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Abstract

Temporal high pass filter methods are a family of methods for Fixed Pattern Noise (FPN)
reduction. They are recursive real time methods that apply a high-pass temporal filter to
remove the FPN. FPN is a temporally coherent noise present on video due to the non-uniformity
response of the sensors. It is a common problem for infrared videos and can degrade the quality
of the observation. In this work we will study and compare three classical temporal high pass
filter FPNR methods.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article!. Usage instructions are included in the README.txt file of the archive.

Keywords: denoising; FPN

1 Introduction

The goal of video denoising is to recover a clean video from a noisy video. Noise can be caused
by several reasons. FPN for (Fixed Pattern Noise) is a very specific kind of noise that is mostly
present in infrared videos where the ratio of signal over noise is low and is generally caused by the
pixel-to-pixel non-uniformity response.

FPN is called fixed pattern noise because the noise is the same for every frame in the video.
In practice, the FPN is not completely fixed and changes slowly over time but can be considered
constant on a reduced time period. A linear model is widely used to describe noisy images with
FPN. The linear model is defined as

y(n) =a®@x(n)+b (1)
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where ® is the element-wise product, x(n) is the clean frame at time n, y(n) the observed frame at
time n, a and b are respectively the FPN gain and offset coefficients. Equation (1) can be rewritten
pixel-wise as

y(n); = a;x(n); + b;, (2)

where ¢ is the corresponding pixel

In general, FPN reduction (FPNR) methods try to estimate correction coefficients: G(n) the gain
correction coefficient and O(n) the offset correction coefficient in a recursive framework. Thus, if we
note #(n) the denoised image at time n,

E(n) = G(n) @ y(n) + O(n). (3)

The field that tries to solve this problem is called FPNR (FPN reduction) or NUC (Non-
Uniformity Correction). FPNR methods can be divided into two main families: reference-based
(RB-NUC or RB-FPNR) and scene-based (SB-NUC or SB-FPNR). The reference-based methods
remove noise according to fixed calibration parameters, estimated for example with a shutter. How-
ever, the FPN varies slightly over time, which requires an update of the parameters. Because of this,
most of the research is focused on the other family of methods, which is based on the image itself.

In this family of SB-FPNR methods, we can distinguish several subfamilies: those that work from
image statistics, temporal high pass filters, registration methods and optimization methods. Recent
methods mainly use CNNs (convolutional neural networks) which take infrared images or sometimes
natural gray scale images without degradation, to which artificial noise is added to simulate the FPN
in order to create noisy and non-noisy training pairs to train the neural networks. These can be
placed in a new category that could be called learning methods.

In this work, we will study three classical temporal high pass filter FPNR methods: plain high-pass
temporal filtering [5], high-pass temporal filtering after low-pass spatial filtering [3], and high-pass
temporal filtering after bilateral spatial filtering [7]. We provide an implementation, made by us, for
these methods and an online demo where they can be tested.

2 Temporal High Pass Filter Methods

2.1 General Formulation

Temporal High Pass Filter (THPF) is a family of scene based methods as explained above. They
work directly with the images and try to estimate correction coefficients in a recursive framework.

The main assumption considered is that temporal high-frequency information belongs to the
scene, while temporal low-frequency information belongs to fixed pattern noise [5]. And so by
performing a temporal high pass filtering, the noise can be removed. The second main assumption,
added by another work [3], is that noise corresponds generally to spatial high frequency information
whereas the content of the image has low spatial frequency and so the noise can be estimated with
a spatial high pass filter.

THPF methods generally do not consider the gain parameter and only remove the additive noise
and update its estimation in a linear combination of: y(n) current noisy frame, Fyg(n) spatially
filtered noisy image (that contains high spatial frequency of the noisy frame y(n)), f(n—1) estimation
of the previous step.

1 1
) = (1= 57 ) Fn = 1)+ g Fuslo), (@)
where M is a parameter and f(n) the estimated FPN at time n.
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The denoised image = at time n is then

& =y(n) = f(n). (5)

Since f is estimated recursively, we can also rewrite it as

f(n) =" Fus(k)hn(k) (6)

with -
VO0<k<n h(k):ix(l—i) (7)
- M M
where £ is the number of considered frames and 7 is the total number of frames.
Figure 1 shows the value of the coefficient h, (k) with respect to the values of k (the considered
number of frames), n (the total number of frames) and the parameter M used in the experiments

below. The value of sum, shown in the legends of the figure, is the sum of the coefficients h, (k) over
k.

—+—  M=50, number of frames=150, sum=0.95
—+— M=50, number of frames=250, sum=0.99
—+— M=150, number of frames=150, sum=063
—+— M=150, number of frames=250, sum=0.81
—+— M=250, number of frames=150, sum=0.45
00175 —— M=250, number of frames=250, sum=0.63
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Figure 1: Weights of the temporal high pass filter as presented in Equation (7).

2.2 Discussion on the Filter

As explained above, THPF methods use a spatial filter and the main differences between them are
the choice of the filter used.
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No filter [5] The first paper that was published did not use any spatial filter [5], the estimated
additive noise was just a recursive average of the frames. This work introduced the first main
assumption.

Average filter [3] The next paper, the SLTH (spatial low temporally high) THPF method, in-
troduced the use of spatial filtering. The authors used an average filter [3], and it has become a
standard in this family of methods to use a filter since then [2, 7]. The idea as explained above is
that the LSF (low spatial frequency) of the frames has the real content of the frames, while the HSF
(high spatial frequency) is mainly noise.

o) = g Fasto) + (1= 37 ) S0 - 1, )

y" (n) = y(n) — y**F = y(n) — y(n) ® 4, (9)
HSF : HSF

Frs(n)i, :{ Yij (n()) ellsfe, |?ng (n)] <Th, (10)

where A is a spatial low-pass filter (in the original paper they used a 10 x 10 average filter) and T'h
is a threshold parameter to set.

More recent approaches proposed to replace the above filter by a bilateral filter [7] or a guided
filter [2], which do not use a threshold.

3 Implementation

3.1 Pseudo Code
The pseudo code is given in Algorithm 1.

Algorithm 1: THPF
1 function FPNR_THPF
Input noisy_images: A list of noisy images
Output denoised_images: A list of denoised images
N = return number of images(noisy_images)
H,W,C = return_shape(noisy_images|[0])
f10] = zeros(H, W)
for n from 7 to N do
Fys[n] = filter(noisy_images|n|)
fln) = (1= &) fln—1) + & Fusln)
denoised_images|n| = noisy_images[n| — f[n]

® N O Uk W N

©

return denoised_images

We implemented the average filter and for the bilateral filter we used the implementation from
scikit-image [6].

3.2 Noise Modelling

The noisy image that contains FPN can be approximated using the following widely used linear
model
VneN, y(n) =a®xz(n)+b. (11)
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Another important part in our noise modelling is the spatial structure of the noise. FPN can
also be spatially coherent. In the options of the demo, the user can choose to add a structured and
an unstructured component for both the additive and the multiplicative part of the noise. FPN can
have both a structured component and an unstructured component, it is important to consider them
both since the denoising algorithm can have different behaviors depending on the structure of the
noise. For the structured component, we used row and column noise. And so

a = a, + a, + a, b=by, +0b, + b, (12)

where
Vi, i, be(i,7) = b.(3,7), be(t,5) = be(?, ). (13)

S0 by, by, b, are respectively the unstructured, row and column component of the noise, b,, is spatially
independent and b, b,, b. are mutually independent, the same for a,, a,,a.. We can model b, b,, b.

bw ~ N<Oaab)7 br(a]) ~ N<070b)7 bc(i7 ) ~ N<an—b)> (14)
and ay, a,, a. as
Aoy ™~ N<1aga)7 a’?“(')j) ~ N(l,O’a), ac(i7 ) ~ N(laga)- (15)

In the demo, we can select the level of noise we want to add to the frames o, oy

4 Influence of the Parameters on the Performance of the
Algorithm

M, weight for recursive average. The weight for the moving average (which is ﬁ) is similar to
a step size in an optimization process for minimizing an energy. If it is too big, the estimated noise
will never converge to the actual noise. On the other hand, if it is too small, the convergence will be
very slow. The default value for this parameter is generally the number of frames considered [5, 3, 7].
In this work, we found that in that case the convergence can be very slow, and using a lower value
almost always produces better results (see Tables 3 and 4).

Size of the filter. This parameter is common for all the methods that use a spatial filter [3], [7] but
the method without filter obviously does not use it. The default value is set to 10. Too high values
tend to over-denoise and so over-smooth the video, and can also be much more time-consuming and
resource intensive.

Choosing the Filter

No filter. Not choosing a filter does not require any extra parameters. It produces by far the worst
results compared to other methods in terms of quantitative results (see Tables 1 and 2). Noise is
almost never removed, and when it is, it is at the expense of much of the image content (see Figures 2
and 3).

Average filter [3]. The average filter requires another parameter to set, the threshold Th. The
threshold parameter determines how much we want to denoise. The default value is set to 255. High
values provide better quantitative results but also remove high spatial frequency from the image,
especially if the motion between frames is rather slow (see the logo in Figure 2). In the case where

b}
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the scene is completely static, the method blurs the images (see Figure 4). The parameter should be
set according to the noise level and the motion between frames.

Overall, the method produced better results in terms of PSNR. The visual results are also better;
much less content of the images is removed.

Bilateral filter [7]. The bilateral filter requires two more parameters to set, the color sigma and
the spatial sigma of the filter, that are fixed to the same value in the demo.. The default value for
both parameters is set to 45. Higher values can produce blurry results (see Figure 4) and sometimes
denoise better the images if the noise is important.

5 Results

5.1 Datasets

To test the different approaches, we used infrared datasets [1, 4], and visible datasets from the Derf’s
Test Media collection?.

The bus dataset from Derf contains 150 visible images and has some motion.

The flower dataset from Derf contains 250 visible images and has little motion.

The 8_selma dataset from LTIR [1] contains 235 infrared images and the camera is fixed with
some people walking.

The 640_ataset [4] is a dataset of 1000 infrared images. We only use 150 images from the
training dataset. Images have nothing in common.

5.2 Metrics

The metrics generally used to measure the FPNR methods performance are the peak signal-to-noise
ratio (PSNR) and the roughness index p (RI) defined by

PSNR = 20log < (16)

mamvalue)
M

RMSE

where RM SFE is the root-mean-square error and max_value is the maximum value for the data, and

_ el £ [[ho * z]h

2l

, (17)

where by = (1 —1) and hy = h{.
For the quantitative results, we report the PSNR and RI of the last frame of each dataset and
for the visual results, the last frame of each dataset.

’https://media.xiph.org/video/derf/
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5.3 Quantitative and Qualitative Results

In terms of PSNR, the THPF with no spatial filter got the worst results; in the best case, there was
an increase of .08 dB (Tables 1 and 2). The RI obtained is also almost equal to the ones of the noisy
frames. Since there is no spatial filter, the estimated FPN also contains the content of the images,
so either we don’t remove any noise from the images or we remove the content of the images.

The bilateral THPF obtained its best results for classic configurations for THPF FPNR algo-
rithms, a scene with some motion, for example on Figure 2, where the result is sharper than for the
SLTH algorithm. On the other hand, the SLTH algorithm gave the best results for more “extreme”
scenarios, a fixed scene and images having nothing in common. Looking at the visual results, we
think this is because of the spatially structured component of the noise that the bilateral filter has
difficulty in denoising, whereas the SLTH algorithm does not have this drawback.

All methods still produce blurry results on the fixed scene (see Figure 4). In that case, it is very
hard for algorithms to distinguish between noise and actual content of the image since both are fixed.
Methods still achieve reasonable PSNR by blurring the images.

PSNR
dataset ‘ Noisy ‘ THPF ‘ SLTH THPF ‘ Bilateral THPF ‘
bus Derf 20.100 | 20.125 26.501 27.897
flower Derf | 20.531 | 20.550 25.071 26.495
8_selma LTIR | 19.868 | 19.947 28.647 28.064
640_ataset 20.105 | 20.180 32.153 29.599

Table 1: Quantitative PSNR results obtained with a simulated additive FPN (no temporal independent noise or multiplicative
FPN), spatially structured and spatially independent with a standard deviation of o, = 15. The best results per dataset are
highlighted.

RI
dataset Clean | Noisy | THPF | SLTH THPF | Bilateral THPF
bus Derf 0.114 0.242 0.246 0.121 0.121
flower Derf 0.0798 | 0.120 0.120 0.0869 0.0851
8_selma LTIR | 0.0540 | 0.396 0.395 0.0459 0.0520
640_ataset 0.0555 | 0.414 0.413 0.0762 0.0881

Table 2: Quantitative RI results obtained with a simulated additive FPN (no temporal independent noise or multiplicative
FPN), spatially structured and spatially independent with a standard deviation of o, = 15. The best results per dataset are
highlighted.

parameters PSNR
size | M o | bus derf | flower derf | 8_selma ltir | 640_ataset
5 50 | 45 26.887 25.929 26.311 26.333
10 | 50 | 45 27.897 26.495 27.375 27.454
15 | 50 | 45 27.784 26.367 27.634 27.971
10 | 150 | 45 25.561 25.842 25.701 24.530
10 | 250 | 45 23.814 24.708 24.144 23.072
10 | 50 | 10 23.866 23.647 20.782 23.939
10 | 50 | 150 26.111 23.650 28.064 29.599

Table 3: Parameters comparison obtained with the bilateral THPF [7] and a simulated additive FPN (no temporal indepen-
dent noise or multiplicative FPN), spatially structured and spatially independent with a standard deviation of o, = 15. The
best results per dataset are highlighted.
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parameters PSNR

size | M | Thres | bus derf | flower derf | 8_selma ltir | 640_ataset
5 50 255 26.501 24.780 27.594 28.172
10 | 50 255 26.033 24.052 28.647 30.875
15 | 50 255 24.507 23.610 28.359 32.153
10 | 150 255 25.622 24.664 28.116 27.040
10 | 250 255 24.056 24.321 26.160 24.603
10 | 50 200 26.033 24.053 28.647 30.875
10 | 50 100 26.005 25.071 28.621 30.837

Table 4: Parameters comparison obtained with the SLTH THPF algorithm [3] and a simulated additive FPN (no temporal
independent noise or multiplicative FPN), spatially structured and spatially independent with a standard deviation of o, = 15.
The best results per dataset are highlighted.

"____—‘_‘——-——-.:_n_vl(" =
-‘—‘-_-‘__"'_"—-—... ST TARELS

(a) ground truth

(¢) THPF (d) SLTH THPF (e) Bilateral THPF

Figure 2: Comparison of the different methods on the last image of the bus dataset that contains 150 frames and some
motion. Simulated additive FPN (no temporal independent noise or multiplicative FPN), spatially structured and spatially
independent with a standard deviation of o, = 15 was added to the frames. (a), (b), (c), (d), (e) are respectively the
ground truth clean image, the noisy image with simulated FPN, the image denoised by the original THPF method [5], the
image denoised by the original SLTH THPF method [3], the image denoised by the bilateral THPF method [7]. The image
(a) is rather dark, this is not a mistake, but the behavior of [5] that will remove content of the image while denoising.
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(d) SLTH THPF (e) Bilateral THPF

Figure 3: Comparison of the different methods on the last image of the flower dataset that contains 250 frames and little
motion. Simulated additive FPN (no temporal independent noise or multiplicative FPN), spatially structured and spatially
independent with a standard deviation of o, = 15 was added to the frames. (a), (b), (c), (d), (e) are respectively the
ground truth clean image, the noisy image with simulated FPN, the image denoised by the original THPF method [5], the
image denoised by the original SLTH THPF method [3], the image denoised by the bilateral THPF method [7].

(b) noisy

(c) THPF (d) SLTH THPF (e) Bilateral THPF

Figure 4: Comparison of the different methods on the last image of the 8_selma dataset that contains 235 frames and
no motion, it is a fixed scene. Simulated additive FPN (no temporal independent noise or multiplicative FPN), spatially
structured and spatially independent with a standard deviation of o, = 15 was added to the frames. (a), (b), (c), (d),
(e) are respectively the ground truth clean image, the noisy image with simulated FPN, the image denoised by the original
THPF method [5], the image denoised by the original SLTH THPF method [3], the image denoised by the bilateral THPF
method.
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(c) THPF (d) SLTH THPF (e) Bilateral THPF

Figure 5: Comparison of the different methods on the last image of a sample of the 640_ataset dataset. The sample contains
150 images that have nothing in common. Simulated additive FPN (no temporal independent noise or multiplicative FPN),
spatially structured and spatially independent with a standard deviation of o, = 15 was added to the frames. (a), (b), (c),
(d), (e) are respectively the ground truth clean image, the noisy image with simulated FPN, the image denoised by the
original THPF method [5], the image denoised by the original SLTH THPF method [3], the image denoised by the bilateral
THPF method.

6 Conclusion

We tested several temporal high pass filtering methods for fixed pattern noise reduction, provided
insights about their parameters and demonstrated the limitations and advantages of this family of
methods.
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