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Abstract

Interactive image segmentation (IIS) methods are usually evaluated in terms of segmentation
performance vs. number of clicks (NoC). However, the automatic evaluation depends on a click-
ing procedure and its relation to the procedure used for training. In this work we compare
qualitatively and quantitatively two state-of-the-art IIS methods that report the best perfor-
mances but have not been compared against each other. We show i) what method is better,
ii) that the performance is sensitive to clicking procedures, iii) what method is more robust to
clicking procedures, and iv) that training with a specific clicking procedure does not guarantee
the best performance using it.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. The original implementation of the method is available here2.
This is an MLBriefs article, the source code has not been reviewed!

Keywords: interactive-image-segmentation; segmentation; survey

1 Introduction

Annotating data is a key step in the construction of a machine-learned solution. Manual annotation
is the only way forward for the problems i) that lack an accurate model (that can be used to simulate
target data) and ii) whose target data is not naturally contained in the original database (e.g. as
in forecasting applications). Annotation is vital to solve traditional computer vision problems, i.e.
classification, detection and segmentation, because it is needed by deep-learning models that are
usually the best for these tasks. Annotation for classification is simple. It can be made more
efficient with the use of active learning algorithms. Annotation for detection can be obtained from

1https://doi.org/10.5201/ipol.2024.498
2https://github.com/SamsungLabs/ritm_interactive_segmentation
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annotation for segmentation, and in this sense, segmentation annotations are more general and have
greater value.

Interactive image segmentation (IIS) methods are used to make the manual segmentation faster,
and are complementary to active learning solutions. The IIS methods were at first graphs-based, but
with the advent of deep learning, neural-networks based methods have become state-of-the-art. We
conducted a survey of most recent IIS methods and found two deep-learning methods [1][5] reporting
the best performances. These are described in Section 3. As will be checked later, their performance
is very similar and no clear winner can be deduced from the results in the papers. This makes a
qualitative and quantitative comparison needed and relevant.

In more detail, the inference of an IIS method is obtained by repeated application of the model.
Formally, we define an IIS model as a function fθ that maps, at step k, an input image x, auxiliary
variables zk and an encoding Ck of the history of clicks, to an estimated output mask ŷk and new
auxiliary variables zk+1

ŷk, zk+1 = f(x, zk, Ck). (1)

Here, Ck = C([c0 = ∅, c1, . . . , ck]), where C is the click encoding function and [c1, . . . , ck] contains all
past interactions, with each ci containing potentially many clicks. Each click is a tuple (i, j, type)
containing the position and type (positive or negative) information. A positive or negative click
indicates a foreground or background pixel respectively. In this work, we assume each ci contains
one click only. This represents the case in which the model produces updates after each and every
user interaction, i.e. there are no computational constraints. The auxiliary variable z may contain
useful information such as the last estimation or the image borders. The final estimate is obtained
as ŷ(ŷK) where K is the total number of interactions and the function ŷ could implement, for
instance, a thresholding operation. Naturally, K needs to be obtained from some stopping criterion.
The clicking oracle role and definition will be discussed in Section 2. The full inference procedure,
including interaction, is described in Algorithm 1.

Algorithm 1: IIS inference

1 function I(fθ, O, x, y)
Input fθ: IIS model as in Equation (1)
Input O: Oracle as in Equation (2)
Input x: The input image
Input y: The target mask to be estimated (only available to oracle)
Output M : Sequence of estimations {ŷ(ŷk)}k
Output C: Sequence of clicks {Ck}k
Output K: Final K

2 k = 0
3 while k < K and ck ̸= END do

4 ŷk, zk+1 = fθ(x, zk, Ck)
5 ck+1 = O(x, y, ŷk, Ck)

6 K = k

7 ŷK , zK+1 = fθ(x, zK , CK)
8 return {ŷ(ŷk)}k, {Ck}k,K

2 Clicking Procedures

As seen from Algorithm 1, the performance depends on the interaction between the oracle and the
IIS model. The oracle is in charge of the clicking. In other words, given a trained IIS model fθ,
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we can expect different performances for different oracles. Many oracles can be thought of, between
them i) a human user, ii) an adversarial robot, iii) an optimal robot.

The oracle is whatever entity is doing the clicks. It is called “oracle” because it is the only
function that accesses the “target mask to be estimated” y. This is a simplification: for the case in
which the oracle is a human, the annotator sees the image x and imagines or knows the desired mask
y. It “has access” to the target mask y because it is the annotator who defines or creates y in her
head. On the other hand, for a robot clicker, accessing the annotation y of a segmentation database
is a requirement to provide informative clicks. Any annotation in a segmentation database is, again,
the result of what a previous annotator imagined as target mask.

In order to propose a new click, the oracle considers the current estimate ŷk, the desired mask
y, and the click encoding Ck. The image information x can be optionally included: for our simple
clicking robots, x is not needed, but for a human, borders and colors might influence where the
next click is placed. Even though, for a human, y is in practice accessed by looking at x, a human
annotator is also perfectly able to provide informative clicks without visualizing the image x if the
target mask y were visible instead. In this paper, we regard accessing x or y as equivalent for the
human and do not model the influence of the input image x because i) there are no human annotators
to be dealt with and ii) our clicking robots do not use the input image x at all. The oracle is then
defined as follows

(i, j, type) = ck = O(yk, y, Ck), (2)

although in the full generality of an IIS problem, its output at each step could be a sequence of clicks
itself and its input could include the image x,

[(i1, j1, type1), . . . , (iN , jN , typeN)] = ck = O(x, yk, y, Ck). (3)

Now we introduce a first assumption that simplifies the problem.

Assumption 1 - True click label: Given a click at position (i, j), its label is Positive if placed
inside the target mask and is Negative otherwise.

This implies that there is no label noise and we can trust all oracles. This assumption is valid for
robot clickers by design. For human annotators, it holds if the annotators have in mind exactly the
same target mask and have a way to undo accidental interactions.

From Assumption 1, we can simplify the oracle in Equation (2) to a function (i, j) = orcl(yk, y, Ck)
and ck = (i, j, type(i, j, y)), where type(i, j, y) = yij. If an adversarial oracle minimizes performance
and an optimal oracle maximizes it, it follows that a random oracle will have a performance between
these two.

2.1 Clicking Robots

We implement seven robots that respect Assumption 1 and are roughly ordered by complexity:

1. Random: Samples uniformly a location in the image in which to click.

2. False region random: Samples uniformly a location in the false region (where prediction and
ground truth differ) in which to click.

3. Largest false region random: Samples uniformly a location in the largest false region
(where prediction and ground truth differ) in which to click. The false region may consist of
disconnected components and one of them is largest (we break ties arbitrarily).

4. False region distance random: Samples according to a probability map which is given by
(up to a constant) the euclidean distance to the border of the false region.
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Figure 1: HRNet architecture layout. Extracted from [6].

Figure 2: Early fusion variants of click maps for HRNet. The chosen one is Conv1S. Extracted from [5].

5. False region distance random, click-aware: Identical to previous for this work. If placing
more than 1 click at a time, places them sequentially and considering the previous locations as
border.

6. gto99: Robot clicker from [1]. Click is placed on the exact center of the largest false region,
i.e. on the internal point that is the furthest away from the border.

7. ritm: Robot clicker from [5]. Click is placed at the point the furthest away from borders of any
false region. This is similar to the previous one, but all false regions are taken into account.

3 Methods

The two IIS models to be evaluated are here presented. Both models take as input an image and
input clicks. Moreover, both use as auxiliary variable z the previously estimated mask. This is done
by using a (C,H,W ) tensor as input, e.g. a six-channel image. The first three channels correspond

Figure 3: gto99 architecture. Extracted from [1].
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to the input image. The last channels correspond to the last estimated mask, the positive clicks and
the negative clicks. The models and their particularities are:

❼ ritm: Model from [5]. The clicks are encoded as disks of radius 5. The used network is
HRNet [8], shown in Figure 1, on top of the last early fusion mechanism shown in Figure 2.
In this case, the number of channels C is 6. During training, some initial clicks are randomly
sampled according to [7], which takes into account the distance between clicks. Then, some
interactions occur in which each new click is placed uniformly and randomly in an eroded
version of the false region.

❼ gto99: Model from [1]. Takes as input a 10 channel image. The first three channels correspond
to the input image. The last one corresponds to the last estimated mask. The positive clicks
and the negative clicks are encoded in the other 6 channels with different Gaussians of reported
deviations {0.02L, 0.04L, 0.08L} (in the code {0.02L, 0.08L, 0.16L}, L = 352) as in [2], using
one channel per Gaussian scale and type of click. The architecture is shown in Figure 3. The
training of this method is done by running interactions in which each new click is placed exactly
at the center of the false region with largest area. The center is defined as the point of a region
furthest away from its border.

Both methods output one value per pixel. As this value is obtained after applying a sigmoid
function to the network’s output and lies in [0, 1], it can be interpreted as a probability. To get a
final binary mask ŷ(ŷK), a threshold at 0.5 is applied to the prediction: all values larger than 0.5 are
considered foreground.

4 Experiments

4.1 Metrics

We use the usual metrics for image segmentation. As image segmentation is pixel classification,
metrics for classification are also useful here. None of these metrics involve spatial relations.

4.1.1 Classification Metrics

Let TP be the number of true positive predictions, i.e. the number of pixels predicted as foreground
(positive) that are indeed foreground according to the ground truth (true). Analogously define the
False Positive (FP), True Negative (TN) and False Negative (FN) numbers. Then:

❼ Accuracy= TP+TN
TP+TN+FP+FN

. Measures the exactitude of the predictions made.

❼ Precision= TP
TP+FP

. Measures how many of the foreground predictions were correct.

❼ Recall= TP
TP+FN

. Measures how many of the foreground pixels were correctly detected.

4.1.2 Segmentation Metrics

These metrics take into account

❼ Dice= 2×TP
(TP+FP )+(TP+FN)

. The Dice coefficient measures the ratio between the double of the
intersection of estimated and ground truth masks and the sum of their areas.

❼ IoU= TP
TP+FN+FP

. Intersection over Union measures the ratio between the intersection of
estimated and ground truth masks and their union.
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4.2 Comparison

The most direct comparison of the two state-of-the-art methods is done with the reported weights
and evaluation procedures. This comparison yields the curves in Figure 4. These curves show that
the winner depends on the metric: gto99 is clearly the best for Precision and Dice Coefficient
but is surpassed by ritm in Accuracy and Recall. What the results suggest is that, for a few clicks
and under both evaluation methods, ritm provides a slightly larger mask than gto99. This behavior
is checked and visually exposed in Figure 5. A side conclusion of the curves is that the gto99 clicking
procedure achieves slightly better results than the evaluation methodology of ritm. In other words,
identifying the largest false region before clicking far away from the borders is more informative than
not doing so.

Figure 4: Comparison of gto99 [1] vs. ritm [5] for evaluation procedures in respective papers. In the legend, the first name
refers to the network, and the second one, starting with an “r”, refers to the robot used to evaluate the network. Curves
are the mean of the curves for each image on the Berkeley dataset [4].

In Figure 6(a) one can see that gto99 surpasses ritm in IoU for both evaluation procedures.
Although the difference is small, it is consistently in favor of gto99, what makes us conclude that
it is the very best method. This is for an evaluation conducted over a subset of the Berkeley
dataset BSD300 [3] originally introduced by [4] and used by [5] for testing, available in the ritm
repository3. This conclusion is in sharp contrast with the conclusion taken from Figure 6(b), where
ritm consistently surpasses gto99 for virtually all the clicking procedures, being slightly worse on the

3https://github.com/saic-vul/fbrs_interactive_segmentation/releases/download/v1.0/Berkeley.zip
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(a) gto99 (b) ritm

Figure 5: Qualitative comparison of gto99 [1] vs. ritm [5] with 4 clicks following the gto99 clicking procedure. Top-left:
input image. Top-right: input image overlayed with thresholded prediction and clicks. Bottom-left: TP (white), TN (black),
FP (blue), FN (red) when assuming thresholded prediction, intermediate colors otherwise. Green clicks are positive and red
clicks are negative. Larger clicks are more recent clicks.

most informative ones, which are presumably unrealistic. In other words, gto99 is slightly superior

under the most sophisticated evaluation protocols, but ritm presents substantially better

robustness to the clicking procedure, which makes it presumably better for dealing with the
variability of real human users (that sometimes do click in the borders of the objects). This is also
confirmed under all the metrics in Figure 7.

(a) evaluation as in respective papers (b) evaluation under all clicking procedures

Figure 6: Comparison of gto99 [1] vs. ritm [5] for different clicking procedures. Curves are the mean of the curves for
each image on the Berkeley dataset [4]. Each curve corresponds to an IIS method, i.e. gto99 or ritm, evaluated with a
clicking procedure, i.e. one of r01, r02, r03, r04, r05, rgto99 or rritm. These clicking procedures correspond to the robots 1
to 7 of Section 2.1, respectively.
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One extreme example of the huge difference for the random clicking procedure is observable in
Figure 8, where 20 random clicks were placed (same location for both methods) and gto99 and ritm

did terrible and terrific jobs respectively. This behavior suggests that the training procedure

impacts the final robustness. On the one hand, ritm was trained with some initial randomly
placed clicks and subsequent clicks had some noise, although they were close to the center of the
false region. Because click ordering information is not provided to the models, ritm does not have
many priors suggesting “a positive click is in the exact center of a region to be labeled”. But this
prior is totally built into gto99. This makes gto99 estimate regions that place positive clicks close
to the center much more than ritm. This behavior can also be seen in Figure 9, where ritm does
not preserve as much symmetry around the positive click as gto99 does.

Figure 7: Comparison of gto99 [1] vs. ritm [5] for different clicking procedures under different metrics. Curves are the
mean of the curves for each image on the Berkeley dataset [4]. Each curve corresponds to an IIS method, i.e. gto99 or
ritm, evaluated with a clicking procedure, i.e. one of r01, r02, r03, r04, r05, rgto99 or rritm. These clicking procedures
correspond to the robots 1 to 7 of Section 2.1, respectively.
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(a) gto99 (b) ritm

Figure 8: Qualitative comparison of gto99 [1] vs. ritm [5] with 20 clicks following the random clicking procedure. Top-left:
input image. Top-right: input image overlayed with thresholded prediction and clicks. Bottom-left: TP (white), TN (black),
FP (blue), FN (red) when assuming thresholded prediction, intermediate colors otherwise. Green clicks are positive and red
clicks are negative. Larger clicks are more recent clicks.

(a) gto99 (b) ritm

Figure 9: Qualitative comparison of gto99 [1] vs. ritm [5] with 2 clicks following the random clicking procedure. Top-left:
input image. Top-right: input image overlayed with thresholded prediction and clicks. Bottom-left: TP (white), TN (black),
FP (blue), FN (red) when assuming thresholded prediction, intermediate colors otherwise. Green clicks are positive and red
clicks are negative. Larger clicks are more recent clicks.
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5 Demo

The demo provided allows one to try the automatic evaluation of one of these state-of-the-art methods
(gto99, ritm) using one of the provided clicking procedures (a total of 6 different) over one specific
(image, selected mask) pair. The mask uploaded should be an image of the same size than the input
image, and all the pixels where the channel mean is smaller (larger) than 128 will be considered
background (foreground). The clicking robots are run until 20 clicks are placed.

The demo provides as output the performance vs. NoC curve for each metric, e.g. Figure 10, and
a visualization similar to Figure 5.

Figure 10: Example output of the demo. In this particular case, IoU is reported for each step over a single image. The
demo also yields curves for Acc, Dice, Fscore, Precision, and Recall metrics.

Image Credits

Extracted from [6].

Extracted from [5].

Extracted from [1].

Extracted from [3].
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