the local maxima to define the line junctions.
The line candidates consist of all the segments defined by two junction points. In order to
extract the valid candidates, a set of Ns equally spaced points is sampled along the candidate.
A candidate is said to be valid when the average line probabilities for these points is above a
given threshold and if enough points are above this threshold.

Both the junction prediction and the line heatmap are learned using binary cross-entropy losses using
the annotated images from the Wireframe dataset.

Once the line detector has been learned, a dense line descriptor is learned using self-supervision.
Since the Wireframe dataset doesn’t contain pairs of images with matching lines, the authors propose
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to generate training data using data augmentation. Since a line segment in an image still is a line
segment after a homography, it generates training pairs to learn descriptors for line matching by
applying random homographies to reference images. In the end, the line segments considered during
the training are the ones that are detected, using the detector trained in the first part, in the reference
image, as well as in each transformed image generated from random homographies. The descriptor
is learned using a triplet loss between the descriptors of corresponding points of matching lines and
the descriptor of a point in another line segment.

9 Comparative Experiments

Parameters of the machine learning methods. In Figure 7 we compare the results of seven
line segment detectors on a photograph. The experiment displays the original image “Le Pirée”,
followed by results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021),
M-LSD (2021), SOLD2 (2021). As we commented, the first two detectors are handcrafted and based
on edge growing followed by an a contrario detection threshold. A detailed comparison of both
images shows that most segments present in one image are present in a similar position in the other.
Sometimes a segment detected by EDlines is actually split in two with a gap in the LSD result.
This corresponds to a slightly different heuristic exploration of the image gradient field by both
methods: LSD requires connectedness for a segment to be detected, while EDlines allows for some
gap in a segment and therefore sometimes presents a single segment where LSD has two. All in all,
the detection maps are very similar because they obey the same statistical definition of meaningful
segment. No machine learning is involved in this definition and therefore no dataset dependence:
these detectors are agnostic. Something radically different is at stake with the last five detectors
obtained by sophisticated deep learning methods learning primarily from the Wireframe dataset.
This dataset is actually not a dataset of images with annotated line segments. It is a dataset of
photographs of interior and exterior architectures, and its annotation concerns “wire frames”, namely
line segments depicting 3D edges of the architecture and mostly meeting each other at corners or
apparent T-junctions. Unsurprisingly, the line segment interpretations given by machine learning
taught on wireframes are widely different from those proposed by the agnostic statistical definition.
This is confirmed by taking a look at an image from the wireframe dataset [12], see Figure 8. The
middle row shows two images from the wireframe dataset and their “ground truth” which is a human
annotation. This annotation is actually a mental reconstruction of the architectural sketch of the
scene. It presents segments that are actually not visible and misses many that are conspicuous. The
agnostic LSD detections in the bottom row show, for example, hundreds of line segments following
the ground planks on the left image. On the right hand image, the ground truth interprets the
windows’s muntins as single line segments while these are obviously thick and endowed with two
straight sides. This experiment illustrates perhaps the frailty of human annotation: many obvious
line segments are missing. The five neural networks where also evaluated (and compared to LSD and
EDlines) on the YorkUrban dataset [6]. In Figure 9 we display the same format as for the wireframe.
On the middle row, two images from this dataset. On top of them their “wire frame” interpretation,
which seems extraordinarily incomplete and arbitrary. On the bottom row the line segments found
by LSD.

Returning to Figure 7, one can nevertheless notice some agreement between the results of the
four first mentioned networks trained on wireframe, TP-LSD,ULSD, LETR, and MLSD, while the
result of SOLD2 is puzzling. This last method extends unduly many segments and misses many, so
that the building’s architecture is not even respected. These results give an incomplete but rather
coherent view of the building visible on the foreground. The input image belongs to the “domain”
on which the neural network is competent. Yet, on a slightly “out of domain” image, the results
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Figure 7: Comparison of eight line segment detectors on a photograph of “Le Pirée”: original image “Le Pirée”, results of
LSD (2008), EDlines (2011), AFM (2019), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021).
The first two detectors are handcrafted and based on edge growing followed by an a contrario detection threshold. The last
six are obtained by sophisticated, mainly supervised, deep learning methods.

51



Thibaud Ehret, Jean-Michel Morel

Figure 8: Middle: two images from the wireframe dataset. Top: their line segment interpretation in the wireframe dataset.
Bottom: their interpretation by LSD. This experiment illustrates the frailty of human annotation: many obvious line
segments are missing.
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Figure 9: Middle: two images from the YorkUrban dataset. Top: their line segment interpretation in the YorkUrban
dataset. Bottom: their interpretation by LSD. This experiment illustrates the frailty of human annotation: many obvious
line segments are missing.
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obtained by neural networks trained on wireframe diverge considerably more, as becomes evident in
the results compared in Figure 10. The scene contains just and only aligned chairs in perspective.
The networks perform a “wireframe” analysis. Hence the rounded angles of the chairs are replaced
by corners ; more strikingly, most chair borders are visually ridges, not edges, thus delimited by
two parallel straight lines. These are found by LSD and EDlines, but systematically replaced by a
single line in the wire frame interpretation. Additional results are shown in Figure 11 and Figure 12.
Figure 12 verifies if the methods make detections in noise. None does except AFM. Figure 11 tests
the methods on very simple graphical images with obvious straight black strokes and uppercase
letters containing segments. All methods except LSD and EDlines underdetect. More than that, the
black strokes are mostly interpreted as single segments by methods trained on wireframe while they
are in fact rectangles with two sides.

In the experiments of Figures 7 and 10 the algorithms depend on parameters. For LSD and
EDlines, by a classic principle of a contrario detection methods, one false alarm (in expectation)
is allowed per image. This principle makes sense in detection tasks where multiple detections are
expected. Unfortunately for neural networks no such principle is available or accessible to learning.

The considered machine learning methods depend on one or two parameters. One is common to
all: the score or detection threshold ranging from 0 to 1. But an additional threshold may be used
to enforce accuracy like in ML-LSD, which is endowed with a distance threshold, and SOLD2, which
has an inlier threshold ranging in [0, 1]. LSD and EDlines have both a single threshold, the NFA,
which is fixed to 1, thus actually not an active user parameter. Here is the list of parameters for
these methods

• SOLD2: detection threshold from 0 to 1, inlier threshold from 0 to 1

• M-LSD: score threshold from 0 to 1, distance threshold from 0 to 20

• U-LSD: detection threshold from 0 to 1. This network has three structural options depending
on the kind of optical camera: mixed, pinhole, spherical, or fisheye

• LETR and TP-LSD: score threshold from 0 to 1.

In Figure 13 we display the results obtained when varying the parameters of each method, partic-
ularly the score threshold. Although the median score 0.5 would be expected to give the best result
on the learning dataset, this threshold is clearly no longer valid on an “out of domain” image.

We also compare the computation times of the different methods on a Intel(R) Core(TM) i7-
7820HQ cpu in Table 1. Unsurprisingly, the two methods that are not based on deep learning are
much faster than the methods based on deep learning. However, contrary to what ED-Lines [2]
claims, LSD [9] is actually faster by almost a factor of two.

LSD [9] ED-Lines [2] SOLD2 [18] M-LSD [10] TP-LSD [13] ULSD [15] LETR [23]

0.065 0.093 15.108 4.342 31.421 8.132 9.089

Table 1: Computation time for the different methods presented. Computation times (in seconds) were estimated as an
average over ten runs for the image used in Figure 10.
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Figure 10: Comparison of eight line segment detectors on an “out of domain” image, a photograph of chairs: original image
“chairs” results of LSD (2008), EDlines (2011), AFM (2019), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021),
SOLD2 (2021). The first two detectors are handcrafted and based on edge growing followed by an a contrario detection
threshold. The last six are obtained by sophisticated, mainly supervised, deep learning methods.
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Figure 11: Comparison of eight line segment detectors on a “wireframe” image, the model of the LSD molecule: original
image “LSD”, results of LSD (2008), EDlines (2011), AFM (2019), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD
(2021), SOLD2 (2021). The first two detectors are handcrafted and based on edge growing followed by an a contrario
detection threshold. The last six are obtained by sophisticated mainly supervised deep learning methods.
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Figure 12: Comparison of eight line segment detectors on a noise image: original noise image, results of LSD (2008), EDlines
(2011), AFM (2019), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021). The first two detectors
are handcrafted and based on edge growing followed by an a contrario detection threshold. The last six are obtained by
sophisticated mainly supervised deep learning methods.
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Figure 13: Parameter dependence of five line segment detectors obtained by deep learning on an “out of domain” image,
a photograph of chairs. First row: results of LETR with score thresholds 0.7, 0.3 and 0.0 respectively. Second row results
of TP-LSD with score thresholds 0.25, 0.1, and an alternative version (TP-LSD-320) with score threshold 0.1. Third row:
ULSD with score thresholds 0, 0.1 and 0.2 respectively. Fourth row M-LSD with parameter pairs (0.2, 1), (0, 20) and (0.5,
10) respectively. Fifth row SOLD2 with parameter pairs (0.1, 0.5), (0.1, 0.99), (0.5, 0.99) respectively. The parameters are
chosen so the number of segments decreases from over-detection to under-detection, the parameters in the middle column
are the more plausible ones.
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10 Combining Deep Learning with LSD: DeepLSD [17]

Given the limitations of pure deep learning methods shown in Section 9, Pautrat et al. proposed
in [17] to combine LSD with deep learning for better line segment detection. The idea is to train
a network to produce a replacement to the gradient field used by LSD [21] and EDLines [1] for the
line segment prediction. For that, the authors use the same concept as AFM [24], where the network
predicts a distance field (distance to the nearest line) and an angle field (orientation of the nearest
line). This prediction is then transformed into a pseudo gradient field that can be used with LSD.
The final predicted line segments are the ones predicted by LSD. This results in more accurate
detection and closer to what one would expect, as shown in Figure 15. This process is summarized
in Figure 14.

Figure 14: Architecture of DeepLSD.

In order to render the learning process unsupervised, the authors also propose to generate pseudo
ground truth from LSD predictions. The reference image is first warped using a set of random
homographies, then the corresponding distance and angle fields are estimated using LSD predictions
on the warped images, which are then warped back onto the reference image and combined using
the median. This has for effect to filter out the detections that are unstable from one warping to
another. The network is then trained using the distance and angle fields thus produced.

An additional refinement step is also proposed. To that aim, the authors suggest to first estimate
the vantage points using a method such as Progressive-X [3]. These vantage points are then used
to refine the predicted line segments so that they match the 3D structure induced by these vantage
points. This step can be used for all the other detectors.
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Figure 15: Comparison of DeepLSD [17] (middle column) and LSD [21] (right column).
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Image Credits

Wireframe dataset [12]

YorkUrban dataset [12]

From [9]
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