
Published in Image Processing On Line on 2025–06–17.
Submitted on 2024–07–19, accepted on 2025–03–11.
ISSN 2105–1232© 2025 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2025.566

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Gaussian Splatting: An Introduction

Akash Malhotra1,2, Nacéra Seghouani1

1LISN, Paris-Saclay University, Gif-sur-Yvette, France
2Amadeus, Sophia-Antipolis, France

{akash.malhotra, nacera.seghouani}@lisn.fr

Communicated by Roger Maŕı Demo edited by Akash Malhotra

Abstract

Gaussian Splatting has emerged as a powerful technique for signal representation, especially
in 3D. This paper introduces Gaussian Splatting and demonstrates its application across 1D,
2D, and 3D cases. We also discuss Gaussian Splatting in relation to Neural Radiance Fields
(NeRF), highlighting the computational trade-offs and performance benefits. Through this
work, we aim to bridge the gap between foundational concepts in view synthesis and advanced
research, making Gaussian Splatting a more approachable and widely understood technique
in the field of signal processing and computer vision. We provide code examples and detailed
explanations to make the topic accessible to a broader audience, enabling readers to dive into
more advanced technical papers with ease.

Source Code

The source code and documentation for these algorithms are available from the web page of
this article1. Usage instructions are included in the README.md file of the archive. The origi-
nal implementations of the methods are available here: 2D Gaussian Splatting2 and Gaussian
Splatting3.

This is an MLBriefs article. The source code has not been reviewed!

Keywords: Gaussian splatting; NeRF; view synthesis

1 Introduction

Novel view synthesis, the task of generating new viewpoints from existing images of a 3D object
or a scene, is a well-explored area in computer vision and graphics. This problem is crucial for
applications such as virtual reality, augmented reality, and 3D reconstruction. In this setting, we
typically have many images of a 3D object or a scene, and we want to be able to reconstruct novel
views from an arbitrary position and orientation. Figure 1 illustrates an example of such a setting

Akash Malhotra, Nacéra Seghouani, Gaussian Splatting: An Introduction, Image Processing On Line, 15 (2025), pp. 45–58.
https://doi.org/10.5201/ipol.2025.566

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2025.566
https://doi.org/10.5201/ipol.2025.566
https://doi.org/10.5201/ipol.2025.566
https://github.com/OutofAi/2D-Gaussian-Splatting
https://github.com/nerfstudio-project/gsplat
https://github.com/nerfstudio-project/gsplat

Akash Malhotra, Nacéra Seghouani

Figure 1: Novel View Synthesis in ScanNet++ dataset.

using the ScanNet++ dataset [28]. Numerous existing solutions model 3D scenes to render novel
views. We discuss these solutions in detail in Section 2.

One of the most popular solutions for novel view synthesis, introduced in 2021, is Neural Ra-
diance Fields (NeRF) [15]. It uses neural networks to implicitly model a 3D scene, enabling view
reconstruction from arbitrary positions and orientations. NeRF has since evolved, with variants such
as Zip-NeRF [1] currently considered the state of the art in terms of reconstruction quality. NeRF
is renowned for its photorealistic rendering and compact neural network representation of large 3D
scenes. However, its rendering speed is limited due to the need for extensive multi-layer percep-
tron (MLP) evaluations per view. Solutions such as InstantNGP [16] utilize hashing and CUDA
optimizations to accelerate NeRF. Other techniques, for example MobileNeRF [2] and MeRF [20],
rely on alternative parameterizations involving polygonal meshes or voxel grids, which are better
suited for real-time rendering. However, NeRF accelerations often come at the expense of quality
and encounter memory limitations as mentioned in the aforementioned sources.

3D Gaussian Splatting [9] addresses these limitations by using Gaussian kernels instead of MLPs
to model the scene, retaining the photorealistic quality of NeRF while significantly reducing rendering
time. Its similarity to point-cloud representation allows for the use of traditional, efficient point cloud
rendering pipelines.

Gaussian Splatting represents a turning point in rasterization for computer graphics that goes
beyond novel view synthesis. Unlike traditional triangle or polygon rasterization, which are dis-
crete and non-differentiable, Gaussian Splatting provides a continuous and differentiable approach,
facilitating the integration with deep learning algorithms.

While Kerbl et al. [9] introduced 3D Gaussian Splatting for multiview reconstruction, our work
takes a pedagogical approach, providing a step-by-step introduction to Gaussian Splatting in 1D, 2D,
and 3D. Rather than proposing a new architecture, we bridge fundamental signal processing concepts
with recent advancements in view synthesis. By detailing the theoretical foundations and progres-
sively extending them to 3D, we aim to make Gaussian Splatting more accessible and comprehensible
to a broader audience.

This paper is organized as follows. Section 2 surveys relevant literature on both explicit and
implicit 3D representations, highlighting their respective strengths and limitations. Section 3 offers
a step-by-step explanation of Gaussian Splatting, spanning its 1D, 2D, and 3D formulations along

1https://doi.org/10.5201/ipol.2025.566
2https://github.com/OutofAi/2D-Gaussian-Splatting
3https://github.com/nerfstudio-project/gsplat

46

https://doi.org/10.5201/ipol.2025.566
https://github.com/OutofAi/2D-Gaussian-Splatting
https://github.com/nerfstudio-project/gsplat

Gaussian Splatting: An Introduction

with the underlying mathematics. In Section 4, we detail our experiments, present the results, and
provide the associated pseudocode for 3D Gaussian Splatting. We conclude by summarizing key
findings and discussing future directions for Gaussian Splatting research.

2 Related Work

This section discusses the most common methods for 3D object/scene representation for view syn-
thesis, as illustrated in Figure 2.

Figure 2: Most common structures and frameworks for 3D scene representation for view synthesis.

2.1 Explicit 3D Representations

These representations explicitly store 3D objects in predefined data structures.

Voxel Grid

A voxel grid is a 3D array that stores values in each voxel (grid element). Earlier methods utilized
occupancy grids to denote filled or empty spaces [27, 23]. Subsequent techniques employed different
features to capture finer details, such as RGB values or normal vectors [11]. While voxels are
straightforward to use, working with 4D structures (e.g., N × N × N × F for an N -regular grid
with feature dimensionality F) is memory-inefficient and lacks scalability. Furthermore, obtaining
ground-truth voxel-based representations of objects or scenes is costly. Consequently, voxels are
rarely the preferred choice in modern learning-based algorithms.

Mesh

Polygonal meshes represent surfaces rather than volumes. They are memory-efficient and have a well-
established format for real-time rasterization. Mesh-based learning algorithms typically deform a base
mesh to fit the shapes of a 3D scene. However, learning mesh deformation is challenging due to the
discrete nature of mesh elements and topological limitations, as demonstrated in Pixel2Mesh [26].
Specialized models such as MobileNeRF [2] convert NeRF representations into meshes, but this
conversion results in information loss. Continuous representations such as NeRF [15] are better
suited to capture subtle details, such as semi-transparent objects and viewpoint-dependent color
variations, which mesh representations struggle to retain.

47

Akash Malhotra, Nacéra Seghouani

Point Cloud

A point cloud is a set of 3D points, where each point is represented by a vector of 3D coordinates and
other numerical attributes (e.g., color, opacity, semantic class). Point clouds strike a good balance
between memory usage and volumetric detail. However, they are less effective for highly complex and
dense scenes that require a large number of points. Point clouds can be generated from multiview
image collections using Structure-from-Motion (SfM) techniques such as COLMAP [21]. They also
serve as an excellent initialization for advanced view synthesis methods, enabling effective Gaussian
Splatting [9] or depth-supervised extensions of NeRF [3].

2.2 Implicit 3D Representations

Implicit representations use mathematical functions or neural networks to query the 3D space for
properties such as occupancy and color, eliminating the need for large data structures.

Implicit Neural Representation (INR)

Implicit Neural Representations (INRs) employ neural networks to output continuous values repre-
senting shape and appearance. Notable examples include Local Lightfield Fusion [14], DeepSDF [19],
and NeRF [15]. These methods provide flexible, continuous representations that capture complex
geometries and semi-transparent surfaces, though they require extensive training data and significant
computational resources.

Signed Distance Function (SDF)

Signed Distance Functions (SDFs) describe 3D surfaces by encoding the distance between each point
in space and the nearest surface point. Positive values are assigned to points outside the surface,
negative values to points inside, and zero to points on the surface. Neural networks can approximate
SDFs, e.g. as in DeepSDF [19]. Despite their utility, SDFs have limitations, including difficulty in
representing complex topologies and sensitivity to noise in the data.

Neural Radiance Fields (NeRF)

NeRF [15] employs neural networks to create a compressed, yet highly detailed, representation of 3D
scenes. The method maps 3D coordinates and viewing directions to volumetric properties (density
and color), achieving remarkable compression of scene information within network parameters. This
method is memory-efficient because it captures complex scene details in the parameters of a neural
network, requiring less storage than traditional 3D data structures. However, NeRF’s main drawback
is its high computational cost during rendering, which is a consequence of it using ray marching [6].
Ironically, this also gives photorealism to NeRF’s outputs. Techniques such as PlenOctrees [29] and
MeRF [20] aim to alleviate this by caching NeRF outputs in a structured format, yet they often
struggle with larger scenes due to the complexity and memory overhead involved. Variants such as
InstantNGP [16] improve efficiency using feature grids and alternative sampling strategies. Advanced
architectures such as PixelNeRF [30] and DietNeRF [8] incorporate image embeddings to significantly
reduce the required number of training views. NeRF extensions have also been developed to predict
additional scene properties, such as uncertainty or variance estimates, enabling applications in few-
shot or in-the-wild scenarios, as demonstrated in ActiveNeRF [18], NeRF-W [13], and Sat-NeRF [12].

48

Gaussian Splatting: An Introduction

Gaussian Splatting

3D Gaussian Splatting (3DGS) [9] combines explicit and implicit field representations. The method
models scenes as collections of 3D Gaussian primitives, each characterized by spatial parameters (po-
sition, scale, rotation) and appearance attributes (color, opacity). Unlike NeRF, Gaussian Splatting
does not rely on neural networks and instead uses an explicit representation. This method does not
require MLP evaluations for ray marching at render time, significantly speeding up the rendering
process and making it suitable for real-time applications. The similarity of Gaussian Splatting to
point clouds also allows the use of established, efficient point cloud rendering pipelines [10]. How-
ever, a significant limitation is its memory usage – Gaussian Splatting requires substantial memory
to store detailed representations, especially as scene complexity increases. Multi-object scenes, for
instance, may require several gigabytes of storage for an accurate depiction. Furthermore, unlike
NeRF, Gaussian Splatting, due to not using a neural network, lacks the ability to easily incorporate
world models or semantic understanding of the scene which may be useful for robotics [25]. While
both NeRF and 3DGS excel at photorealistic view synthesis, the point cloud-like nature of these
methods makes retrieving exact surface geometry challenging.

2.3 Hybrid Approaches

Hybrid methods combine the strengths of Gaussian Splatting and NeRF to balance photorealism,
memory efficiency, and rendering speed. For instance, Compressed 3D Gaussian Splatting [17] and
2D Gaussians for 3D Reconstruction [7] optimize memory efficiency, but these methods are still in
early development. CAT3D [5] integrates NeRF with a Multiview Diffusion Model [22] to learn 3D
scene representations and uses Gaussian Splatting for fast rendering. Choosing between Gaussian
Splatting and Neural Radiance Fields (NeRF) largely depends on the specific requirements of the task
at hand, including factors such as computational resources, real-time rendering needs, and memory
constraints. While NeRF remains preferred for applications requiring high photorealism, Gaussian
Splatting is favored for real-time rendering. Emerging techniques using Multiview Diffusion [24]
present a promising competitive direction.

3 Method Description

3.1 1D Gaussian Splatting

Similar to how a signal can be decomposed into different frequency components of sines and cosines
using the Fourier transform, a signal can also be decomposed into different Gaussian probability
density functions (or kernels). A Gaussian kernel is parametrized using µ (mean) and σ (standard
deviation) and is defined at a value t as

f(t | µ, σ) = 1√
2πσ2

exp

(
−(t− µ)2

2σ2

)
. (1)

Given a sufficient number K of Gaussian kernels, it is possible to reconstruct a signal Ŝ(t) as

Ŝ(t) =
K∑
i=1

wifi(t), (2)

where wi is the weight or opacity of the ith kernel, fi.
From here onwards we will refer to this case as 1D Gaussian Splatting. Note that the Fourier

transform is a global representation of a signal whereas Gaussian Splatting is a local representation

49

Akash Malhotra, Nacéra Seghouani

in which the value of the Gaussian kernel decays rapidly with respect to the input variable, t. It
is also important to note that this approach differs from Gaussian Mixture Models (GMMs) [4]. In
GMMs, the signal distribution is represented by Gaussian kernels, whereas in Gaussian Splatting,
the signal value is represented using Gaussian kernels. To find the optimal K Gaussian kernels to
represent a signal, we can initialize the parameters µ and σ of the Gaussians randomly, ensuring they
are within reasonable ranges, and then optimize them using gradient descent. The loss function L
used to minimize the difference between the reconstructed signal Ŝ(t) and the ground truth signal
S(t) is given by

L =
1

T

T∑
t=1

(Ŝ(t)− S(t))2. (3)

3.2 2D Gaussian Splatting

Similar to the 1D case, we can represent 2D Gaussians as follows

f(x, y | µ,Σ) = 1

2π
√
|Σ|

exp

(
−1

2

[
x− µx

y − µy

]⊤
Σ−1

[
x− µx

y − µy

])
. (4)

In practice, we represent the covariance matrix Σ using rotation and scaling coefficients, leveraging
the fact that any positive semidefinite covariance matrix can be decomposed into these components.
Given a data distribution modeled as an isotropic Gaussian, a transformation T applied to the data
modifies the covariance structure as follows. If the transformed data is given by D′ = TD and T is
decomposed as T = RS, where R is a rotation matrix and S is a scaling matrix, then the covariance
of the transformed data is

Σ = E[D′D′T] = TE[DDT]T T . (5)

Since D follows an isotropic Gaussian, its covariance is proportional to the identity matrix, i.e.,
σ2I, yielding

Σ = TT T = RSSTRT (6)

This result confirms that the covariance matrix can always be decomposed into a rotation R,
which determines the orientation of the Gaussian, and a scaling matrix S, which controls the spread
along the principal axes. In 2D, the rotation matrix takes the form

R =

[
cos θ − sin θ
sin θ cos θ

]
. (7)

Thus, instead of storing a full 2×2 rotation matrix, we only need to represent a single parameter
θ, which fully determines the orientation of the Gaussian.

If we have K Gaussian kernels, the reconstructed image Î(x, y) is given by

Î(x, y) =
K∑
i=1

wifi(x, y). (8)

Analogous to the 1D case, the representation of an image as K Gaussians can be optimized via
gradient descent. The loss function L used to minimize the difference between the reconstructed
image Î(x, y) and the ground truth image I(x, y) includes an L1 term (mean absolute error) and a
DSSIM term (1 - SSIM), also called structural dissimilarity, and is given by

L = (1− λ)LL1 + λLDSSIM , (9)

50

Gaussian Splatting: An Introduction

where λ is a weight parameter that balances the two loss components. Combining both terms favors
a compromise between pixel-level accuracy and perceptual quality, as DSSIM captures structural
dissimilarity in a way that aligns with human perception. Although L2 loss can also be used, L1 loss
is preferred, as suggested in the original 3D Gaussian Splatting framework [9], due to its robustness
against outliers. This choice extends naturally to the 2D Gaussian Splatting approach proposed here.

3.3 3D Gaussian Splatting

Building on the concept of Gaussian Splatting in 1D and 2D, the approach is similarly extended to
3D in [9] for efficient representation and rendering of complex 3D scenes. A 3D Gaussian function
is defined by its mean vector µ, which is equivalent to the position, and a covariance matrix Σ,
representing the spatial distribution and orientation of the points in 3D space. A 3D Gaussian
function G(x, y, z) is given by

G(x, y, z | µ,Σ) = 1

(2π)3/2|Σ|1/2
exp

−1

2

x− µx

y − µy

z − µz

⊤

Σ−1

x− µx

y − µy

z − µz

 . (10)

In Gaussian Splatting, we represent the reconstructed 3D scene V̂ (x, y, z) using a sum of K
Gaussian kernels

V̂ (x, y, z) =
K∑
i=1

αiGi(x, y, z), (11)

where each Gaussian Gi(x, y, z) is parameterized by its parameters µi (mean), Σi (covariance) and
αi (blending weight or opacity).

To project these 3D Gaussians onto a 2D image plane for rendering, the covariance matrix Σ is
transformed into the 2D image space using the viewing transformation matrix W . Since covariance
transforms under a linear transformation T as Σ′ = TΣT⊤, applying W first gives the intermediate
covariance

ΣW = WΣW⊤. (12)

The projection onto the image plane is nonlinear, but locally it can be approximated by an affine
transformation whose Jacobian matrix is denoted as J . Applying the Jacobian transformation to
ΣW , the final covariance in 2D camera coordinates is given by

Σ′ = JΣWJ⊤ = JWΣW⊤J⊤, (13)

where Σ′ is the covariance mapped on the 2D image plane. This makes sure that the transformed
covariance correctly captures the effects of both the viewing transformation and the perspective
projection, ensuring that the Gaussian remains elliptical in 2D space.

The complete rendering process is described in [9]. It uses alpha blending to accumulate the
contributions of each Gaussian to the final image. For this purpose, each Gaussian is additionally
characterized by a given color ci and an opacity coefficient αi on top of µi and Σ.

As discussed in the 2D Gaussian Splatting case, Σ in 3D can also be represented using rotation
and scaling matrices as in Equation (6). In this case, the 3D rotation matrix is represented using
quaternions.

Similar to the 2D scenario, the loss function is a combination of the L1 loss and DSSIM loss,
ensuring both pixel-wise accuracy and structural similarity with the ground truth images. To add or
remove Gaussians, if needed, the adaptive density control is employed. It removes Gaussians with
negligible contribution (i.e., transparent according to the opacity αi) and adds Gaussians in areas
lacking detail, which exhibit large positional gradients.

51

Akash Malhotra, Nacéra Seghouani

The 3D Gaussian Splatting technique benefits from GPU acceleration, particularly in the raster-
ization process. A tile-based rasterizer is used to efficiently handle the projection and blending of
Gaussians, leveraging fast GPU sorting algorithms to maintain real-time performance.

4 Experiments and Results

4.1 1D Gaussian Splatting

We take a time series of daily temperature in Delhi4 as an example, and show how it can be rep-
resented as Gaussian kernels (Gaussians). We initialized 10 Gaussians with means and variances
respectively in the range of t (time). The variances are initialized as log variances for numerical sta-
bility. Then the parameters (µ and σ) are learned using gradient descent with 100000 iterations and
learning rate 0.1 with Adam optimizer. Figure 3(a) shows the ground truth and the reconstructed
signal. Note that the ground truth signal exhibits higher local variance and the reconstructed signal
is smoother. This is due to the limited number of Gaussians, which serves as a form of compression.
With more Gaussians, it is possible to model a high variance signal more accurately. But the smooth-
ing side-effect may be desirable in some applications such as forecasting where overall behavior is
more interesting than small variations. We measured the quality of the reconstructed signal in terms
of PSNR (Peak Signal to Noise Ratio).

Figure 3(b) shows how the PSNR changes with the number K of Gaussians used to reconstruct
the signal. Initially the PSNR increases with the number of Gaussians, but after a certain point,
around K = 47, the reconstruction quality starts to oscillate between 40 and 45 dB. Possibly, the
latter is due to the choice of hyper-parameters and with some tuning it can be stabilized. It should be
noted that the reconstruction quality only improves until a certain number of Gaussians is reached.
In fact, the number of Gaussians used to represent a signal is a measure of the compressibility of the
signal. A lossless representation (i.e., with PSNR =∞), requires at most as many parameters as in
the original signal. In this case we have temperatures for 113 days, so 113 values in total. However,
the reconstructed signal achieves a good approximation of 47 dB PSNR with only 45 Gaussians,
compressing the data into 90 parameters (each Gaussian has 2 parameters µ and σ). In addition

(a) Ground truth vs Reconstructed signal using 1D Gaus-
sian kernels

(b) Number of Gaussian Kernels used vs Quality of the
reconstruction

Figure 3: Comparative analysis of Gaussian kernel reconstruction and its effects on signal quality

to the number of Gaussians, the PSNR can also be affected by other hyper-parameters such as the

4Delhi Weather Data. Weather Underground API

52

Gaussian Splatting: An Introduction

learning rate, optimizer type, choice of the loss function, etc. Please refer to the code available in
the web page of the article for more details.5

4.2 2D Gaussian Splatting

In this section, we explore the application of 2D Gaussian Splatting for image representation and
compression.

Experiment Setup

The experiment involved the decomposition of an RGB image into a set of 2D Gaussian kernels, each
defined by parameters controlling position, spread, and orientation. These parameters include the
means (µx, µy), standard deviations (σx, σy), and the angle (θ) used to compute the rotation matrix.
The mean values are initialized randomly within the dimensions of the image, the x-y variances (or
scales) are initialized in the range [0, 1], opacity is initialized within [0, 1] and angle is initialized
within [−π

2
, π
2
]. The optimization uses the L1 and DSSIM loss introduced in Section 3.2, with the

weight parameter λ = 0.2. The number of Gaussians used to represent the image is dynamically
changed in each optimization step in an interleaved manner. In particular, Gaussians with opacity
lower than 0.01 are deleted (pruned), Gaussians having high gradient and high variance are split,
and the Gaussians with high gradient and low variance are cloned. This is both for computational
efficiency and for representing local details with more resolution. Both the loss and the adaptive
density control are in line with the 3D Gaussian Splatting [9]. This 2D scenario setup is very similar
to the one described in Algorithm 1 for the 3D scenario, except that the initialization is random and
there is no camera rasterization step.

Results

The quality of the reconstructed image was quantitatively evaluated using PSNR. After 1001 training
steps, the PSNR reaches a reasonable value of 28.52 dB. The compression ratio, determined by
comparing the number of pixels in the original image with the number of parameters in the Gaussian
model, was 3.35. This demonstrates the effectiveness of 2D Gaussian Splatting in reducing the
storage requirements while maintaining high image quality. Figure 4 shows the reconstructed image
at different optimization steps. The code is available in the web page of the article for more details.6

(a) Epoch 1 (b) Epoch 501 (c) Epoch 1001 (d) Ground Truth

Figure 4: Reconstruction of a 2D image using 2D Gaussian Splatting at different epochs. Early epochs show coarse
approximations with fewer Gaussians, while the final epoch yields sharper details.

5Notebook 1D approximation with gaussians.ipynb
6Notebook 2D Gaussian Splatting.ipynb

53

Akash Malhotra, Nacéra Seghouani

4.3 3D Gaussian Splatting

This section explains how to use 3D Gaussian Splatting for the reconstruction of a single image,
as is done in the online demo associated with this article. Algorithm 1, originally presented in the
3DGS [9] paper, provides the pseudocode for the experiment.

Algorithm 1: 3D Gaussian Splatting
Input: Set of N views and their camera matrices
Initialize:

M ← SfM Points Positions
S,C,A← InitAttributes() Covariances, Colors, Opacities
i← 0 (Iteration Count)

While not converged do
V, Î ← SampleTrainingView() Camera V and Image
I ← Rasterize(M,S,C,A, V)
L← Loss(I, Î) (Loss)
M,S,C,A← Adam(∇L) (Backprop and Step)
If IsRefinementIteration(i) then
For all Gaussians (µ,Σ, c, α) in (M,S,C,A) do
If α < ϵ or IsTooLarge(µ,Σ) then Pruning
RemoveGaussian()

End If
If ∇pL > τp then Densification
If ∥S∥ > τS then Over-reconstruction

SplitGaussian(µ,Σ, c, α)
Else Under-reconstruction

CloneGaussian(µ,Σ, c, α)
End If

End If
End For

End If
i← i+ 1

End While

In 3D Gaussian Splatting, each Gaussian is represented by a mean, a covariance matrix (i.e.,
scaling and rotation matrices) and the opacity. Spherical harmonic coefficients are also used to
capture view-dependent effects.

The means (position coordinates) of the Gaussians are initialized in the range of normalized
bounds (in this case between -1 and 1). The scales (standard deviation) for all dimensions are
initialized between 0 and 1. The unit quaternion q is initialized, with real part qr and imaginary
parts qi, qj, qk. This can be converted to a rotation matrix R as follows

R(q) = 2

1
2
− (q2j + q2k) (qiqj − qrqk) (qiqk + qrqj)

(qiqj + qrqk)
1
2
− (q2i + q2k) (qjqk − qrqi)

(qiqk − qrqj) (qjqk + qrqi)
1
2
− (q2i + q2j)

 . (14)

The resulting rotation matrix is then used to calculate the covariance matrix. In the original
3DGS [9] the positions of the Gaussians are initialized using the sparse point clouds generated by a
SfM reconstruction tool such as COLMAP [21].

54

Gaussian Splatting: An Introduction

The Gaussians are projected onto the 2D image plane using Equation (13). Rasterization then
converts these projections into pixel values, accounting for overlapping Gaussians and their respective
colors and opacities. Details can be found in the supplementary material of 3DGS [9].

Once Gaussians are projected onto the image plane and rasterized to obtain pixel values, these
values are compared with the ground truth using the loss function defined in Equation (9), and the
Adam optimizer is used to perform gradient descent.

Adaptive density control is applied in an interleaved manner (that is, after every specified itera-
tion) in Algorithm 1. The Gaussians with opacities below a certain threshold are pruned. The ones
with large positional gradients and large covariance and split, and the ones with large positional
gradients but small covariance are cloned. The former is indicative of over-reconstruction and the
latter of under-reconstruction.

IPOL Demo Application The described method has been implemented as part of an IPOL
demo,7 where users can give different inputs, modify parameters such as the number of Gaussians
and learning rate, and visualize the effects of 3D Gaussian Splatting on a single image in real-time.
Please refer to the code in the web page of the article for more details.8

5 Conclusion

In this paper we have explored the multifaceted domain of Gaussian Splatting by presenting its
foundational principles in 1D, 2D, and 3D settings. Through experiments on time-series and im-
age reconstruction tasks, we have illustrated the technique’s versatility and potential as a powerful
alternative to concurrent methods like NeRF. While offering comparable image quality, Gaussian
Splatting often provides significantly faster training and inference speeds, as demonstrated in the
associated online demo for single-image reconstruction.

Despite these advantages, important challenges remain. Chief among them is memory usage,
which grows with scene complexity and may benefit from more advanced compression strategies
or hierarchical data structures. Another limitation lies in global geometry constraints: although
Gaussian kernels excel at locally representing appearance, they do not inherently handle occlusions
or semantic relationships at the scene level. Further, the integration of Gaussian Splatting with
learned neural networks—for instance, to capitalize on a global scene prior—remains an open field.
Tackling these limitations offers promising directions for future work, enabling richer, large-scale
reconstructions and improved real-time performance across a range of computer vision and graphics
applications.

Image Credits

from OutofAi. (n.d.). 2D Gaussian Splatting9.

References

[1] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman, Zip-
NeRF: Anti-Aliased Grid-Based Neural Radiance Fields, in IEEE/CVF International Conference

7https://ipolcore.ipol.im/demo/clientApp/demo.html?id=566
8File main.py
9https://raw.githubusercontent.com/OutofAi/2D-Gaussian-Splatting/main/Image-01.png

55

https://raw.githubusercontent.com/OutofAi/2D-Gaussian-Splatting/main/Image-01.png
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=566
https://raw.githubusercontent.com/OutofAi/2D-Gaussian-Splatting/main/Image-01.png

Akash Malhotra, Nacéra Seghouani

on Computer Vision, 2023, pp. 19697–19705, https://doi.org/10.1109/ICCV51070.2023.

01804.

[2] Z. Chen, T. Funkhouser, P. Hedman, and A. Tagliasacchi, MobileNeRF: Exploiting
the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures,
in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16569–16578,
https://doi.org/10.1109/CVPR52729.2023.01590.

[3] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, Depth-Supervised NeRF: Fewer Views and
Faster Training for Free, in IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 12882–12891, https://doi.org/10.1109/CVPR52688.2022.01254.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification and Scene Analysis,
vol. 3, Wiley New York, 1973.

[5] R. Gao, A. Holynski, P. Henzler, A. Brussee, R. Martin-Brualla, P. Srinivasan,
J. T. Barron, and B. Poole, CAT3D: Create Anything in 3D with Multi-View Diffusion
Models, ArXiv Preprint ArXiv:2405.10314, (2024). https://doi.org/10.48550/arXiv.2405.
10314.

[6] J. C. Hart, Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Im-
plicit Surfaces, The Visual Computer, 12 (1996), pp. 527–545, https://doi.org/10.1007/

s003710050084.

[7] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao, 2D Gaussian Splatting for
Geometrically Accurate Radiance Fields, ArXiv Preprint ArXiv:2403.17888, (2024), https:

//doi.org/10.1145/3641519.3657428.

[8] A. Jain, M. Tancik, and P. Abbeel, Putting NeRF on a Diet: Semantically Consistent
Few-Shot View Synthesis, in IEEE/CVF International Conference on Computer Vision, 2021,
pp. 5885–5894, https://doi.org/10.1109/ICCV48922.2021.00583.

[9] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, 3D Gaussian Splatting for
Real-Time Radiance Field Rendering, ACM Transactions on Graphics, 42 (2023), pp. 1–14,
https://doi.org/10.1145/3592433.

[10] P. E. Kivi, M. J. Mäkitalo, J. Žádńık, J. Ikkala, V. K. M. Vadakital, and P. O.
Jääskeläinen, Real-Time Rendering of Point Clouds with Photorealistic Effects: a Survey,
IEEE Access, 10 (2022), pp. 13151–13173, https://doi.org/10.1109/ACCESS.2022.3146768.

[11] F. Liu, C. Shen, G. Lin, and I. Reid, Learning Depth from Single Monocular Images
Using Deep Convolutional Neural Fields, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38 (2015), pp. 2024–2039, https://doi.org/10.1109/TPAMI.2015.2505283.

[12] R. Maŕı, G. Facciolo, and T. Ehret, Sat-NeRF: Learning Multi-View Satellite Photogram-
metry with Transient Objects and Shadow Modeling Using RPC Cameras, in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022, pp. 1311–1321, https://doi.org/
10.1109/CVPRW56347.2022.00137.

[13] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy,
and D. Duckworth, NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo
Collections, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 7210–7219, https://doi.org/10.1109/CVPR46437.2021.00713.

56

https://doi.org/10.1109/ICCV51070.2023.01804
https://doi.org/10.1109/ICCV51070.2023.01804
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1109/CVPR52688.2022.01254
https://doi.org/10.48550/arXiv.2405.10314
https://doi.org/10.48550/arXiv.2405.10314
https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1109/ICCV48922.2021.00583
https://doi.org/10.1145/3592433
https://doi.org/10.1109/ACCESS.2022.3146768
https://doi.org/10.1109/TPAMI.2015.2505283
https://doi.org/10.1109/CVPRW56347.2022.00137
https://doi.org/10.1109/CVPRW56347.2022.00137
https://doi.org/10.1109/CVPR46437.2021.00713

Gaussian Splatting: An Introduction

[14] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoor-
thi, R. Ng, and A. Kar, Local Light Field Fusion: Practical View Synthesis with Prescriptive
Sampling Guidelines, ACM Transactions on Graphics (TOG), 38 (2019), pp. 1–14.

[15] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Communica-
tions of the ACM, 65 (2021), pp. 99–106, https://doi.org/10.1007/978-3-030-58452-8_24.

[16] T. Müller, A. Evans, C. Schied, and A. Keller, Instant Neural Graphics Primitives with
a Multiresolution Hash Encoding, ACM Transactions on Graphics (TOG), 41 (2022), pp. 1–15.

[17] S. Niedermayr, J. Stumpfegger, and R. Westermann, Compressed 3D Gaussian Splat-
ting for Accelerated Novel View Synthesis, in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 10349–10358, https://doi.org/10.1109/CVPR52733.2024.

00985.

[18] X. Pan, Z. Lai, S. Song, and G. Huang, ActiveNeRF: Learning Where to See with Uncer-
tainty Estimation, in European Conference on Computer Vision, Springer, 2022, pp. 230–246,
https://doi.org/10.1007/978-3-031-19827-4_14.

[19] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, DeepSDF:
Learning Continuous Signed Distance Functions for Shape Representation, in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019, pp. 165–174, https://doi.org/
10.1109/CVPR.2019.00025.

[20] C. Reiser, R. Szeliski, D. Verbin, P. Srinivasan, B. Mildenhall, A. Geiger,
J. Barron, and P. Hedman, MERF: Memory-Efficient Radiance Fields for Real-Time View
Synthesis in Unbounded Scenes, ACM Transactions on Graphics (TOG), 42 (2023), pp. 1–12,
https://doi.org/10.1145/3592426.

[21] J. L. Schonberger and J.-M. Frahm, Structure-From-Motion Revisited, in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp. 4104–4113, https://doi.org/
10.1109/CVPR.2016.445.

[22] Y. Shi, P. Wang, J. Ye, M. Long, K. Li, and X. Yang, MVDream: Multi-View Diffusion
for 3D Generation, ArXiv Preprint ArXiv:2308.16512, (2023). https://doi.org/10.48550/

arXiv.2308.16512.

[23] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser, Semantic
Scene Completion from a Single Depth Image, in IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1746–1754, https://doi.org/10.1109/CVPR.2017.28.

[24] S. Tang, F. Zhang, J. Chen, P. Wang, and Y. Furukawa, MVDiffusion: Enabling
Holistic Multi-View Image Generation with Correspondence-Aware Diffusion, ArXiv Preprint
ArXiv:2307.01097, (2023). https://doi.org/10.48550/arXiv.2307.01097.

[25] G. Wang, L. Pan, S. Peng, S. Liu, C. Xu, Y. Miao, W. Zhan, M. Tomizuka,
M. Pollefeys, and H. Wang, NeRF in Robotics: A Survey, ArXiv Preprint
ArXiv:2405.01333, (2024). https://doi.org/10.48550/arXiv.2405.01333.

[26] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, Pixel2Mesh: Generating
3D Mesh Models from Single Rgb Images, in European Conference on Computer Vision, 2018,
pp. 52–67, https://doi.org/10.1007/978-3-030-01252-6_4.

57

https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1109/CVPR52733.2024.00985
https://doi.org/10.1109/CVPR52733.2024.00985
https://doi.org/10.1007/978-3-031-19827-4_14
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1145/3592426
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.48550/arXiv.2308.16512
https://doi.org/10.48550/arXiv.2308.16512
https://doi.org/10.1109/CVPR.2017.28
https://doi.org/10.48550/arXiv.2307.01097
https://doi.org/10.48550/arXiv.2405.01333
https://doi.org/10.1007/978-3-030-01252-6_4

Akash Malhotra, Nacéra Seghouani

[27] J. Wu, C. Zhang, X. Zhang, Z. Zhang, W. T. Freeman, and J. B. Tenenbaum,
Learning 3D Shape Priors for Shape Completion and Reconstruction, in European Conference
on Computer Vision, vol. 3, 2018.

[28] C. Yeshwanth, Y.-C. Liu, M. Nießner, and A. Dai, Scannet++: A High-Fidelity Dataset
of 3D Indoor Scenes, in IEEE/CVF International Conference on Computer Vision, 2023, pp. 12–
22, https://doi.org/10.1109/ICCV51070.2023.00008.

[29] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, PlenOctrees for Real-Time
Rendering of Neural Radiance Fields, in IEEE/CVF International Conference on Computer
Vision, 2021, pp. 5752–5761, https://doi.org/10.1109/ICCV48922.2021.00570.

[30] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, PixelNeRF: Neural Radiance Fields from
One or Few Images, in IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 4578–4587, https://doi.org/10.1109/CVPR46437.2021.00455.

58

https://doi.org/10.1109/ICCV51070.2023.00008
https://doi.org/10.1109/ICCV48922.2021.00570
https://doi.org/10.1109/CVPR46437.2021.00455

	Introduction
	Related Work
	Explicit 3D Representations
	Implicit 3D Representations
	Hybrid Approaches

	Method Description
	1D Gaussian Splatting
	2D Gaussian Splatting
	3D Gaussian Splatting

	Experiments and Results
	1D Gaussian Splatting
	2D Gaussian Splatting
	3D Gaussian Splatting

	Conclusion

