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Abstract

In this paper, we present a comprehensive Python program for localizing the point spread
functions (PSFs) present in a stack of images and thereby rendering a super-resolved image in
a Stochastic Optical Reconstruction Microscopy (STORM). A microscope that provides super-
resolved images is known as a super-resolution microscope. Optical super-resolution microscopy
is playing a pivotal role in advancing the field of optical imaging and has found applications in a
number of areas such as cellular biology, biotechnology, medical research, and nanotechnology.
The proposed Python program utilizes image processing techniques to accurately identify the
PSFs present in highly noisy images with densely packed fluorescent objects. Our program
not only provides all the necessary tools for image reconstruction in a STORM microscope
under open source license but also offers certain advantages over the existing reconstruction
software packages. Some such advantages are an option to start the reconstruction process and
the visualization of the rendered super-resolved image in parallel with image acquisition and
disposal of the images immediately after acquisition for minimum use of disk space. Parallel
visualization of the reconstructed image allows aborting the image acquisition in the case the
images are not suitable for super-resolution, thereby saving valuable time. Our Python program
is demonstrated using a number of different image stacks. The proposed software code can be
applied not only to STORM but also to any other super-resolution technique using single-
molecule localization.

Source Code

The source codes and documentation for the algorithms presented in this paper are available
from the web page of this article1. Usage instructions are included in the README.md file of the
archive.
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Localization and Image Reconstruction in a STORM Based Super-resolution Microscope

1 Introduction

Optical microscopy has been a critical tool for studying biological systems, allowing researchers to
visualize structures and processes at the cellular and sub-cellular level. However, traditional optical
microscopy has a significant limitation known as the diffraction limit [12]. The diffraction limit arises
from the fact that light waves diffract as they pass through an aperture; as a result, light coming
from a point source is focused by a lens not to a point but to a finite volume called the point spread
function (PSF). This prevents the observation of structures smaller than the wavelength of light used
to illuminate the sample, since two nearby point objects will not be imaged as two separate points
but as two PSFs of finite dimension which may overlap. This diffraction limit has been a significant
hurdle for researchers attempting to visualize fine structures and processes at the nanoscale using
an optical microscope. In biological imaging, the diffraction limit may not affect the imaging at
the organ or tissue level. However, it becomes a challenge when imaging objects such as proteins
(which are typically a few nanometers in size) or even cell organelles (which are typically around 0.2
micrometres) [3]. In response to these challenges, a new class of microscopy techniques, known as
super-resolution microscopy, has emerged.

Super-resolution microscopy [47] refers to a group of techniques that allow researchers to break
the diffraction limit and achieve resolutions that are several times higher than conventional optical
microscopy. One of the most promising techniques in this field is Stochastic Optical Reconstruction
Microscopy (STORM) [35, 5]. STORM is based on the principle of photo-switching of fluorophores,
which are molecules that absorb light of a specific wavelength and emit fluorescence light. In STORM,
the sample is labelled with fluorophores whose emission can be switched on and off stochastically in
such a way that two nearby molecules do not undergo fluorescence emission simultaneously. This
allows individual molecules to be localized with extremely high precision. By localizing all the
individual molecules present in the sample, a super-resolution image of the same can be reconstructed.

One crucial step in a STORM-based microscope is the localization of a large number of molecules
and the reconstruction of the image. Softwares such as ThunderSTORM [31] perform the localization
and reconstruction operations. A separate software is first used to run the microscope and to capture
images. The localization software then operates on the captured images, usually after the image
acquisition is over. Since STORM requires capturing several thousand images of the sample, the
above process of reconstruction post-completion of acquisition eats up a significant amount of disk
space of the PC and thus poses an issue in the case of frequent use of the STORM system, for
instance in a hospital or clinic. Besides, the suitability of the images for successful localization is
known only after the entire acquisition process is over, especially when the microscope operator is a
non-expert. In this work, we present a comprehensive yet simple Python-based computer program
for localization and reconstruction in a STORM system. The program can run simultaneously with
the image acquisition, thereby letting the operator know beforehand if the captured images are
suitable for localization so that, if needed, another imaging attempt can be made at the earliest after
incorporating the necessary modifications. The program also has the option to delete the captured
images in a sequential manner once the molecular locations from each image are obtained so that
minimum possible disk space is used at any instant of time. Besides, the program is written in a
modular form for better understandability of general readers and has several options to obtain the
reconstructed image varying from low accuracy and high speed to high accuracy and low speed.
The use of open source code in Python and the simple code structure facilitate easy adaptability
with different instruments, operating systems and applications. In this paper, we first present the
basic concept of optical super-resolution and STORM, followed by a description of the software code
and the related algorithms. We end this paper with some demonstration examples of the proposed
software code.
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2 Image Formation by an Optical Imaging System

Figure 1: Schematic diagram showing image formation by a lens

To understand the concept of optical super-resolution, we first delve into the mathematical foun-
dations of image formation by a lens depicted in Figure 1. We assume that the object to be imaged is
represented by a two dimensional complex amplitude function. If Uo(ξ, η) is the complex amplitude
in the object plane where (ξ, η) are the object plane coordinates, then the complex amplitude in the
image plane Ui(u, v), with coordinates (u, v), can be written as [12, 45]

Ui(u, v) = A

∫∫
R2

Uo(ξ, η) h(
u

M
− ξ, v

M
− η) dξdη, (1)

where A is a constant, M is the magnification and h is the impulse response of the imaging system,
which is the response of the imaging system at (u, v) in the image plane for a unit amplitude point
at (ξ, η) in the object plane. If P (x, y) is the aperture pupil function of the lens with coordinates
(x, y), (z1, z2) are the object and image distances, and λ is the wavelength of illumination so that
(k = 2π

λ
), then h can be written as [12]

h(u, v) =
1

λ2z1z2

∫∫
R2

P (x, y) exp
[−ik
z2

(ux+ vy)
]
dxdy. (2)

For unit magnification (M = 1), Equation (1) reduces to

Ui(u, v) = A

∫∫
R2

Uo(ξ, η)h(u− ξ, v − η) dξdη, (3)

which represents the convolution of the object plane amplitude with the impulse response function
of the lens so that

Ui(u, v) = Uo(ξ, η)⊗ h(u, v). (4)

Here ⊗ represents the convolution operation [7]. In a fluorescence microscope such as STORM, the
image is formed by collecting the fluorescence light from the sample which is incoherent. Thus a
STORM system belongs to the class of incoherent imaging systems. The intensity in the image plane
for such an incoherent imaging system is given as

I(u, v)incoherent = |Uo(ξ, η)|2 ⊗ |h(u, v)|2. (5)
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Localization and Image Reconstruction in a STORM Based Super-resolution Microscope

The term |h(u, v)|2 is known as the point spread function of the imaging system, as mentioned
already. The image, thus, is quantified mathematically by the convolution operation of the object
plane intensity and the PSF of the imaging system.

The pupil function P (x, y) of an imaging lens is, in general, a ‘circ’ function. For such a lens, its
PSF is the Fraunhofer diffraction pattern of the circular lens aperture, which can be written as |h|2
where

h(r3) =
A

z2λ

[2J1(kr3 sinθ)

kr3 sinθ

]
. (6)

Here J1 is the Bessel function of the first kind. The PSF for a circular pupil function is also known
as the Airy pattern. Here sinθ = w

z2
with w as the radius of the lens aperture and r3 =

√
(u2 + v2).

2.1 Resolution and the Diffraction Limit

The resolution of an imaging system is its ability to distinguish two closely located objects in the
image plane. The minimum separation between two point objects that can be resolved in the image
plane is called the resolution limit. As discussed already, an imaging lens with a circular aperture,
due to diffraction, images a point object as an Airy pattern which is also the PSF of the imaging
system [24]. Any object with a size smaller than the PSF will appear to be of the same size as the
PSF in the image plane. Since the Airy pattern has a finite width, hence there is an inherent limit
to resolve two closely placed objects. Ernst Abbe explained this fundamental constraint in optical
microscopy known as the diffraction limit, in terms of the wavelength of light, λ, and the numerical
aperture (NA) of the imaging lens (usually the objective lens in the microscope) as [1],

dlateral =
λ

2NA
. (7)

Using Equation (7), we can determine the maximum resolution (according to Abbe’s limit) that can
be achieved when imaging a sample with light of a given wavelength. For instance, if we use light of
500 nm to image a sample, the maximum resolution, considering NA=1, is 250 nm.

Figure 2(a) shows the grayscale image of a PSF in the form of the Airy pattern, and Figure 2(d)
shows the corresponding line plot. When we consider two point objects close to one another by a
distance a little larger than the resolution limit, they give rise to partially overlapping Airy patterns,
as shown in Figure 2(b) and the respective line plot in Figure 2(e). However, if we bring the two points
within the resolution limit, the overlapping PSFs, as indicated by Figure 2(c) and the respective plot
in Figure 2(f), can not be distinguished from one another.

In addition to Abbe’s resolution limit, two other criteria are also used to determine the resolu-
tion in optical systems, namely, the Rayleigh’s criterion and Sparrow’s criterion. According to the
Rayleigh’s criterion two point sources are resolvable when the central maximum (principal diffraction
maximum) of the Airy pattern of the first source coincides with the first minimum of the Airy pattern
from the other source [34]. The expression of Rayleigh’s resolution limit is given as dlateral = 0.61λ

NA
.

On the other hand, Sparrow’s criterion offers a more practical approach to resolution determination.
Resolution limit according to Sparrow’s criterion is defined as the distance between two point sources
where their images no longer have a dip in intensity level between the central peaks [41]. The expres-
sion of Sparrow’s resolution limit is given as dlateral = 0.47λ

NA
. To present a comparison of the three

resolution criteria, we consider two point sources emitting at 500 nm kept at separations equal to
the Abbe’s, Rayleigh’s and Sparrow’s resolution limits. We numerically simulate the resulting PSFs
considering a focusing lens of NA=1. Figures 3 (a), (b) and (c) show the line plots of the intensity
considering the PSFs separately and the resultant intensity.
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Figure 2: Images of (a) a single point object or the Airy pattern, (b) two close by points and (c) two points separated by a
distance smaller than the resolution limit of the imaging system. (d), (e) and (f) show the line plots through a horizontal
line passing the centre of (a), (b) and (c), respectively.

Figure 3: Line plots of the intensity considering the PSFs separately and the resultant intensity, for two points sources
kept at separations equal to the resolution limit accroding to the (a) Abbe, (b) Rayleigh and (c) Sparrow criteria. The
calculations are based on wavelength(λ)= 500 nm and Numerical Aperture (NA) of 1.

We notice that the numerical aperture of a microscope objective is a critical factor influencing
achievable resolution by a microscope and it is defined as NA = n sin(α), where n is the refractive
index of the focusing medium and α is the semi aperture angle. In principle the resolution of a
microscope can be enhanced by increasing the NA of the objective lens. However α can take a
maximum value of 90◦, thus restricting the resolution limit of the microscope for a given refractive
index of the focusing medium. Objective lenses such as oil immersion objective lenses attains an
NA value of about 1.4 by using oil as the focusing medium which has refractive index of about 1.5.
Considering such an objective lens the Abbe’s resolution limit for wavelength=500 nm is found to
be ∼ 179 nm.

3 Super Resolution Microscopy (SRM)

A resolution beyond the diffraction limit is known as super-resolution. While the diffraction limit
is a fundamental constraint, there are ways to overcome the same in optical microscopy. A micro-
scope with a resolution beyond the diffraction limit [21] is known as a super-resolution microscope.
Super-resolution microscopy consists of several methods and techniques and can be broadly catego-
rized into two groups. The first group contains techniques that are capable of obtaining a resolution
beyond the diffraction limit, but the resolution enhancement is limited. This includes variants of
Confocal Microscopy such as image scanning microscopy [40] and Structured Illumination Microscopy
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(SIM) [13, 27], enhancing the resolution by a factor of ≈ 1.8 and ≈ 2.2, respectively, compared to
conventional widefield microscopy. The second group primarily contains fluorescence imaging tech-
niques capable of significantly improving resolution and can be considered ‘true super resolution’
techniques. This group includes Stimulated Emission Depletion (STED) Microscopy [19] [25] and
Single Molecule Localization Microscopy (SMLM). The current SRM approaches can achieve a res-
olution of around 15-20 times greater than that of conventional optical microscopy [46, 18, 26]. In
theory, that means two points separated by as close as 10 nm should be visible as separate entities
with these SRM methods, and such resolutions have been reported recently in fixed samples [8].

3.1 Single Molecule Localization Microscopy (SMLM)

Single-molecule localization microscopy (SMLM) is a powerful fluorescence microscopy-based imag-
ing technique that enables nanometer-level spatial resolution. SMLM relies on the phenomenon of
fluorescence blinking, involving the random switching of fluorescent molecules between dark and
bright states under continuous illumination [14]

During the process of blinking, a fluorescent molecule will switch between an excited state, where
it can emit fluorescence light and a dark state, where it can not emit any light. The length of time
that a molecule spends in each state can vary in a random manner which makes it possible to keep
only a sparse subset of the fluorescent molecules in the sample in the emission capable (i.e. active)
state. Consequently, two molecules at a separation smaller than the diffraction limit will unlikely
be in the active state simultaneously, giving rise to an isolated PSF, whose centre can be identified
accurately in lieu of two overlapped PSFs. Such single-molecule localization concept [11] [48] can
be applied repeatedly to localize all the molecules present in the sample and thereby reconstruct a
super resolved image of the same.

There are several SMLM techniques based on different sample preparation methods and types of
fluorescent molecules used, such as Photoactivation Localization Microscopy (PALM) [6], fluorescent
PALM (fPALM) [20], Stochastic Optical Reconstruction Microscopy (STORM) [35], direct STORM
(dSTORM) [17], Points Accumulation for Imaging in Nanoscale Topography (PAINT) [39], DNA
Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) [37], MUltiple SIgnal
Classification ALgorithm (MUSICAL) [2].

Despite the differences in the sample preparation and imaging procedures used, most SMLM
techniques implement similar post-acquisition localization algorithms. The accuracy of such systems
is given by the Cramer Rao Lower Bound [10], which provides a theoretical lower limit on the error
associated with the localization process.

3.2 Stochastic Optical Reconstruction Microscopy (STORM)

In 2006, Michael J Rust, Mark Bates, and Xiaowei Zhuang developed STORM [35] as a new tech-
nique for super-resolution imaging. Unlike STED, which takes a deterministic approach, STORM
uses a probabilistic approach [4] and requires a much simpler experimental setup. STORM uses pho-
toswitchable synthetic fluorophores (dyes) that can switch between fluorescent and non-fluorescent
states in the presence of specific buffers [20], using lasers of different wavelengths [6].

STORM has several advantages over other super-resolution techniques. It can achieve spatial
resolution up to 10 times higher than that of conventional microscopy [35]. STORM also has a lower
excitation intensity, which reduces photobleaching and phototoxicity of the molecules, making it a
suitable technique for live-cell imaging [4]. Furthermore, the technique is compatible with a wide
range of biological samples, including cells and tissues [20].
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4 The Comprehensive Python Code for Localization and

Reconstruction

As stated already, in single molecule localization microscope such as STORM, super-resolution is
achieved by computationally localizing the fluorophores in images with diffraction-limited resolutions.
Accurate and robust PSF localization is a challenging task that directly impacts the quality of
reconstructed images, affecting both resolution and accuracy. Therefore, PSF localization is a critical
step in the image reconstruction process in localization microscopy. A variety of mathematical
algorithms have been developed and can be adopted for the localization of PSFs.

Figure 4: Localization and reconstruction steps in STORM.

Our program is written in open-source programming language Python, and apart from our own
code, it utilizes common libraries such as NumPy [16], SciPy [44], scikit-image [43], and mat-
plotlib [22]. Figure 4 depicts the various processes carried out by the program. The localization
procedure in our program starts with loading the stack of images using scikit-image after the camera
of the STORM system captures all the diffraction limited images (i.e. raw images captured by the
camera in the microscope). However, our program also has an option to dynamically load single or
multiple raw images, as and when available, immediately after the image acquisition begins. The
loaded images can be but not necessarily pre-processed to enhance the contrast and reduce back-
ground noise. Each image from the camera is then operated upon by a crude localization module
to obtain approximate location of each single molecule. After crude localization, the image is then
acted upon by the sub-pixel localization module, which localizes the single molecules with an accu-
racy smaller than that provided by the camera pixels. The program then filters out localizations
that do not meet the desired quality criteria. The remaining localization values are then used to
reconstruct the super-resolved image of the sample. Our program has an option to delete each raw
image after the respective localization values are incorporated into the reconstructed image and also
to display the updated reconstructed image in real time as the localization progresses.

Below we provide a brief description of all the above steps done via a set of modular code and
the associated algorithms.

4.1 Loading an Image or an Image Stack and Reconstruction Method
Selection

As already stated, the proposed Python code includes two options for loading the images. The
method for loading the images is determined by the variable IMAGE LOADING TYPE. Firstly,

70



Localization and Image Reconstruction in a STORM Based Super-resolution Microscope

it allows for loading a TIFF stack with dimensions (NUMBER OF IMAGES, DIMENSION 1, DI-
MENSION 2 ), where NUMBER OF IMAGES represents the total number of images in the stack,
and DIMENSION 1 and DIMENSION 2 represent the dimensions of each image. Secondly, there
is a provision for dynamically loading images when they are added to a predefined location. In the
case of dynamic loading, we need to manually provide these values. Additionally, the value of the
variable IMAGE DELETION determines whether the already processed images should be deleted.
The dynamic loading option is expected to be implemented in conjunction with the camera that
directly loads the raw image (before saving it to the hard disk) for localization at a regular interval.
However, for demonstration purposes, we are supplying a separate code dynamic im gen.py that
mimics the dynamic loading and saving of images in a specified folder.

TIFF is the default choice for saving scientific images as apart from providing an option of lossless
compression, TIFF enables z stacking of image slices for volume imaging. Additionally TIFF tags are
useful for microscopy as the tags are often populated with useful information such as the microscope
objective, exposure, binning etc. used during imaging.

The loading process is performed using the scikit-image library. We utilize the io.imread()

function of scikit-image Python package to load the images for subsequent operations, with each
image being saved as a NumPy array.

Next, we select the reconstruction method by using the variable RECONSTRUCTION TYPE.
Based on the assigned value of this variable, the program performs either crude localization alone
or crude localization followed by sub-pixel localization. Furthermore, the type of crude localization
and sub-pixel localization is selected through the variables CRUDE LOCALIZATION TYPE and
SUB PIXEL LOCALIZATION METHOD respectively.

4.2 Initialization of Parameters

The code first initializes all the parameters, namely, THRESHOLD that determines the threshold
pixel value to differentiate between signal and noise, NEIGHBOURHOOD SIZE that decides the size
of a square window that is scanned over the image for crude localization using centre of mass method,
PSF RADIUS that approximately gives the radius of the airy disc of the PSF, WINDOW SIZE that
decides the size of a small square area in the image around the molecular location provided by the
crude localization module for sub-pixel localization. The threshold levels are determined based on
pixel intensity values in the experimental images. Additionally, we also initialize the input parameters
for the model Gaussian function for fitting. This set of parameters denoted as INIT PARAMS
comprises parameters such as amplitude to represent the maximum value of the Gaussian function,
(xo, yo) the initial origin of the Gaussian, σx, σy initial width of the Gaussian, θ to represent the
angle of rotation of the Gaussian and offset to add a fixed value to the entire Gaussian profile. The
parameters are placed in the order [amplitude, xo, yo, σx, σy θ, offset ] in the code.

4.3 Crude Localization

For crude localization, we take one raw image at a time from the image stack or from the list of
image files present in the relevant folder. In case the image pixels have larger bit values, the code has
the option of converting the same to an 8-bit format to make the computation simpler. The image
can also be filtered using a Gaussian filter to enhance the features for proper detection of the PSF.
Our code can employ three different methods for crude localization, namely, peak local maximum,
centre of mass and blob detection using Laplacian of Gaussian.
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4.3.1 Peak Local Maximum

Peak local maximum refers to a point in the raw image where the intensity value is greater than that
of its neighbouring pixels. Specifically, a peak local maximum is a pixel that has a higher value than
all its adjacent pixels within a specified neighbourhood.

To find peak local maxima in an image (Algorithm 1), the code needs to define a neighbourhood
around each pixel. This neighbourhood area is usually a square, a circle, or an area of any other
shape, and its size is typically specified in pixels by the parameter PSF RADIUS. Next, the code
scans the image and compares the intensity values of each pixel to those of its neighbours using the
parameter threshold. If the pixel has the highest value in its neighbourhood, then it is considered
a peak local maximum. In our implementation, we are using the scikit-image’s peak local max()

function for the crude localization. This method works faster than the subsequent two methods but
is less accurate than the other two.

Algorithm 1: Crude localization using peak local maxima

Input: {image, threshold, PSF RADIUS}
Output: {x̃cr, ỹcr}; x, y coordinates of peak local maxima
method:
1. find all potential peak locations by comparing each pixel with its neighbours in a square
area of size PSF RADIUS

2. peak locations with pixel values higher than threshold are selected as significant peaks
3. peak locations that are too close to each other (smaller than the minimum Euclidean
distance), controlled by the PSF RADIUS parameter, are removed.

4. return the coordinates {x̃cr, ỹcr} of the remaining peaks.

Figure 5 (a) shows a PSF array comprising a maximum surrounded by pixels of values lower than
the maximum, distributed in a symmetric manner, while Figure 5(b) shows an image array in the
presence of noise. Figure 5(c) depicts how thresholding can eliminate the effect of noise in a PSF
array.

4.3.2 Centre of Mass Method

This localization is based on the Centre of Mass (COM) algorithm (Algorithm 2) to find the centroid
of the PSFs. The centroid of a shape is the arithmetic mean of all the points in the shape. The
centroid of an image is given as

[xcentre, ycentre] =

[∑
x I(x, y)∑
I(x, y)

,

∑
y I(x, y)∑
I(x, y)

]
(8)

where I(x, y) is the intensity of the pixel (x, y). In this module, the program first finds the im-
age array’s maxima and minima. It then retains the maxima if the difference between the maxima
and the minima is greater than the threshold. Afterwards, the centroid is computed using Equa-
tion (8) in a square area defined by neighbourhood size about each maximum. To implement COM,
scipy.ndimage.cente of mass() is used.

4.3.3 Blob Detection using Laplacian of Gaussian (LoG)

The Laplacian of Gaussian (LoG) filter is an image enhancement filter used to highlight areas of an
image that contain rapid changes in intensity (such as the edges of objects or boundaries between
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Figure 5: (a) A PSF array with symmetrically decreasing pixel values with respect to the central maximum, (b) An image
array with noise showing the asymmetric distribution of pixel values about the maximum, (c) thresholding to eliminate noise:
a threshold value of 10 units retains the relevant signal of the PSF while eliminating the noise which has a maximum value
of 5 units.

Algorithm 2: Crude localization using centre of mass (COM)

Input: {image, threshold, neighborhood size}
Output: {x̃cr, ỹcr}; x, y coordinates of centre of mass
1. Apply maximum filter on the image to find the local maxima
2. Identify locations of local maxima
3. Apply minimum filter on the image to find local minima
4. Compute the difference between maxima and minima
5. Set maxima to zero if the difference is below threshold
6. Define a square area of size neighborhood size around each non zero maximum
7. Compute the centre of mass of each maximum over the square area using
scipy.ndimage.center of mas()

8. Return the coordinates of the maxima as {x̃cr, ỹcr}

different regions of an image). The filter is obtained by convolving the raw image with a Gaussian
filter followed by the Laplacian operator. The Gaussian filter serves as a smoothening function, while
the Laplacian operator highlights regions of rapid intensity change. The operation can be represented
mathematically as

LoG(x, y) = ∇2 (G(x, y)⊗ I(x, y)) , (9)

where ∇2 is the Laplacian operator, G(x, y) is the Gaussian function, and I(x, y) is the input image.
Building upon the LoG concept, in the blob detection algorithm (Algorithm 3) we have employed
the blob log() function of scikit-image. It employs a sequence of LoG filters with varying sigma
values to create a 3D image cube. By identifying local maxima within this cube and subsequently
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Algorithm 3: Crude localization using LoG

Input: {image, threshold, PSF RADIUS}
Output: {x̃cr, ỹcr}; x, y coordinates of LoG
1. apply Laplacian of Gaussian (LoG) filter on the image
2. identify the local maxima in the LoG-filtered image corresponding to the potential blob
centres

3. apply a threshold on the blob intensities to filter out weak or insignificant blobs using the
parameter threshold

4. determine the scale (or size) of each detected blob by analyzing the response of the LoG
filter at each local maximum; discard blobs smaller than 2 pixels or greater than
PSF RADIUS

5. Return the coordinates of the remaining blobs as {x̃cr, ỹcr} along with the corresponding
sizes of the blobs

removing overlapping blobs, the function provides a comprehensive approach to detecting circular
blobs within images. A threshold is then applied to eliminate weak blob candidates, retaining only
the most significant ones.

Figure 6: Crude localization of PSF using (a) peak local maximum, (b) centre of mass and (c) Laplacian of Gaussian
methods on a simulated noisy image

Figures 6 (a), (b), and (c) show the positions of the PSF centres indicated by the yellow crosses
(‘+’), obtained using the peak local maximum, centre of mass, and Laplacian of Gaussian methods,
respectively. Upon closer examination of the PSF centres, one can observe minor discrepancies in the
crude localizations provided by these three methods. Some PSFs remain undetected by both the peak
local maximum and centre of mass methods (shown as dotted red and green circles, respectively),
while at certain locations noise is incorrectly identified as potential PSFs (shown as red and green
squares, respectively). In contrast, the Laplacian of Gaussian method accurately identifies all the
PSFs without including noise as potential PSFs. We see from the above results that the Laplacian
of Gaussian method provides the best accuracy for crude localization.

4.4 Sub-pixel Localization

Sub-pixel localization allows for precise positioning of the PSFs corresponding to a set of sparsely
located fluorescent molecules. Here the molecular position can be estimated with precision, poten-
tially up to a fraction of a camera pixel. Sub-pixel localization achieves the localization precision
beyond the pixel size of the camera by fitting the observed PSF of the fluorescent molecule to a
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model PSF that takes into account the effects of diffraction and optical aberrations present in the
imaging system.

There are various algorithms that can be used for sub-pixel localization, such as least square
fitting and maximum likelihood estimation. These algorithms use different mathematical models
and optimization techniques to fit a theoretical profile to the observed image and thereby estimate
the position of the molecule.

Figure 7: (a) PSFs present in an image frame, (b) an extracted PSF sub-array using crude localization, (c) sub-pixel
localization of the extracted PSF using Gaussian fitting.

The process begins with extracting each PSF as an array subset from the raw image based on its
approximate position as given by the crude localization module as shown in Figure 7(a). If (x̃cr, ỹcr)
are the approximate coordinates and window size is the PSF fitting radius, then the fitting region is
defined as

D = {(x, y);xε{x̃cr − window size, . . . , x̃cr + window size},
yε{ỹcr − window size, . . . , ỹcr + window size}}

Each array subset, such as in Figure 7(b), is then fitted with a model PSF to get the exact location
of the centre of the respective PSF, as seen in Figure 7(c).

There are various choices for modelling a PSF. As we have discussed already, the diffraction
theory predicts the Airy pattern as the PSF. However, calculation involving the Airy pattern is very
computationally intensive. Besides, the pixel data of the camera corresponding to a PSF actually
deviates from the true nature of the Airy pattern due to the presence of various noises associated with
the imaging process as well as due to the finite pixel size of the imaging devices. It has been found
that a two-dimensional Gaussian function can be used to model such a PSF very accurately [49] and
is also convenient to work with a Gaussian computationally [42], [15]. A Gaussian PSF model can
be defined as

F (x, y, A, xo, yo, σx, σy, b) = Aexp
(
− (x− xo)2

2σ2
x

− (y − yo)2

2σ2
y

)
+ b, (10)

where A is the peak intensity, (xo, yo) is the origin of the Gaussian, (σx, σy) are the spread of the
Gaussian in x and y direction and b is the fixed background pixel value.

4.4.1 Least Square Fitting

Least squares fitting is a powerful technique that can be used to estimate the parameters of the
model PSF that fits the observed data. It minimizes the sum of the squared residuals between the
observed PSF and the model PSF by varying the model’s parameters θ, where θ = (A, xo, yo, σx, σy).

75



Pranjal Choudhury, Bosanta Ranjan Boruah

The residue that is to be minimized is given as:

S =
∑

all pixels

[I(x, y)− F (x, y, θ)]2. (11)

The parameters A, xo, yo, σx, σy that best fit the data points are computed in an iterative manner [29].
There are various algorithms that can be used to perform 2D Gaussian least square fitting, such as

the Levenberg-Marquardt [28] algorithm, the Nelder-Mead simplex algorithm [30], and the gradient
descent algorithm [9]. These algorithms differ in their speed and accuracy, and the choice of algorithm
depends on the specific application and the properties of the data. In our program (Algorithm 4),
we have utilized the curve fit() function of SciPy to fit the Gaussian model with the pixel data.

1D Least Square Fitting: In 1D least square fitting the 2D optimization is reduced to two
1D optimization problems. First, the crude location of the PSF as given by the previous module is
obtained, and a row of the PSF subset passing through the crude centre is extracted from the raw
image frame. The extracted row is then fitted with the 1D model PSF to get the centre xo, and the
width of the Gaussian σx along x. The module then extracts the column at xo from the same PSF
subset and is fitted again with the model PSF to find its amplitude A, centre yo and width σy, along
the y-axis.

2D least squares fitting: In this method, the extracted PSF subset for each crude location is
directly fed to the module, which is based on fitting a 2D Gaussian on the 2D pixel data. Computa-
tionally, this is done by reshaping the 2D arrays of the PSF subset as well as the model Gaussian PSF
into 1D arrays and then fitting them to extract the required parameters (amplitude, xo, yo, σx, σy).

Algorithm 4: Sub-pixel localization using 1D/2D least squares fitting

Input: {(x̃cr, ỹcr), image, window size, init params}
Output: {amplitude, xsp, ysp, σx, σy}
1. For each PSF in the raw image, extract a sub-image of dimensions window size around
the approximate PSF centre given by coordinates(x̃cr, ỹcr), which is obtained by any of the
three crude localization methods, determined by the parameter method.

2. use scipy.optimize.curve fit() to fit a 1D or 2D Gaussian (based on the fitting
method chosen) to the sub-image using the initial parameters initial guess.

3. return the output of the optimization

Figure 8: Surface plot of the (a) raw image data and the fitted Gaussian. (b) Line plot through the raw image and the
fitted Gaussian.
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Figure 8(a) shows the surface plot of the raw image data and the fitted 2D Gaussian, while
Figure 8(b) shows line plots through the centres of the raw image and the Gaussian.

4.4.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) [23, 32] is a more sophisticated method that takes into account
the statistical properties of the noise in the observed image. MLE models the PSF as a probability
distribution and estimates the position of the molecule that maximizes the likelihood of how well the
model fits the data for a given PSF model. This method is the most accurate but is complex and
appears to be sensitive to the choice of the PSF model.

In our case, the aim is to compute the parameters θ for which the likelihood of model PSF fitting
the raw image data is the highest. The likelihood function is given as

L(I; θ) =
1

2πσ2
xσ

2
y

exp

[
−(I − F (θ))2

2σ2
xσ

2
y

]
, (12)

LL(I; θ) = −1

2

n∑
i=1

log(2πσ2
xσ

2
y)−

n∑
i=1

(Ii − F (θi))
2

2σ2
xσ

2
y

, (13)

where I represents the observed image data, F (θ) represents the Gaussian PSF model, and θ =
(A, xo, yo, , σx, σy) represents the PSF model parameters.

Computationally, the aim is to maximize the likelihood function L(I; θ) or minimize the negative
of the natural log of L(I; θ), known as the log-likelihood function LL(I; θ). This will give the optimum
parameters θ. The sum in the log-likelihood function is over all the observed pixels.

The minimization problem can be represented as

parameters = argmin(θ)
[
−

∑
all pixels

[I(x, y)− log(F (x, y, θ))− F (x, y, θ)]
]
. (14)

In our implementation (Algorithm 5), we use the minimize() function of SciPy with the ‘Nelder-
Mead’ [33] method as the optimization algorithm to minimize the negative log-likelihood (LL) and
obtain the maximum likelihood estimates of the parameters.

Algorithm 5: PSF localization using MLE

Input: { (x̃cr, ỹcr), image, window size, init params}
Output: {amplitude, xsp, ysp, σx, σy}
1. For each PSF in the raw image, extract a sub-image of dimensions window size around
the approximate PSF centre given by coordinates(x̃cr, ỹcr), which is obtained by any of the
three crude localization methods, determined by the parameter method.

2. evaluate the log-likelihood of the PSF data in the sub-image with the Gaussian model
3. use scipy.optimize.minimize() to minimize the negative of the log-likelihood using the
initial guess.

4. Return the output

It is to be noted that the use of both crude localization and sub-pixel localization modules provides
the best accuracy at the cost of computational time. However, one can skip the sub-pixel localization
stage and use the results of crude localization to reconstruct the final image, which will be much
faster to process, at the same rate or a higher rate compared to image acquisition, at the cost of
localization accuracy.
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4.5 Image Reconstruction and Visualization

The output of the sub-pixel localization module is a list of coordinates (and if required the corre-
sponding standard deviation of the fitted Gaussian) of each PSF present in each raw image. If the
camera pixel array is indexed using two sets of whole numbers, the position of the PSF obtained
is usually up to a few decimal places. This list is then used to create a super-resolved image us-
ing various visualization methods. Visualization is a crucial step in the analysis of super-resolution
microscopy data, as it enables us to gain insight into the spatial distribution of molecules in the
sample. In our code, we incorporate three common visualization methods that are widely used in
super-resolution microscopy, namely, scatter plot, histogram, and averaged shifted histogram.

4.5.1 Removal of Incorrect Localizations

There are occasional, especially due to the presence of noise in the raw image, the sub-pixel localiza-
tion module may return incorrect coordinates or PSF centres. Therefore, the code operates another
module to check if all the coordinates returned by the sub-pixel localization modules fall within the
boundary of the raw image or not. It retains only those coordinates which satisfy the above check
and discards the rest.

4.5.2 Scatter Plot

A scatter plot is a simple visualization method that shows the distribution of PSFs in a 2D space.
Each localization is represented as a point in the scatter plot, with the x and y coordinates corre-
sponding to the position of the molecule in the image. Our code for the scatter plot creates a binary
image where each pixel corresponding to a localization is assigned a value equal to 1 while the other
pixels have values equal to zero. The code updates the scatter plot by incorporating the localization
information for all the raw images. It thus creates a binary image of the localized data.

4.5.3 Histogram

Histogram is another common visualization method that can be used to visualize the distribution of
the x and y coordinates of the localized molecules in the sample. Our implementation of the method
creates a 2D histogram of the localization data using histogram2d() of NumPy. If there are multiple
localization events at a given pixel, it is assigned a value equal to the number of events, Thus unlike
the scatter plot, the histogram creates a grayscale image of the molecular positions.

4.5.4 Averaged Shifted Histograms

Averaged shifted histogram (ASH) [38] is a non-parametric density estimator that was introduced as
an effective method for estimating probability density functions in multiple dimensions. The ASH
algorithm works by computing a set of shifted histograms, which are histograms that have been
shifted by a small amount in each direction, and then averaging them together to produce a final
estimate of the probability density function.

To use ASH for visualizing the localized data, we first start with the set of 2D localization
coordinates. We then create a 2D histogram of the localization coordinates, where each bin in the
histogram contains the number of localizations that fall within that bin. Next, the program translates
the original histogram (using numpy.roll()) in each direction by a small amount (e.g., one bin or
one pixel) and then recomputes the histogram. This is repeated for a range of shift values in each
direction, resulting in a set of histograms that have been shifted in all possible directions by a small
amount.

78



Localization and Image Reconstruction in a STORM Based Super-resolution Microscope

Finally, the program averages all of the shifted histograms to produce the final ASH estimate of
the probability density function. The result is a smooth estimate of the density of localizations across
the field of view that is less sensitive to the choice of bin size and bin centering than a traditional
histogram.

Figure 9 shows a comparison of the three visualization methods incorporated in our code.

Figure 9: Visualization of the reconstructed image using (a) scatter plot, (b) 2D histogram, (c) averaged shifted histogram.
(d) , (e) and (f) are line plots along the line shown through (a), (b) and (c), respectively.

5 Implementation of the Proposed Python Code and Re-

sults

We implement our code to localize PSFs present in raw images and reconstruct the super-resolved
image using both simulated and experimental image data.

Figure 10 shows reconstruction from a simulated stack of images. The original image stack
comprises 2000 raw images generated from the source image or object depicting the word ‘HELLO’.
In each image of the stack, only one randomly selected pixel is activated which contains the correct
pixel value relative to the source image. The active pixel is then convolved with an Airy pattern
as shown in Figure 2(a) to mimic the raw image of a sparse set of active fluorescent molecules,
albeit with one active molecule per image frame in this case. The complete stack is then processed
using the 1D least square fit method, and the output is shown as a scatter plot of the localization
coordinates in Figure 10(c). The same stack is then processed with the popular localization and
reconstruction software ThunderSTORM [31]. In ThunderSTORM, we used the local maximum for
crude localization and then applied the 2D least square fitting algorithm for sub-pixel localization.
The super-resolved image as a scatter plot as given by ThunderSTORM is shown in Figure 10(d).

We then consider raw images obtained from the SRM-hub website https://srm.epfl.ch/DatasetPage?
name=MT4.N2.HD [36]. The image stack has 3200 frames of microtubule structures each containing
PSF data of high density of fluorophores, over dimensions 64× 64 pixels.
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Figure 10: (a) Numerically constructed object or source image showing the word ‘HELLO’, (b) simulated image of the object
by a conventional microscope, (c) reconstruction using the proposed algorithm, (d) reconstruction using ThunderSTORM.

Figure 11: (a) and (d) are widefield images of tubulin, (b) and (e) are reconstructions using the proposed code, while (c)
and (f) are reconstructions using ThunderSTORM.

Figure 11(a) shows a widefield image of the sample plane. We then employ Laplacian of Gaussian
and 2D least square fitting of our code for crude localization and sub-pixel localization, respectively.
The super-resolved image using the visualization method Averaged Shifted Histograms returned by
our code is seen in Figure 11(c). The same raw image stack is then processed with ThunderSTORM
using B-spline filtering and local maximum for crude localization and MLE for sub-pixel localization.
The super-resolved image again as Averaged Shifted Histograms given by ThunderSTORM is seen
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in Figure 11(b).

We then consider raw image data obtained from https://srm.epfl.ch/DatasetPage?name=

Tubulins_I comprising an image stack of 2400 frames each of dimensions 256×256 pixels. Each raw
image corresponds to Tubulin structures containing high density fluorophores. Figure 11(d) shows a
widefield image of the sample while Figures 11(f) and (e) show the respective super-resolved images
in the form of Averaged Shifted Histograms as given by ThunderSTORM and our proposed code,
respectively.

A comparison of Figures 10(c) and (d), Figures 11(b) and (c) and Figures 11(e) and (f) indicates
that the proposed Python code produces super-resolved images of quality comparable with that of
ThunderSTORM.

6 Conclusion

In this paper, we have proposed a comprehensive Python based software code for localization and
reconstruction of super-resolved image in an imaging system using the single molecule localization
technique. Here we consider STORM as one such super-resolution imaging technique where our code
can be applied, although our code will be equally applicable to any other similar imaging techniques
using single molecule localization. The program is written in a modular form and follows a simple
structure for easy understandability of general readers and adaptability for different applications.
The code can be executed post image acquisition or simultaneously with image acquisition. The
latter option can facilitate aborting the image acquisition using the localization output given by
our code as the feedback in case raw images are not suitable for localization, so that the corrective
measures can be employed at the earliest. Besides, this option also facilitates the use of minimal
disk space which can be beneficial in case of frequent use of STORM or other similar systems which
otherwise will eat up significant disk space. The proposed software code is implemented in a number
of demonstration examples indicating that the performance of our code is very much comparable in
terms of quality of the super-resolved image with that of ThunderSTORM. Our code offers flexibility
to obtain the reconstructed image quickly by using the crude localization module only, so that image
acquisition and reconstruction can proceed at the same rate.
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P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, Array Programming with NumPy, Nature,
585 (2020), pp. 357–362, https://doi.org/10.1038/s41586-020-2649-2.

[17] M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt,
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