
Published in Image Processing On Line on 2025–03–12.
Submitted on 2024–07–09, accepted on 2025–01–17.
ISSN 2105–1232 © 2025 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2025.562

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Specularity in NeRFs: A Comparative Study of

Ref-NeRF and NRFF

Albert Barreiro1, Roger Maŕı1, Rafael Redondo1,
Gloria Haro2, Carles Bosch3, David Berga1

1Eurecat, Centre Tecnològic de Catalunya, Multimedia Technologies, Barcelona, Spain
({albert.barreiro, roger.mari, rafael.redondo, david.berga}@eurecat.org)

2Universitat Pompeu Fabra, Barcelona, Spain
(gloria.haro@upf.edu)

3Universitat de Vic – Universitat Central de Catalunya, Vic, Spain
(carles.bosch@uvic.cat)

Communicated by Pablo Musé Demo edited by Albert Barreiro

Abstract

Neural Radiance Fields (NeRF) have emerged as a leading technology for 3D digitization, espe-
cially for their high accuracy and intricate detailing. Despite their advancements, early NeRF
models struggle to handle reflections on specular surfaces effectively. To address this, alternative
approaches such as Ref-NeRF and NRFF were proposed to improve fidelity in representing this
physical phenomenon. This study compares these two models, providing an analysis of their
effectiveness and limitations in dealing with complex specularities. We demonstrate that both
methods struggle with inter-reflections and tend to model anisotropic specularities by altering
the predicted surface normals.

Source Code

The source code and documentation for these algorithms are available from the web page of
this article1. Usage instructions are included in the README.md file of the archive. The original
implementations of the methods are available here: Ref-NeRF2 and NRFF3.

This is an MLBriefs article. The source code has not been reviewed!

Keywords: 3D reconstruction; view synthesis; photorealistic rendering; volume rendering;
Neural Radiance Fields

1https://doi.org/10.5201/ipol.2025.562
2https://github.com/kakaobrain/NeRF-Factory
3https://github.com/imkanghan/nrff

Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga, Specularity in NeRFs: A Comparative
Study of Ref-NeRF and NRFF, Image Processing On Line, 15 (2025), pp. 32–44. https://doi.org/10.5201/ipol.2025.562

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2025.562
https://doi.org/10.5201/ipol.2025.562
https://doi.org/10.5201/ipol.2025.562
https://github.com/kakaobrain/NeRF-Factory
https://github.com/imkanghan/nrff
https://doi.org/10.5201/ipol.2025.562
https://github.com/kakaobrain/NeRF-Factory
https://github.com/imkanghan/nrff


Specularity in NeRFs: A Comparative Study of Ref-NeRF and NRFF

1 Introduction

Novel View Synthesis addresses the challenge of reconstructing unseen views of a scene from a set
of sparse input images. This field has experienced significant progress with the development of
techniques such as Neural Radiance Fields (NeRF) [9] and its subsequent version Mip-NeRF [1],
which have transformed the ability to represent complex scenes with high degree of photorealism.
These neural rendering methods have marked a turning point in the field of 3D scene understanding
and representation.

A neural radiance field is a neural network that represents a 3D continuous function in space
describing the appearance and geometry properties of a scene or object. NeRFs can be used to
extract 3D geometric models and render novel views from arbitrary points of view.

Despite the spectacular advances in NeRFs [3], accurately representing complex specular reflec-
tions —as in metallic or wet surfaces— is a persistent challenge [10, 4]. In fact, the light transmittance
model used in most NeRF approaches, including Mip-NeRF [1], ignores the physical properties of the
reflection phenomena, often leading to poor results in reflective surfaces as shown in Figure 1. With-
out an explicit physical modeling, the network commonly represents specular reflections by inducing
geometrical distortions or an artificial foggy appearance inside the objects.

(a) Ground truth (b) NeRF (c) Mip-NeRF (d) Ref-NeRF (e) NRFF

Figure 1: Foundational models NeRF and Mip-NeRF fail to render highly specular surfaces accurately, also unable to
represent different specular roughness of the stripes around. Ref-NeRF and NRFF are able to render substantially more
accurate details based on physical modeling of the reflection phenomena.

In response to these limitations, the recent variants Ref-NeRF [10] and Neural Radiance Fea-
ture Field (NRFF) [4] proposed modifications to model more accurately the physical phenomena of
specularity.

This paper analyzes the Ref-NeRF and NRFF models on different datasets of simple and complex
specular materials. A comparison of rendering quality and convergence speed, along with an in-depth
discussion of the strengths and limitations of the methods is provided.

2 Related Work

This section first reviews the theoretical basis of NeRF, followed by an analysis of the Ref-NeRF and
NRFF methods and how they differ from other approaches which do not explicitly model specular
reflections in a physically based manner. Both Ref-NeRF and NRFF propose a reparameterization
of the direction of reflection ω̂r based on the view direction d̂ with respect to the predicted surface
normal n̂, i.e., ω̂r = 2(−d̂ · n̂)n̂ + d̂, which is used to encode the radiance of the environment map
in the direction ω̂r —encoded in a different way in each method. Note that this reparameterization
ignores interreflections, but it assumes a single reflection rebound.

While other significant subsequent projects have been published very recently, e.g., NeRF-Casting [11]
or UniSDF [12], they fall outside the scope of this work.

33



Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga

2.1 NeRF Preliminaries

Neural Radiance Fields or NeRF [9] estimate a parameterized continuous scene representation based
on Multilayer Perceptrons (MLPs) and ray tracing principles. The network takes as input a 5D
vector, consisting of a 3D location x = (x, y, z) and a 2D viewing direction d = (α, β), and estimates
a rendered color c = (r, g, b) and volume density τ for each camera ray. The input information is
obtained from the estimated camera poses of the images. The volume density defines the geometry of
the scene and can be interpreted as the probability of a 3D point belonging to an opaque non-empty
object.

NeRF uses two networks, “coarse” and “fine”, simultaneously optimized. This strategy allows
for more efficient sampling of the scene, as the fine network can focus on regions of the scene where
more detail is needed, while the coarse network provides a rough approximation of the entire scene.
This procedure can be outlined as follows

(τ, z) = Fθ1(γx(x)),

c = Fθ2(γd(d), z),
(1)

where θ1 and θ2 are the MLP parameters, γx and γd the positional encoding functions for the position
x and the direction d, respectively, and z a hidden representation of the coarse model.

The estimated color per ray, denoted by Ĉ(r), is obtained by a discretized integral quadrature
along the camera ray r, whose continuous representation can be denoted as r(t) = o + td, where o
is the camera center and d is the ray direction.

Ĉ(r) =
N∑
i=1

Ti(1− exp(−τiδi))ci,

where Ti = exp(−
i−1∑
j=1

τjδj),

(2)

and δi = ti+1− ti denotes the distance between adjacent points along the ray. ci and τi represent the
color and density of ray r at position ti, respectively. The “transmittance” Ti defines the probability
of the ray traveling from t1 to ti−1 without intersecting other particles. The term Ti(1− exp(−τiδi))
serves as the rendering weight, determining the contribution of each sample to the final color.

NeRF employs a stratified sampling technique to achieve a smooth and continuous representation
from a discrete set of samples. This approach involves dividing the space into evenly-spaced bins and
randomly selecting a single sample within each bin. The stratified sampling ensures that multiple
positions per bin in each ray are evaluated during the optimization, approximating an uninterrupted
representation of the scene.
The MLP parameters are optimized by minimizing the sum of squared errors between a collection
of images Ii and their corresponding rendered outputs. The cost function L is as follows

L =
∑
ij

[∥∥∥Ĉc(rij)− C(rij)
∥∥∥2

2

]
+

[∥∥∥Ĉf (rij)− C(rij)
∥∥∥2

2

]
, (3)

where C(rij), Ĉc(rij) and Ĉf (rij) are the ground truth, the coarse RGB prediction, and the fine RGB
prediction of ray j in image Ii.

2.2 Ref-NeRF Fundamentals

The Ref-NeRF method improves the representation of specular reflections by modeling the outgoing
radiance model as

c = γ(cd + s⊙ cs), (4)

34



Specularity in NeRFs: A Comparative Study of Ref-NeRF and NRFF

Figure 2: Block diagram of the Ref-NeRF architecture. The blue blocks correspond to two MLPs for predicting the
spatial diffuse and directional specular color components. The yellow blocks stand for physically-constrained mathematical
operations. Reproduced from [10].

where cd is the diffuse color (intrinsic to objects), cs is the specular color (caused by reflections) and
s modulates the intensity and color of highlights. Element-wise multiplication is denoted by ⊙ and
γ is a predefined tone mapping function. Figure 2 shows the original block diagram of the Ref-NeRF
architecture.

The Ref-NeRF blocks also predict auxiliary physical variables such as the surface normal n̂′ and
the material roughness ρ, which mainly govern reflection phenomena.

The spatial MLP takes as input the spatial location x, which is subject to a Positional Encoding
(PE) to improve high-frequency details, as in the original NeRF [9]. For each 3D point x, it predicts
the diffuse color cd, the tint color s, a bottleneck feature vector b with dimensionality 128, the
roughness scalar ρ, and the normal vector n̂′.

The directional MLP predicts the specular color component cs. To this end, it mainly uses the
bottleneck vector b and an Integrated Directional Encoding (IDE) which encodes the distribution
of reflection directions towards the environment. For that, it utilizes a closed-form of spherical
harmonics convolved with the von Mises-Fisher (vMF) distribution [6]. It is analytically obtained
from the direction of reflection ω̂r and the material roughness ρ. The directional MLP additionally
takes the dot product of n̂′ and the viewing direction d̂ as input to account for Fresnel effects [5], so

that the angle between the n̂′ and d̂ affects the strength of the reflection.
Ref-NeRF also introduces two auxiliary loss terms to regularize the surface normals, which are

crucial to model the outgoing radiance and reflection. Physically consistent normals are expected to
be perpendicular to the local surface plane and point outwards. The Ref-NeRF auxiliary loss terms
are formulated as:

Lp =
∑
i

wi ∥n̂i − n̂′
i∥

2
, Lo =

∑
i

wi max
(
0, n̂′

i · d̂
)2

. (5)

On the one hand, Lp penalizes the differences between the predicted normals n̂′ and those derived
from the gradient of the predicted density, i.e., n̂. On the other hand, Lo basically encourages
normals pointing outward. Finally, wi are the rendering weights [10] that model the visible surface,
based on the estimated transmittance and density.

2.3 NRFF Fundamentals

The Neural Radiance Feature Field method (NRFF) has shown proficiency in encoding view-dependent
effects, enabling superior rendering quality on diverse datasets [9, 8, 7]. The NRFF architecture, il-

35



Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga

Spatial
MLP ASG

MLP
REE

Reflection

asg feat.

Dot product

𝜏

c

Directional
MLP

Figure 3: Block diagram of the NRFF architecture. It introduces a neural network to learn features of the Anisotropic
Spherical Gaussian (ASG) as well as a custom Rendering Equation Encoding (REE) operating in the latent space.

lustrated in Figure 3, uses the same radiance model as Ref-NeRF, Equation (4), to model different
color components, however it proposes architectural improvements in different ways.

The spatial MLP uses a multiscale tensor decomposition (MTD) instead of PE to represent the
scene in a coarse-to-fine scheme. MTD is proposed for efficiency in reconstructing scene geometry
and appearance. The key difference with respect to the Ref-NeRF counterpart is that the NRFF
spatial MLP predicts features of Anisotropic Spherical Gaussians (ASG) to represent the reflection
at each point. In particular, it predicts N = 8 × 16 lobes of ASGs on a unit sphere for each point,
resulting in a vector of 128 values. The ASG features are then input to an auxiliary ASG MLP,
that converts them into an anisotropic reflections bottleneck vector a of length 2, as well as 2 scalar
coefficients, λ and µ, modeling the shape of the ASG in orthogonal directions.

At each point x, NRFF performs the Rendering Equation Encoding (REE) using the ASG MLP
outputs and the direction of reflection ω̂r. The REE integrates all the specular contributions in x in
the latent space

REE(ω̂r,a, λ, µ) =
N−1∑
i=0

aiS(ω̂r;ωi) exp
(
−λi(ω̂r · ωλ

i )
2 − µi(ω̂r · ωµ

i )
2
)
, (6)

where ai is the bottleneck of the i-th ASG, S(ω̂r;ωi) = max(ω̂r · ωi, 0) is a smooth term, and
λi, µi > 0 are the bandwidth coefficients (roughness) related to the orthogonal axes ωλ

i ,ω
µ
i shaping

and orienting the ASG. The set of ω̂i covers 360 degrees (the unit sphere) and each direction ω̂i is
associated with an ASG.

Ultimately, the NRFF directional MLP ingests an 8× 16× 2 REE vector replacing the roughness
and IDE in Ref-NeRF.

In the loss function, NRFF keeps the auxiliary term Lo from Ref-NeRF, Equation (5), and
introduces a new regularization term Lf as follows

Lf = β
1

M

M−1∑
i=0

|Fi
τ |, (7)

where M is the number of features in the density field representation, and Fτ is the density field
feature map. This results in a sparse feature representation. Sparse representations enhance model

36



Specularity in NeRFs: A Comparative Study of Ref-NeRF and NRFF

interpretability by highlighting the most important features and can mitigate overfitting by removing
less relevant or redundant information from the feature space.

3 Methodology

This section describes the datasets, code, and hardware used in our comparative study.

3.1 Datasets

Two objects from the Shiny Blender dataset [10] were selected and one more was designed for this
evaluation. It is important to note that, due to hardware constraints, the different methods were
trained at half the original image resolution. Example views from the different datasets are shown
in Figure 4.

Ball. It consists of 300 images —100 for training, 200 for testing— with an original resolution of
800 × 800 pixels. It consists of a single reflective ball with bands of different roughness that affect
the sharpness of the reflection. Only two different values of roughness are used.

Toaster. It consists of 300 images —100 for training, 200 for testing— with an original resolution
of 800 × 800 pixels. The toaster has a more complex structure. It includes specular, non-specular
materials, and inter-reflections, a physical phenomenon which escapes from the single-ray modelling
assumed by the herein studied models.

Anisotropic ball. It consists of 100 images —67 for training and 33 for testing— with an original
resolution of 1080× 1080 pixels. Created with Blender4, it simulates a very high level of complexity
with textured anisotropic reflections, a property unexplored in Ref-NeRF and NRFF. Additionally,
the object has a strip of higher roughness. It is publicly available here5.

(a) Ball (b) Toaster (c) Anisotropic ball

Figure 4: Views of the 3 objects studied in this work.

3.2 Code

Our experiments used the Ref-NeRF implementation from NeRF-Factory6, in PyTorch Lightning,
instead of the original implementation in JAX7. This implementation follows the hyperparameter

4https://www.blender.org/
5https://zenodo.org/records/12568381
6https://github.com/kakaobrain/NeRF-Factory
7https://github.com/google-research/multinerf

37

https://zenodo.org/records/12568381
https://github.com/kakaobrain/NeRF-Factory
https://github.com/google-research/multinerf
https://www.blender.org/
https://zenodo.org/records/12568381
https://github.com/kakaobrain/NeRF-Factory
https://github.com/google-research/multinerf


Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga

settings specified in the original paper. However, due to a decreased batch size of 1800, to load the
model in a single GPU, the number of epochs was increased up to 50, the learning rate reduced to
5× 10−6, and the warm-up period set to 2500.

In the case of NRFF, the original code (NRFF8) provided by the authors was used. The batch
size was set to 2000 along with 150 epochs, while the rest of the configuration remained the same. It’s
worth noting that while NRFF runs faster per epoch, it requires a greater number of epochs to achieve
convergence compared to other methods. Furthermore, for the Ball object, the hyperparameter of
loss Lo in Equation (5) was increased to 0.9 to achieve optimal convergence.

Consequently, some results may differ from those reported in the original papers. Additionally,
metrics and visualization functionalities were implemented in both codes to facilitate comparison.

3.3 Demo

An online demo9 has been developed to complement this study. This demo offers a comprehensive
comparison between Ref-NeRF and NRFF. Users can select from the three distinct objects presented
in Section 3.1. The demo provides side-by-side comparisons of renderings, surface normals, and
quantitative metrics including PSNR, SSIM [13] and LPIPS [14]. Additionally, the rendering view
allows for comparison with ground truth images.

This demo serves to enhance research transparency and reproducibility by enabling readers to
independently evaluate and compare the output of the models without the need for time-consuming
training processes or specialized hardware.

3.4 Hardware

The models were trained on an Intel Core i9-10900X CPU @ 3.70GHz equipped with an NVIDIA
GeForce RTX 3090 graphics card with 24.5 GB memory. The Ref-NeRF implementation used Pytorch
Lightning 1.8.0 and CUDA 12.3. The GPU memory usage for a batch size of 1800 rays per iteration
was around 22.5 GB. The NRFF implementation used PyTorch 2.2.0 and CUDA 12.3. A batch size
of 2000 rays required 21 GB.

4 Experiments

This section presents both qualitative and quantitative results comparing the performance of Ref-
NeRF and NRFF on the three object scenes introduced in Section 3.1.

Quantitative results are assessed by means of PSNR, SSIM and LPIPS, as shown in Table 1.
Both Ref-NeRF and NRFF demonstrate exceptional performance on the Ball object, with Ref-NeRF
being slightly better. For the Toaster object, NRFF shows better overall quality. Interestingly, both
methods show a similar and remarkable performance in the Anisotropic Ball, in spite of not being
specifically designed for such complex patterns of reflectance.

Qualitative analysis in Figure 5 shows high-quality RGB renderings for both models. Normals
are also highly accurate, although NRFF exhibits some issues at the edges where numerous floating
points are present. This is likely due to their filtering approach. The model computes an alpha value
for each point based on its density αi = 1− exp(−σiδi), discarding points with values below 10−3.

Additionally, the rendering weights shown in Figure 5 reveal that Ref-NeRF exhibits minor per-
turbations in the roughness band. It is important to note that the discrepancies observed in our

8https://github.com/imkanghan/nrff
9https://ipolcore.ipol.im/demo/clientApp/demo.html?id=562

38

https://github.com/imkanghan/nrff
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=562
https://github.com/imkanghan/nrff
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=562


Specularity in NeRFs: A Comparative Study of Ref-NeRF and NRFF

Ball Toaster Anisotropic ball
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ref-NeRF 50.76 0.999 0.0036 25.85 0.925 0.0789 41.75 0.995 0.0143
NRFF 50.0 0.998 0.0055 28.52 0.951 0.0651 40.06 0.994 0.0223

Table 1: Comparison of Ref-NeRF and NRFF in two open-source objects, i.e. Ball and Toaster, and an Anisotropic ball
created by design for this work across three different objective quality metrics.

results compared to those presented in the Ref-NeRF paper are due to the modifications discussed
in Section3.2.

R
en
d
er
in
g

Ground truth Ref-NeRF NRFF

N
or
m
al
s

W
ei
gh

ts

Figure 5: Ref-NeRF and NRFF comparison on the Ball object. Top to bottom: RGB rendering, predicted normals and
rendering weights. The bottom row plots a cross-section of the rendering weights predicted by each model, sampled along
the blue-dashed line.

39



Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga

Figure 6 highlights the difficulties of Ref-NeRF and NRFF to handle inter-reflections such as those
in the Toaster object. Despite the correct RGB renderings, the underlying depth maps reveal an
erroneous geometry at the front of the toaster that matches the inter-reflection crossed by the dashed
blue line. The rendering weights show that NRFF bends the surface inward while Ref-NeRF produces
a foggy area to explain the inter-reflection. This limitation arises from the fact that these models
are not based on ray tracing and consider only a single bounce of light. As a result, inter-reflections
lead to inaccuracies in geometry reconstruction.

R
en
d
er
in
g

Ground truth Ref-NeRF NRFF

D
ep
th

W
ei
gh

ts

Figure 6: Ref-NeRF and NRFF comparison on the Toaster object. Top to bottom: RGB rendering, depth maps, and
rendering weights. The bottom row plots a cross-section of the rendering weights predicted by each model, sampled along
the blue-dashed line. Both methods fail to represent inter-reflections.

40



Specularity in NeRFs: A Comparative Study of Ref-NeRF and NRFF

R
en
d
er
in
g

Ground truth Ref-NeRF NRFF

N
or
m
al
s

Figure 7: Ref-NeRF and NRFF comparison on the Anisotropic Ball object. Top to bottom: RGB rendering and surface
normals. Both methods wrongly represent anisotropic reflections by altering geometry.

Figure 7 evidences the difficulty of both methods to handle anisotropic reflections in theAnisotropic
Ball object. In this case the geometry of the ball is also artificially altered to achieve an accurate
RGB rendering. This behavior is most noticeable in regions with high anisotropy. The discrepancy
between the underlying geometry and the final rendered output suggests that the methods differ in
their ability to compensate for geometric alterations in the rendering process. In any case, none of
the methods is able to correctly reconstruct anisotropic surfaces.

Further examination of how both Ref-NeRF and NRFF internally represent or learn each of the
color components, as formulated in (4), is of great relevance to understand the response of the inner
architecture blocks. As so, the diffuse component in Figure 8 should represent Lambertian properties
of the material, independent of lighting conditions or viewing angle. In the case of specular metallic
surfaces the diffuse component is normally nonexistent (black). Ref-NeRF can accurately simulate
this property, while NRFF fails substantially.

The tint color in Figure 8 modulates the color and intensity of highlights. The tint in the Ball and
the Toaster should be mostly white. The specular color should represent the reflected surrounding
environment and illumination. The final RGB color is the composite result, combining the diffuse
color with the tinted specular reflections.

Figure 8 shows that NRFF exhibits significant limitations in accurately representing diffuse, tint,
and specular components in both objects. Some of these inaccuracies, however, are compensated
when the components are finally combined. This dysfunctionality is due to the lack of per-component
sigmoid activation functions that would constrain the dynamic range of the specular and tint com-
ponents between 0-1. In practice this leads the NRFF to work with negative radiance values, which

41



Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga

B
al
l

R
ef
-N

eR
F

Final color Diffuse color Tint Specular Tint ⊙ Specular
N
R
F
F

T
oa
st
er

R
ef
-N

eR
F

N
R
F
F

Figure 8: Visualization of individual color components from (4). From left to right: final render (c), diffuse component
(cd), tint (s), specular component (cs), and tint ⊙ specular (s ⊙ cs). Note that NRFF predicts negative numbers for tint
and specular without a clear physical interpretation, and so they have been simply normalized for visualization purpose.

are difficult to interpret without a strict physical meaning.

Ref-NeRF, while superior overall, still presents inaccuracies. Notably, in the Toaster object,
it erroneously assigns a certain amount of specularity to the bread slices, indicating incomplete
comprehension of the object’s geometric properties.

As NRFF demonstrated faster convergence compared to its predecessor, i.e. TensorRF [2], it is
interesting to analyze the optimization time of both, NRFF and Ref-NeRF. Table 2 shows that
NRFF achieves faster convergence in the three objects, partly due to NRFF excluding points with
low weight from being processed through the network.

Ball Toaster Anisotropic ball

Ref-NeRF 2.44 2.74 2.86
NRFF 2.31 2.13 1.78

Table 2: Comparison of model execution times across the considered image collections (in days).

42



Specularity in NeRFs: A Comparative Study of Ref-NeRF and NRFF

5 Conclusion

We have demonstrated that Ref-NeRF shows superior quantitative results and better handles ge-
ometric inaccuracies during rendering. However, both models struggle with inter-reflections and
anisotropic surfaces as they consider only a single light bounce and isotropic materials.

While NRFF converges faster per step, it requires more steps overall and produces less accurate
specular reflections.

Our study highlighted the trade-offs between rendering quality and convergence speed and, more
importantly, the limitations of the models. The results show that improvements are still needed
in the physical modeling of reflections in NeRF approaches, so that the geometry of objects is not
distorted to account for specularities in the RGB renderings.

Acknowledgments

This work was financially supported by the Catalan Government through the funding grant ACCIÓ-
Eurecat (Project TRAÇA: “AI4Heritage” 2023-2024). Additionally, Albert Barreiro Dı́az is a fellow
of Eurecat’s “Vicente López” PhD grant program.

References

[1] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and
P. P. Srinivasan, Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
Fields, in IEEE/CVF International Conference on Computer Vision, 2021, p. 5855–5864, https:
//doi.org/10.1109/ICCV48922.2021.00580.

[2] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, TensoRF: Tensorial Radiance Fields, in
European Conference on Computer Vision, Springer, 2022, pp. 333–350, https://doi.org/10.
1007/978-3-031-19824-3_20.

[3] K. Gao, Y. Gao, H. He, D. Lu, L. Xu, and J. Li, NeRF: Neural Radiance Field in 3D
Vision, a Comprehensive Review, ArXiv Preprint ArXiv:2210.00379, (2022), https://doi.org/
10.48550/arXiv.2210.00379.

[4] K. Han and W. Xiang, Multiscale Tensor Decomposition and Rendering Equation Encoding
for View Synthesis, in IEEE / CVF Computer Vision and Pattern Recognition Conference, 2023,
pp. 4232–4241, https://doi.org/10.1109/CVPR52729.2023.00412.

[5] J. Kautz and M. D. McCool, Approximation of Glossy Reflection with Prefiltered Environ-
ment Maps, in Graphics Interface, 2000, pp. 119–126.

[6] T. Kitagawa and J. Rowley, Von Mises-Fisher Distributions and their Statistical Diver-
gence, ArXiv Preprint ArXiv:2202.05192, (2022), https://doi.org/10.48550/arXiv.2202.

05192.

[7] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, Tanks and Temples: Benchmarking
Large-Scale Scene Reconstruction, ACM Transactions on Graphics (ToG), 36 (2017), pp. 1–13,
https://doi.org/10.1145/3072959.3073599.

[8] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, Neural Sparse Voxel Fields,
Advances in Neural Information Processing Systems, 33 (2020), pp. 15651–15663.

43

https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.48550/arXiv.2210.00379
https://doi.org/10.48550/arXiv.2210.00379
https://doi.org/10.1109/CVPR52729.2023.00412
https://doi.org/10.48550/arXiv.2202.05192
https://doi.org/10.48550/arXiv.2202.05192
https://doi.org/10.1145/3072959.3073599


Albert Barreiro, Roger Maŕı, Rafael Redondo, Gloria Haro, Carles Bosch, David Berga

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, in European
Conference on Computer Vision, 2020, https://doi.org/10.1007/978-3-030-58452-8_24.

[10] D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P.
Srinivasan, Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields,
in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, p. 5491–5500,
https://doi.org/10.1109/CVPR52688.2022.00541.

[11] D. Verbin, P. P. Srinivasan, P. Hedman, B. Mildenhall, B. Attal, R. Szeliski,
and J. T. Barron, NeRF-Casting: Improved View-Dependent Appearance with Consistent
Reflections, 2024, https://doi.org/10.1145/3680528.3687585.

[12] F. Wang, M.-J. Rakotosaona, M. Niemeyer, R. Szeliski, M. Pollefeys, and
F. Tombari, UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruc-
tion of Complex Scenes with Reflections, ArXiv Preprint ArXiv:2312.13285, (2023), https:

//doi.org/10.48550/arXiv.2312.13285.

[13] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image Quality Assessment: from
Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, 13 (2004),
pp. 600–612, https://doi.org/10.1109/TIP.2003.819861.

[14] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric, in IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 586–595, https://doi.org/10.1109/CVPR.2018.00068.

44

https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1109/CVPR52688.2022.00541
https://doi.org/10.1145/3680528.3687585
https://doi.org/10.48550/arXiv.2312.13285
https://doi.org/10.48550/arXiv.2312.13285
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2018.00068

	Introduction
	Related Work
	NeRF Preliminaries
	Ref-NeRF Fundamentals
	NRFF Fundamentals

	Methodology
	Datasets
	Code
	Demo
	Hardware

	Experiments
	Conclusion

