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Abstract

This article deals with arrays of real numbers which have been reduced modulo 2A into the
interval [—h, h] where h > 0 is a positive real number. Such an array is said to be wrapped
modulo 2h. Often, the elements of these arrays correspond to values observed at points in an
image-like 2D space which are connected by a graph structure. The process of retrieving the
original array from which the wrapped image originates is called unwrapping. Of course, the
wrapping process is not one-to-one, and the quality of the recovered unwrapped version depends
on the smoothness of the original array. The goal of unwrapping is to define a most plausible
left inverse (as will be defined in a precise way) to the non-injective modulation operator mod
2h using heuristic arguments and regularity assumptions on the original signal. Following
the guidelines described in [M. Constantini, A Novel Phase Unwrapping Method Based on
Network Programming, IEEE Transactions on Geoscience and Remote Sensing, 1998] and [M.
Constantini et al., A general formulation for redundant integration of finite differences and
phase unwrapping on a sparse multidimensional domain, IEEE Transactions on Geoscience and
Remote Sensing, 2012, this is made possible by correcting an approximate gradient into a global
gradient using either linear programming or, in some cases, minimum-cost flow techniques to
solve an Li-norm optimization problem. Such a gradient-correcting technique can also be used
in general for finding a most plausible gradient and reconstructing a signal. The online demo
associated with this paper implements the aforementioned methods.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article!. Usage instructions are included in the README. txt file of the archive.
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1 Introduction

1.1 General Framework

Phase unwrapping occurs in specialized image recovery fields such as InNSAR (satellite imaging [3])
or MRI (medical imaging [17]). The unwrapped numbers can generally be interpreted as phases
accumulated in electromagnetic waves during their travel. Phases are real numbers reduced modulo
2w, hence the name phase unwrapping. We denote by h :— 7 the half-modulus. Since phase and
wavelength are related in electromagnetic waves, h can nevertheless be different from 7 and construed
as a characteristic length. Interferometric Synthetic Aperture Radar or InSAR is a technique used
in the reconstruction of elevation profiles or to monitor terrain deformation over time. It consists
in sending radiation in the microwave domain of the electromagnetic spectrum from a satellite onto
the Earth, and recovering the phase of the reflected light. The choice of these wavelengths prevents
atmospheric absorption, so that the method remains functional even in cloudy areas. The recovered
phase is a real number lying inside the normalized interval [-m,7). However, during its travel, the
phase of the recovered electromagnetic wave has completed several cycles of length 27 which have
been cast out from the observable phase by a modulation mod 27. Since the real phase before the
wrapping process mod 27 is directly related to the distance (a full cycle representing the span of a full
wavelength), undoing this process (i.e. phase unwrapping) would allow one to recover the elevation
profile under scrutiny. In practice, differences of wrapped images, or interferograms, are considered
to recover terrain deformation. To limit the effects of observation noise, several advanced differential
interferometry techniques restrict the phase observations to an irregularly sampled planar set of points
called “persistent scatterers” or PSs. At each date, each PS is associated with a real number in [-
m,m) called the wrapped phase ([9],[10]). In an interferogram, the wrapped difference of the wrapped
phases between the two corresponding dates is associated to each PS. PSs are usually linked to their
spatial neighborhoods by edges in a graph. Such a graph can be defined by a Delaunay triangulation,
possibly with some additional redundancy. By convention, the redundancy r is a nonnegative integer,
where r = 0 corresponds to the default Delaunay triangulation and r > 0 corresponds to the
default Delaunay triangulation plus the additional edges directly linking the k-th nearest neighbors
of every vertex in the Delaunay triangulation for 1 < k < r+1 (redundant edges between two nodes
are counted only once). As will be discussed later, the Delaunay triangulation can be degenerate
(i.e. having triangles with zero surface area) without causing any problems. Empirically, this often
happens when large numbers of points are located within a small compact area of the plane with
some degree of regularity, but this is no cause of concern, as long as one uses joggled input (the
input points are slightly joggled before triangulating by displacing them randomly within a small
neighboring area; this ensures that the produced default Delaunay graph is planar). In Scipy’s
Delaunay implementation, this corresponds to option QJ which is passed to library Qhull.

Among the graphs under consideration, two categories can be delineated. The first category
comprises planar graphs, i.e. graphs which can be drawn in the 2D Euclidean plane with edges
not crossing each other except, perhaps, at their extremities (default Delaunay graphs with r = 0
and option QJ, possibly degenerate) while the second category comprises essentially non-planar
graphs (Delaunay triangulations with redundancy r > 0). This distinction is important, because two
different methods will be introduced, a minimum-cost flow method (MCF) which is more efficient
but requires graphs in the first category, and a more general method using linear programming (LP)
which applies to all graphs but is less efficient. All the graphs under consideration will be assumed
to be connected.

To remain consistent with the concept of phase unwrapping, the convention h :— 7 shall hence-
forth be adopted, but all the reasoning remains correct if one replaces m with any real A > 0.
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1.2 The Essential Idea

Let us now suppose we have a set of PSs in a 2D plane with a graph. The main idea underpinning
phase unwrapping is that phase differences between two vertices linked by an edge are relatively
small (strictly smaller than 7 in absolute value). This is why only close points are being linked,
since it is assumed that the underlying unwrapped signal is relatively smooth. Suppose P, and
p, are the wrapped phases of two linked points z,y. Under the previously mentioned smoothness
hypothesis, a good and mostly plausible approximation of the unwrapped phase difference can be
given as W(@, — @) where W denotes the wrapping operator mod 27 in [—m,7]. More precisely,
since by definition @, — @, € (—2m,27), we have

Oy — Pz — 2T Qy—Pg >T
W@y —%z) =1 ¥y — %= Py — Pz € [-m, 7] (1)
Oy — Pg + 21 Py — Py < —T.

The reason we wrap in [—7, 7] instead of [—7, 7) is to ensure the antisymmetric property

Wiy —#x) = -W(@: —@y).

This property is essential and the underlying reason why it is so will become clear soon. In
practice, the case when

[Pz =yl =
is an edge case which rarely happens by chance alone, but when it does (either due to artificially-
generated data or a precision error), wrapping in a symmetric interval is necessary to avoid significant
errors.
It is easy to show that if ¢, and ¢, are the unwrapped phases corresponding to i, and @, then

’(Py_ﬁom| <7T:>W((p_y_@):90y_90m-

[Py — pu| > = W(Py —P2) # ©y — Pu-

In other words, the estimation W(p, — @,) of the gradient of the unwrapped phase is correct
whenever the unwrapped phase difference is strictly smaller than 7 in absolute value and the es-
timation is wrong whenever the unwrapped phase difference is strictly greater than 7 in absolute
value. Thus, if the hypothesis on the amplitude of phase differences being relatively small is mostly
true, the estimation will be mostly correct. Ignoring edge cases, the proportion of wrongly estimated
gradients is the proportion of gradients originally larger than m in absolute value.

The problem is the following: if the true signal is sufficiently smooth, the gradients of the un-
wrapped phases are all strictly smaller than 7 in absolute value and the estimation of the gradient
on every edge of the graph therefore is correct. In this case, the estimated gradient W(@, — @,) is a
true gradient (i.e. the differences of a single function defined on the vertices of the whole graph) and
in particular, it is conservative, i.e. the integral over any closed loop of the graph is zero. This means
that one can draw a spanning tree in the graph and integrate along it, obtaining the same result (up
to an additive constant) regardless of the choice of the tree due to path independence. This result is
the estimated unwrapped signal, up to a global constant.

However, it may happen that the profile is very steep or discontinuous, or that the PSs are too
far away from one another so that some differences of the unwrapped phases are larger than 7. In
these cases, the estimated gradient can be wrong (actually, if the true difference is strictly greater
than 7, the estimation is obviously necessarily wrong since the wrapping operator sends values into
the interval [—m, 7]). Since the path independence of the estimated gradient is equivalent to being
the gradient of a function on the whole graph, these errors might cause the estimated gradient not
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to be an actual gradient, leading to a loss of path independence. In this case, integration is not
well-defined as it depends on the chosen spanning tree.

If an error is present in an estimation, then it necessarily is an integer multiple of 27. Therefore,
a way to solve this problem is to find the closest path-independent gradient estimation, which can be
interpreted as the differences of a global function defined on the vertices of the graph. This closest
gradient approximation should be as close as possible to the wrapped gradient for the L; norm, with
the additional constraint that it should differ from the initial estimation by integer multiples of 27
on each edge.

To do so, one has to minimize the number of edge gradient corrections weighted by their magni-
tudes, each one being an integer multiple of 27 on each edge, such that the integral of the corrected
gradient over every closed graph loop is zero. Once the corrected estimation is found, it remains
to integrate over any spanning tree (whose choice does not matter due to the newly gained path
independence property) to obtain an estimation of the unwrapped signal up to a global constant.

In practice, the loops considered in the graphs are cycles, defined as the union of distinct undi-
rected edges forming a loop in which each vertex has degree 2. In the graphs we consider, this excludes
cycles of length 2. But for a field to be conservative, it also has to sum up to zero when integrated
over loops of size 2. Since the corrections added to W(, — @) are going to satisfy the antisymmetric
property (because of the structure of one of the methods employed, and by definition in the other),
summing up to zero on loops of size 2 is equivalent to requiring that YV be antisymmetric. This is
the reason why we require WV to be antisymmetric. This article could encompass more general cases
of gradient reconstruction, but we shall henceforth and in all cases consider only estimated gradient
fields which are antisymmetric, i.e. which satisfy the relationship grad(z,y) = — grad(y, ) now taken
as granted.

To find these corrections, two different methods can be employed: one relying on a minimum-cost
flow interpretation of the problem, which works only on non-redundant Delaunay graphs and when
the observed approximate gradient is antisymmetric, but is efficient, and a second one, more general
but slower, relying on a linear programming interpretation of the problem, which works in both the
redundant and the non-redundant cases. In the latter method, if extra care is taken with loops
of size 2, non-antisymmetric estimated gradients could also be handled, although they will not be
considered in this article for the sake of simplicity.

2 Related Work

Phase unwrapping used to be handled over a regular grid using branch cut methods ([12]). Then
LP-norm methods were developed ([11]). However, it was shown that minimizing the L? norm has the
tendency to spread errors, whereas minimizing the L' norm is more robust to outliers. To minimize
this norm, one can employ either Iteratively Reweighted Least Squares (IRLS) [7] or network flow
techniques ([2]). Noise being a significant issue in phase unwrapping, causing most errors, it is
important to avoid noisy pixels. To do so, one introduces the concept of persistent scatterer or PS,
for which candidates of good quality can be found as pixels whose amplitude dispersion, i.e. relative
temporal variation in amplitude lies below a certain threshold [9, 10].

The methods described in this paper and implemented in this source code and online demo
follow the footsteps of Costantini et al. and come almost entirely from articles [3] and [5] for the
minimum-cost flow implementation and the linear programming-based implementation, respectively,
with minor tweaks.

The minimum-cost flow (MCF) article [3] describes an implementation using a grid of points. It
is easy to see that this implementation can be generalized to any planar graph by exhibiting a 2-basis
(i.e. a cycle basis, formally defined in Section 3, such that each edge appears in at most two cycles of
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the basis), which necessarily exists according to Mac Lane’s planarity criterion ([18]). In practice, we
implement the MCF method to unwrap data using Scipy’s Delaunay triangulation, which remains
planar even in the event of degeneracy according to its documentation (see: the description of the
“neighbors” attribute where it is stated that any elementary triangle has at most one neighbor per
edge). The used 2-basis simply is the set of Delaunay simplices (elementary triangles).

The linear programming (LP, not to be confused with norm L,) version of article [5] also min-
imizes the L; norm (p = 1). It is implemented using a redundant Delaunay triangulation with a
redundancy parameter r» which is a nonnegative integer such that each vertex is linked in the Delau-
nay triangulation to its k-th nearest neighbors for 1 < k < r + 1 (with a single edge, not two edges
in different directions). In particular, » = 0 corresponds to the case where there is no redundancy,
i.e. the graph is the unchanged, default Delaunay graph.

While the MCF method is faster than the LP method, MCF can only be applied to planar graphs,
whereas LP can be applied to any graph. In particular, when r > 0, the graph is usually non-planar
and LP has to be used instead of MCF. In [5], the authors make use of a fundamental cycle basis,
which is a basis (defined in Section 3) obtained from a spanning tree (see [20]). This property is
then used to prove that the solutions (i.e. corrections) are integer multiples of 27. In other words,
the unwrapped solution differs from the wrapped profile by integer multiples of 27. This is useful
because if this were not the case, the solution would be guaranteed to be wrong, at least at those
points where the difference is not an integer multiple of 2. While [20] explains how to build such
a basis efficiently, the average cycle length can be large. On the other hand, it is easy to show
that any cycle basis preserves the property that the corrections are integer multiples of 27 because
the problems using either basis are equivalent. In particular, we use a simple algorithm to find a
relatively small (and sometimes minimal) basis for the (possibly redundant) Delaunay triangulations.
It can be shown empirically that the smaller average length of the cycles improves computational
speed significantly, at least using the PuLP software.

The methods used to solve linear programming problems or minimum-cost flow problems will
not be discussed and will be used as is, using open-source software (OR-Tools for MCF and Pul.P
for LP). More information can be found in [13] or [1]. In particular, well-known yet non-trivial
theorems, for instance regarding the property that the LP solutions are integers, will be admitted
without proof.

A formula providing a bound on residues (also defined in Section 3) depending on the length of
the associated cycle can be found in [8]. While not needed in practice, it can be used as a reality
check for debugging. Since the article provides no proof, one shall be provided in Appendix A.

3 Method

3.1 Phase Unwrapping Using Linear Programming (LP)

A linear program is the following optimization problem:

Minimize ¢ - v

such that Av = b and v > 0 component-wise,

where ¢ is a real linear form (transposed cost vector or confidence weights, in practice its components
are nonnegative), A is a real matrix, b a real vector and v a vector with nonnegative real entries to
be determined.

The unwrapping problem outlined in Section 1.2, using L;-norm minimization, can always be
made into a linear program, regardless of whether the graph is planar or not. It is the most general
method. This advantage is tempered by potentially long computation times depending on the number
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of points to be unwrapped and the number of edges (which depends essentially on the number of
points and the amount of redundancy).

Ensuring the path independence of our estimated gradient is equivalent to checking that integrat-
ing it over any cycle yields zero. To satisfy this property, it is also equivalent to requiring this over
a subset of cycles called a cycle basis. The concept of basis is the classic one from linear algebra.

Proposition 1. Assuming our graph G is connected and contains m edges, let E = FJ', where
Fy :— Z/27 denotes the field with two elements, be the associated vector space in which each edge
constitutes an element of the canonical basis. The subspace of cycles is the subspace generated by the
vectors associated to cycles and a generating, linearly independent subset of these vectors is called a
cycle basis. If G contains n vertices, then this subspace has dimension m —n + 1.

This property will be needed to understand how some bases are found in the next Section 3.2
and an elementary proof will be provided.

Proof [Fundamental cycle basis| Assume a spanning tree 7" is drawn across G. For every pair
of distinct vertices x, y in T such that the edge (z,y) is not in 7', associate the cycle comprising edge
(z,y) and edges from T'. Since T is a tree, it is acyclic and therefore the cycle is unique. Since each
such edge (x,y) is contained in a single cycle, this family of cycles is linearly independent. It is easy
to convince oneself that these cycles generate the subspace of cycles. Therefore it is a basis. Since
G has n vertices, the tree contains n — 1 edges, so the cardinality of the basis is m — n + 1. This
completes the proof. [J

Proof [Linear algebra] An easier proof relying solely on linear algebra can be obtained by
simply noticing that the space C generated by cycles is exactly the orthogonal of the gradient space
V generated by gradients, i.e. C = V* (since a field is a gradient if and only if it is irrotational), and
V has dimension n — 1 because the space of functions on n nodes has dimension n and Ker V (using
the same notation V for the gradient operator, which is uniquely defined in characteristic 2) consists
of the subspace of constant functions which has dimension 1 (due to the connectivity property of G,
otherwise the kernel would be the subspace of locally constant functions and have dimension ¢ where
¢ denotes the number of connected components of GG, leading to the V space having dimension n — ¢
and thus to the cycle space having dimension m — n + ¢ instead of m —n + 1).0

Remark 1: the formula for the cardinality of the cycle basis remains true over any field K instead
of IF, if one uses the alternative, more general definition C := V+ with a cycle basis being a family
of vectors constituting a basis of C such that each vector has nonzero entries only for edges defining
a cycle, and such that these entries are equal to +1. This new definition generalizes, but is not
equivalent to, the one used in Proposition 1 when the characteristic of field K is different from 2.
However, it can be shown that such a cycle basis can be derived from a cycle basis as defined in
Proposition 1 in an easy and elementary way. The advantage of using field Fy is that a cycle is a vector
containing only zeros and ones which is unambiguously defined, and considering classes modulo 2
allows for a straightforward understanding of what cycles generate when summed up, e.g. a partition
generating its hull. Also, since in characteristic 2 we have a — b = b — a, edge orientation does not
matter for the gradient field which is also unambiguous. In other fields, if their characteristic is
different from 2 (e.g. K = R), then orientation matters because 1 # —1 and the vectors may contain
values other than zero or one, though they can always be found such that their entries are either 0
or 1 (see Remark 2).

Remark 2: a cycle basis over Fy remains linearly independent over R and can be made into a cycle
basis depending on the consistent interpretation of 1 := 1 (mod 2) as either +1 or —1 in R, which
can be achieved for any undirected graph G' by endowing it with a random orientation for each edge.
This can be seen by noticing that since the vectors are linearly independent over Iy, the determinant
of one of the largest minors of the matrix whose columns are the vectors is nonzero, so it must be an
odd integer when the entries are interpreted as reals, which is thus nonzero. Therefore, the matrix
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has full rank in both fields. However, for the cycle basis over F5 to be a cycle basis over R, i.e. to be
in V1, one has to distinguish between £1 because an edge can have two different orientations. This
can be done by choosing for each cycle any of the two possible orientations (regardless of whether G is
planar or not), and consistently identifying 1 as +1 if the orientation matches the global orientation
originally chosen for G at the given edge, and —1 otherwise. While this might sound trivial, the
content of this remark is implicitly used in the following of this section when checking that a field
is irrotational over R. Likewise, any basis defined as in Remark 1 over R remains a cycle basis as
defined in Proposition 1 when taken modulo 2, which is obvious because it has the right cardinality
and is generating.

Remark 3: One might argue that naively casting a cycle basis defined in Proposition 1 identifying
0,1 € F, with 0,1 € R, respectively, is enough to define a cycle basis over R, rendering the previous
remark useless. This is not true, as it would mean that for any graph G it is possible to define a
direction on each edge of the graph such that for each cycle of the cycle basis, all of its edges follow
the same direction (clockwise or counterclockwise for planar graphs). This is not possible and the
simplest example to consider is the undirected planar graph G = K, from Figure 3 and the cycle
basis consisting of the three inner triangles 77, 75 and T3 which are such that 77 and T, share an
edge F19, T7 and Tj share an edge Fi3, and T, and 73 share an edge FEs3, with Fio, Fy3 and FEag
three distinct edges (the inner edges). The three triangles form a cycle basis of G as defined in
Proposition 1 because in this case, m —n+1 =6 —4 4+ 1 = 3 and the three triangles are obviously
linearly independent over Fy. Picking an orientation (out of the two which are possible, i.e. clockwise
or counterclockwise) for T} forces T, to be oriented in the opposite direction due to shared edge Ejs.
Likewise, T3 also has to follow the other orientation due to shared edge Fi3, so that T, and T3 follow
the same orientation opposite to that of 77. Since they share Fa3 # Fio, E13, this is a contradiction.

Remark 4: using the definition of the node-arc incidence matrix of a directed graph provided
in Section 3.3, one can note that vector space C is also the space of vectors satisfying Kirchhoft’s
law of flow conservation at nodes, i.e. divergence is zero at every node. This is interesting because
this observation, along with gradient irrotationality, evoke the well-known formulas Div-Rot =
Rot - Grad = 0 and the Helmholtz decomposition theorem in the continuous space R3.

To define a linear program solving the unwrapping problem of Section 1.2, consider the (possibly
redundant) Delaunay graph G along with a cycle basis B. If mistakes have been made in the
estimations of the gradients, then probably (although not necessarily) there exists at least a cycle
such that the integration of the estimated gradients along it yields a nonzero result. This result is
called a residue. Since the estimation errors are integer multiples of 27, so are the residues. The
goal is to fix the estimated gradients by adding corrections which we know must be integer multiples
of 27 such that integration over each of the cycles yields zero. This is equivalent to requiring that
integration over each cycle of a cycle basis yields zero.

The residue for each cycle C' is given by

Res ¢ -— Z fow

(zy)eC
along C

where we use Costantini’s original notation of article [5] with small changes, i.e. f;  is the estimated
value of the true gradient f, — f, where f denotes the original signal to be reconstructed. In our
case specific to phase unwrapping, using the notations of Section 1.2, we have f,  :— W(p, — )
whereas f, denotes the phase at point x before the wrapping process, i.e. f, :— @,.

As a reality check, it is easy to show that (cf. Appendix A), if n is the number of edges (or points)
in C, then

2 _ 1 if nis even.

2

Res ¢
2w

<{ ”T_lifnisodd

7
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In particular, for triangles, the residues lie in {0, +27}.
We are looking for corrected gradients

Jy— fo= — Pz fzy 2M0yy — x?Zr

with d,, an integer satisfying
Oz = O — 0y

x?y

where the 67 > 0 and 6~ > 0 are defined as 6" :— max(9,0) and §~ :— — min(d, 0)

The corrected gradients must satisfy

‘cor __
> I =0

(z,y)eC
along C

which is equivalent to requiring

S Gey= 3 b, = e @)

(z,y)eC (z,y)EC
along C along C

for every cycle C' € B, where B is a cycle basis of G. Note that we are implicitly using Remark 2
here by choosing the gradient orientation. This condition can be rewritten as

Av=0>

where v > 0 is a vector comprising the ™ and the ¢~ associated to each edge of G (in an arbitrarily
fixed direction, the other unknowns are then deduced from the antisymmetry property d,, = —d,.
implied by the assumption that the estimated gradient f’ is antisymmetric and the fact that the
true gradient f°* naturally satisfies this property). One notes that each of the m —n + 1 rows of A
corresponds to a cycle of the cycle basis and is full of zeros except at the column indices corresponding
to its edges where it is &1, depending on its orientation and whether this corresponds to 0™ or 6~
(so each edge of the cycle has a 1 and a —1 entry corresponding to it and A has 2m columns). Of
course, A depends on how the § are stacked in v and one should be mindful of this. For instance, if
all the §* are stacked first (in any order) and then all the 6~ (in the same order as the 67), then A
is of the form [fl, —fl]. Since the residues are integer multiples of 27, the entries of b are integers. A
theorem will show that this property, along with the structure of matrix A, are sufficient to satisfy
the requirement that the solutions d be integers (which were a priori presumed to be reals).

However, we would like to find the nearest true gradient to our estimated gradient in L; norm.
This is equivalent to requiring the minimization of

lollh = D 1804l = Z Sz + Oy

where £ is the set of edges of G. The equality holds because, by definition, either 6* =0ord,, =0

This can be achieved by choosing ¢ = (1,1,...,1) and minimizing ¢ - v = ||v]};.

In practice, the components of ¢ are nonnegative and can be interpreted as costs or confidence
weights associated to the 6%. A larger value will incentivize the algorithm to prioritize smaller values
of the corresponding corrections 6=, which means we have a higher confidence in the corresponding
estimated gradient. This is useful when a priori confidence weights can be estimated and produce a
custom objective function linear in the 6%, different from the L; norm and possibly more accurate.
Since the minimization of the objective function is up to a positive multiplicative constant, the
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Algorithm 1: Unwraps data using LP

1 function UnwrapLP(Points, Phase,r)

Input Points: (x,y) coordinates of points € R?

Input Phase: Corresponding wrapped phases ¢ € [—7, )

Input r: Redundancy

Output Unwrapped_phase: Unwrapped phase up to a global constant

D < Delaunay (points) /* Delaunay triangulation */
3 Adj < Adjacency matrix of D
4 | AdjRed + ((35_o Adj*™) > 0) — (r>0)1d /* Adjacency matrix of the

redundant Delaunay graph */
5 Edges < AdjRed > 0 /* Edges of the redundant Delaunay graph */
6 vy S W, —P2), V(z,y) € Edges /* Wrapped gradients */
7 B «+ GetCycleBasis(D, Adj, Adj Red) /* Algo 2 or Algo 4 */
8 for C'in B do
9 Res ¢ «+ Z(J&,y)EC’ f:;,y
along C

10 Add constraint ). 6,, = =< for (x,y) edge along C in a consistent direction
11 and with 6, :— 0} — 6, ;05 >0,0,,>0
12 Set objective function: »3, o 05 +d,, /* Set objective function */
13 | 0% < Solve linear program, e.g. using PuLP
14 fleor «— f1 — 2w /* Corrected gradients */
15 Unwrapped_phase < Integrate f°" over any spanning tree, start from a constant, e.g. 0
16 return Unwrapped_phase

weights are values which are relative to each other. Thus, for a generic cost vector ¢, the objective

function becomes
i _ + -
€V .= E Cﬂc,y|5ac,y| = E : Cw,yéz,y + Cﬂ?ayér,y‘

(zy)e€ (z.y)e€

Now that the problem has been transformed into a linear program and that finding a cycle basis
is outlined in the next Section 3.2, it remains to solve for v yielding the minimal corrections to add
to our estimated gradient f’ to turn it into a true gradient f°. This can be done using a linear
program modeler such as PulLP, which uses the CBC solver by default. Since B is a basis, every
edge has been visited at least once in one direction, thus for each edge (x,y), either d,, or d,, has
been computed. If one is missing, then according to the antisymmetric property outlined earlier
in the article, it suffices to deduce the other using the relationship 4., = —d,, which we use here
by definition, assuming f’ to be antisymmetric (in contrast to the other method of Section 3.3 in
which this relationship is enforced by the flow structure and cannot possibly be adapted to a non-
antisymmetric estimated gradient f’). Since this relationship must be satisfied for antisymmetric
estimated gradients (the only estimated gradients considered in this article), it is enforced in the
code. Otherwise, cycles of size 2 would need to be taken into account. Since f°° is a true gradient,
it is in particular conservative and integrating it over any spanning tree T of G yields the same
estimation of the unwrapped phase profile, which is thus well-defined up to a global constant.

If the cycle basis is totally unimodular (e.g. a fundamental basis obtained from a spanning
tree [19]), i.e. if the corresponding matrix of constraints A is totally unimodular (meaning that
every square submatrix of A has determinant 0 or £1), the 0 are guaranteed to be integers ([13],
p.738, Th.1) even if the variables § are chosen to be continuous, i.e. varying in R. This is recom-
mended with PuLLP as it runs significantly faster than if we require that the variables be in Z from
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the outset. This is convenient since we know that the real corrections must be integer multiples of 27.
However, our cycle basis is not always totally unimodular. This is no cause for concern, though, due
to the following reasoning: suppose we choose a fundamental cycle basis B, i.e. a cycle basis obtained
from a spanning tree, which can be done systematically by collecting the unique cycle corresponding
to each edge of the graph not in the tree and the only path in the tree connecting its extremities like
in the proof of Proposition 1 (see Section 3.5.3 and Figure 10 for a visual example). Then we have
to minimize ¢ - v with the conditions Av = b, v > 0 and A totally unimodular. Since any cycle basis
B’ spans the same cycle space C, the matrix of constraints A’ corresponding to this alternative basis
satisfies
Ker A =Ct =Ker A

This is equivalent to requiring the existence of an invertible matrix P satisfying
A'=PA
Multiplying by P the constraints in the original problem, one gets the equivalent problem
Av=b< PAv=Av =1V =Pb

where A’ is not necessarily totally unimodular.

Because the problems are equivalent (since P is invertible), the solutions (which are not necessarily
unique) are the same. The well-known theorem ([13], p.738, Th.1) states that the solutions are
integers for any vector b with integer entries and any vector c if A is totally unimodular. Since this
is the case for the basis B, the solutions are integers. Since the problem is equivalent using basis
B’, the solutions remain integers even if A’ lacks the total unimodularity property. Therefore the
solutions ¢ are integers no matter which cycle basis we choose.

A last remark concluding this section should be made concerning the potentially degenerate
Delaunay triangulation (which is often encountered in practice due to some degree of regularity in
the data points, e.g. grid-like). One simply has to note that none of the reasoning above assumes
the triangulation to be non-degenerate. The only property which has been mentioned (but not
used yet) which could be affected is the default Delaunay triangles constituting a 2-basis, should an
edge be represented more than twice in the cycle basis. However, this property is not needed for
this section, and even if it were the case, Scipy’s Delaunay implementation eschews this issue using
option QJ (this feature will be a key element for the next section concerning MCF, without which it
will be shown that the technique cannot work properly). Therefore the above reasoning still holds
even for degenerate Delaunay. The reasoning of the next section will also hold as long as the set
of default Delaunay triangles remains a 2-basis, which is the case when one uses Scipy’s Delaunay
implementation with option QJ as outlined earlier.

The pseudocode in Algorithm 1 provides a summary of this section.

One final note concerning the code and the computation of the residues: according to Section 1.2,
we know that

f;,y = W@y — Pz) =Py — Pa +2may,
where a,, € {0,£1} is the integer ambiguity that wraps the phase according to Equation 1. We
also know that summing over a cycle, the ¥, — ©, will vanish, so instead we can only compute
the ambiguities and convert a numerical computation into an essentially infinite-precision, error-
free computational algebra problem giving the right-hand side term of the constraint of Equation 2

according to
Resc
27 B Z oy

(zy)eC
along C

This is what the demo code does in practice.

10
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3.2 Finding a Cycle Basis

While spanning trees are a convenient way of finding a basis in a general graph, it has the flaw that the
obtained basis sometimes contains relatively large cycles. This entails time-consuming computations.
Since we are dealing with a (possibly redundant) Delaunay graph, there are more effective ways to
find bases with a small average number of edges per cycle and a small upper bound on it. In two
of the most common scenarios, one can produce minimum cycle bases, namely bases with the least
number of edges possible. We shall only keep in mind that the sought basis has cardinality m —n+1.

The easiest case is the case when G is a Delaunay triangulation with no redundancy. It is easy to
see that the family of elementary triangles generated by Delaunay forms a basis. Indeed, assume the
vectors associated to the triangles are {v;}; and assume that Y \jv; = 0 with \; € Z/27Z for every i.
Since an edge on the boundary belongs to a single triangle, we have A\; = 0 for every j corresponding
to the triangles with at least an edge on the boundary of G. Removing these triangles, we get another
graph G’. ITterating this technique by exhaustion, one gets \; = 0 for every i, therefore the family is
linearly independent. Another way to see this is that if the \; are not all identically zero, the sum
corresponds to the hull of the triangles, which is a non-empty union of cycles. Indeed, it is easy to
see that each cycle of a Delaunay triangulation is the sum of the triangles it encloses. Thus, these
triangles form a basis. Since every cycle of the basis has length 3 and there are no cycles of length 2
or self-loops (loops of size 1), it is a minimum cycle basis, i.e. a basis with the least total number of
edges.

The second easiest case is when G is a Delaunay triangulation with redundancy 1. This means
that every vertex is linked to its neighbors in the default Delaunay graph and additional edges are
added to connect it to its next-nearest neighbors. In this case, we can start with the family of triangles
of the default Delaunay triangulation. For each additional edge linking a vertex to a next-nearest
neighbor, the basis cardinality m — n + 1 grows by one unit, so a new linearly independent cycle
has to be found. This cycle can be obtained as the union of the new edge with two edges forming
a path between the extremities of the new edge in the default Delaunay triangulation (ignoring the
new edges). This path exists by definition of the new edge as being the result of redundancy 1. Since
the new edge belongs to a single cycle, it is linearly independent of the others. Proceeding this way
for all the new edges, one gets a basis of triangles. This basis is thus a minimum cycle basis, because
there are no self-loops and no loops of size 2 (redundant edges are only counted once).

In the general case, when the redundancy satisfies » > 1, one proceeds in the same way as above.
One starts with the family of default Delaunay triangles, and for each new edge, one adds a cycle
containing this edge and a path between the extremities in default Delaunay (or in the union of

Algorithm 2: Obtain a small cycle basis
1 function GetSmallBasis(D,Adj,AdjRed)
Input D: Scipy’s Delaunay triangulation
Input Adj: Adjacency matrix of the Delaunay triangulation
Input AdjRed: Adjacency matrix of the redundant Delaunay triangulation
Output B: A small cycle basis of redundant Delaunay
B < D .simplices /* Elementary triangles */
R < (AdjRed — Adj # 0) /* Redundant edges */
for £ = (z,y) in R do
C = GetShortestPath(D, z, y)
B+ BU{C}

7 return B

o otk WN
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Algorithm 3: Obtain a shortest path between two points in a connected graph
1 function GetShortestPath(G,z,y)

Input G: Any connected graph
Input x,y: Extremities of the shortest path to be found in Vg
Output P: A shortest path from x to y in G
2 Cluster x « {z}
3 Cluster_y < {y}
4 Intersection_test <— 0
5 Counter + 0
6 while Intersection_test == 0 do
7 if Cluster xN Cluster_y == () then
8 if Counter mod 2 == () then
9 Grow Cluster_x by including its nearest neighbors in G
10 Store information on predecessors of nodes in Cluster_x
11 else
12 Grow Cluster_y by including its nearest neighbors in G
13 Store information on predecessors of nodes in Cluster_y
14 Counter <— Counter +1
15 else
16 Intersection_test < 1
17 Store an intersection node V € Cluster_x N Cluster_y
18 P, <+ Reconstruct path from x to V using information on predecessors in Cluster_x
19 P, + Reconstruct path from V to y using information on predecessors in Cluster_y
20 P+ PUPR
21 return P

default Delaunay with the additional edges added before the edge considered, but not the edges
which will be added in the future). This will form a relatively small basis (each cycle having length
< r+2). To find the path, an easy way is to create two breadth-first clusters at each extremity and
grow them alternatively and iteratively until they meet. A breadth-first cluster at a node is simply
the subgraph containing the node plus its i-th nearest neighbors for 1 < i < j starting with j = 1,
and growing it means incrementing j by one unit. Growing two clusters is better than growing only
one because it divides the distance to be traveled by 2, which is significant as breadth-first clusters
grow exponentially with the distance, though since r is generally small, this process is relatively
quick (a path is obtained after at most r + 1 iterations in both cases but in the case involving two
clusters, the number of visited nodes is reduced).

Visual representations are provided in Figure 1.

There remains a caveat, however: while it can be shown that the cycle basis obtained from a
spanning tree, called a fundamental cycle basis, is always a totally unimodular basis (which means
that the matrix A of constraints of the previous Section 3.1 is totally unimodular, i.e. every submatrix
of A has determinant 0 or 1), this is not the case for the bases obtained using the above technique.
There is an exception though, when there is no redundancy, as the elementary triangles of the default
Delaunay triangulation form a 2-basis, a property which can be shown to entail total unimodularity:
in this case, it suffices to use the row partition lemma 2 with I; = {All the rows} and I, = ) on A.

12
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Algorithm 4: Obtain a fundamental cycle basis following the guidelines of [20]

1 function GetFundamentalBasis(V,E)

© 0 N O U A W N

=
o

11
12
13

14

15

16

Input Vg: Vertices of the graph G

Input Eg: Edges of the graph G

Output B: A fundamental cycle basis of any graph G

Vr < {v} /* Root of the spanning tree to be grown chosen at random in V */
Er« 0 /* Edges of the spanning tree to be grown */
X VG

while VN X # () do

z < random element from VN X

/* Vertices not yet examined */

for w such that (z,w) € Eg do
if w € Vp then

| B+ BU{C}
else
Vr VTU{’LU}
L ET — ET U {(Zaw)}

B EG <—EG\{(z,w)}
| X X\ {2z}

return B

C' = GetShortestPath(T, z, w)

(a) Simple illustration of the creation of a cycle
involving a redundant arc a with redundancy 1 in
green in a Delaunay triangulation of 7 vertices. The
two breadth-first clusters, in red and blue, intersect
after 2 iterations (one for each cluster) at the node
in the center. The new cycle corresponding to a is
thus cycle (a, b, c).

(b) Simple illustration of the creation of a cycle
involving a redundant arc a with redundancy 3 in
green in a larger Delaunay triangulation. The two
breadth-first clusters, in red and blue, intersect af-
ter 4 iterations (two for each cluster) and an in-
stance of a possible path completing the cycle is
shown in pink. The new cycle corresponding to a
is thus cycle (a,b,c,d,e).

Figure 1. Examples of cycle creation from a redundant arc.

13
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Proposition 2 (Row partition lemma ([13], p.738, Th.2)). A matriz A whose entries belong to
{0, £1} is totally unimodular if each column contains no more than two nonzero entries and if its set
of rows can be partitioned into two sets I; and Iy such that if a column has two entries of the same
sign, the corresponding rows belong to different sets of the partition, and if a column has two entries
of different signs, the corresponding rows belong to the same set of the partition.

In the general case, counter-examples can be found. It has been shown nonetheless in the previous
section that since both problems (the one using the tree basis and the one using the small basis)
are equivalent, a well-known (yet non-trivial) theorem ensures that the corrections remain integer
multiples of 27, which is important since we know that this property must be satisfied by the real
corrections. The only requirement is that at least one totally unimodular cycle basis exists, and
since one can always build a fundamental cycle basis using any spanning tree, this condition is
always satisfied.

In some cases when one does not use Delaunay, a general fundamental basis might need to be
exhibited. In these cases, one simply follows the guidelines given in [20], where a spanning tree is
grown alongside the fundamental cycle basis.

The three algorithms 2, 3 and 4 in pseudocode summarize this section.

3.2.1 On the Typical Number of Redundant Edges of Delaunay Triangulations

A Delaunay triangulation is, in particular, a triangulation seeking to maximize the smallest angle
of the triangles, to avoid “slivers” or triangles with a very acute angle. This property can be used
to understand empirical results linking the number of edges with the number of vertices at various
redundancies which are not too high (typically 0 < r < 2). These results will be of interest for the
experimental section.

To give a very good approximation which works for any image or scatter plot with N points,
consider its Delaunay triangulation, which, by definition, attempts to maximize the smallest angle.
Then, we might get a configuration similar to Figure 1b. If we look at a triangle, the optimal

configuration is equilateral because otherwise an angle will be smaller than %, so one could expect

around 7?—73 = 6 neighbors for each vertex (a regular hexagon configuration). Assuming this is the
case for all the vertices, this results in an equilateral triangular tiling of the plane, and so the total
number of edges per node at redundancies r = 0, 1,2 are 6, 18, 36, respectively, so the total number
of edges of the graph is one half of it times N, since each edge links two vertices together. So for
r = 0,1,2, the number of edges are 3N,9N,18N. Because of the approximation, the higher the
redundancy, the less precise the formula, but the advantage is that it works for any image as long
as one uses Delaunay triangulation. This means that at » = 1, there are 3N nonredundant edges
and 6N redundant edges, so % of the edges are redundant, and the nonredundant ones comprise a
minority of % of the edges. When r = 2, there will be % redundant edges and % nonredundant ones.
In particular, there will be about % edges of length 1 and about % edges of length 2 (yielding the ratio
g of redundant edges in general). The formula for the number of edges of a Delaunay graph with N
nodes and redundancy r is well approximated by 2(r 4+ 1)(r + 2)N (obtained by approximating the
graph as an equilateral triangle tiling of the plane and counting the neighbors over the hexagonal
region around each point of size depending on r, and dividing by two to account for the fact that
each edge would be counted twice otherwise as they involve two distinct nodes; note that the factor
3(r+1)(r+2) is six times the triangular numbers ZZ:Mz and is readily seen by making a drawing,
an hexagon being essentially six times a triangle, omitting halves of the points on each diagonal for
each triangle to avoid counting them twice and thus preventing overlap, this changes ZZ?% to
ZZ}” i, which, forming a partition, can then be multiplied by 6 to get the desired result, of course
omitting the vertex in the center), where the variation with the square of r is consistent with the

14
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fact that it is essentially related to an area. However, the higher the redundancy r the less precise
the approximation becomes because the hexagonal configuration might break down when one zooms
out and border effects become more salient if N is not large enough. Usually, the formula has a
relative error of 0.1%,5% and 10% for r = 0, 1, 2, respectively, when N is around 10*. This is still
good enough since r > 2 will typically rarely be used in practice.

The takeaway is that typically, the number of edges of a redundant Delaunay triangulation
satisfies £ = O(r’N), with E ~ 2(r +1)(r+2)N. In particular, the redundant edges outnumber the
nonredundant ones. Note that graphs such that £ = O(N) are sometimes called “sparse”, because
the number of edges without repetition can theoretically grow up to O(N?).

3.3 Phase Unwrapping Using Minimum-Cost Flow (MCF)

The minimum-cost flow technique consists in interpreting the ¢ of Section 3.1 as flows on the edges
of a network dual to Delaunay and such that for each vertex, the supply (i.e. flow out minus flow
in) equals an integer associated to a residue from a corresponding Delaunay triangle. The objective
function is the same as the one in the previous section and the minimum-cost flow problem consists
in finding a flow which minimizes this function. The advantage of MCF over LP is that it is faster,
the downside is that MCF only applies to planar graphs and the d are necessarily antisymmetric.

This technique can be applied to any graph for which a 2-basis can be exhibited. According to
Mac Lane’s planarity criterion, this is equivalent to requiring that the graph be planar. In practice,
since when r > (0 the redundant Delaunay graph is almost always non-planar, we shall focus only
on the case r = 0. In this case (default Delaunay), the elementary triangles form a cycle basis
which is obviously a 2-basis when the triangulation is non-degenerate (by definition of a polygon
triangulation). Using Scipy’s implementation of Delaunay, this cycle basis remains a 2-basis even
when degeneracy occurs, as long as one uses option QJ (a slight joggling of the input points with a
reasonable probability density (e.g. locally uniform or normal) before triangulating ensures a planar
Delaunay triangulation almost surely).

Because of this property, each edge of the Delaunay triangulation is involved in exactly two
triangles or faces (possibly degenerate), except for the edges of the convex hull which are involved
in a single triangle. However, counting the exterior as a face (which in this setting is usually called
the Earth), every edge appears at the boundary of exactly two faces. Better yet, an edge endowed
with a direction appears in a single triangle counterclockwise (counting the exterior face called the
Earth when no such triangle exists and endowing degenerate triangles with the handedness provided
by Delaunay’s joggling option QJ which removes degeneracy almost surely). This means that each
directed edge corresponds to a triangle (or the Earth), and each triangle corresponds to three directed
edges (its edges with the counterclockwise direction).

Let us now define the dual network. Each elementary triangle corresponds to a vertex, including
the exterior face which counts as a vertex called the Earth. For a given triangle, each of its three
edges in the Delaunay triangulation appears in a single neighboring face. One simply connects the
nodes corresponding to the triangle and the neighboring face by two directed edges, one going outside
the triangle and one going inside it.

Instances of visual representations of triangulations along with their dual graphs are provided in
Figure 2.
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(a) Nlustration of the dual graph (solid lines) of a triangulation (dashed lines). The
double arrows, along with the line segments to the Earth, denote two arcs in opposite
directions. This figure was borrowed from article [23].

2

3

(b) Basic but more faithful illustration of a Delaunay triangulation (green vertices and
solid black line segments) along with its dual graph (blue vertices and solid red line
segments) with bidirectional edges (dashed) and a possible configuration of the 6% (red
arrows). Note that for each edge (4, j), only one of §; ; or d;; appears, so one has to
deduce the other by relying on the antisymmetric property §; ; = —4; ;.

Figure 2: Typical dual setting for implementing MCF. The Earth (outer face), despite being represented multiple times, is
actually a single node.

Now that the dual graph is defined, one simply notes that, using the notations of the previous

16



L1-NorRM REDUNDANT DELAUNAY PHASE UNWRAPPING AND GRADIENT CORRECTION

Algorithm 5: Unwraps data using MCF
1 function UnwrapMCF(Points, Phase)

Input Points: (x,y) coordinates of points € R?
Input Phase: Corresponding wrapped phases € [—m, )
Output Unwrapped_phase: Unwrapped phase up to a global constant
2 D < Delaunay (points) /* Triangles of the Delaunay triangulation */
3 G < Dual graph of the Delaunay triangulation
4 Adj < Adjacency matrix of D
5 Edges < Adj >0 /* Edges of the Delaunay graph */
6 vy S W(Py —P2), V(z,y) € Edges /* Wrapped gradients */
7 Supply + 0
8 for C'in D do
9 Compute residue Resg from integrating f; , over C counterclockwise
10 Supply < Supply U{Rg%
11 Resgarth <= — >_cep Rese
12 Supply < Supply U{fean }
13 Set appropriate capacities (usually + oco)
14 c+ (1,1,...,1) /* Set uniform objective or cost function */
15 d% < Solve minimum-cost flow problem over G, e.g. using OR-Tools
16 fleor «— f1 —2mh /* Corrected gradients */
17 Unwrapped_phase < Integrate f/Cor over any spanning tree, start from a constant, e.g. 0
18 return Unwrapped_phase

sections, we have for each triangle C'

Yoo SN, -a Res o
Yy — ey Cmy T oo
(z,y)eC (zy)eC
counterclockwise counterclockwise

Therefore it suffices to assign to each node an integer supply equal to the residue of the triangle
divided by 27 and for each directed edge (x,y) to define the flow going outside the corresponding
triangle as d; , and the flow going inside as ¢, ,. Indeed, in this case, it is trivial to check that for any
given flow, integrating the corrected gradient f°°* over the triangle yields the residue of the triangle
minus 27 times the supply of the corresponding dual node, which sum up to zero. In other words,
integrating f " over the cycle basis yields zero. Note that with this flow definition, Opy = —Oya
is automatically verified, so if the wrong, estimated gradient is antisymmetric, so is the corrected
gradient and it suffices that it sum up to zero over triangles for it to be a true gradient. Otherwise,
the method will not work, as the ‘corrected’ gradient will still leave nonzero residues on some loop
of size 2, so it will not be conservative, i.e. a true gradient. One ought not to forget to account
for the Earth node, or the face exterior to the convex hull of the graph. It is easy to show, either
using a graph-theoretical divergence theorem (no flow leaks outside the graph so the sum of the
divergences, i.e. supplies, is zero) or a graph-theoretical Stokes theorem, that its supply is equal to

Resgartn = — ) Rese for C running over all the Delaunay triangles.
If v is a vector comprising the 0%, then finding a flow is equivalent to solving
Av =0,

where A is a node-arc incidence matrix of the dual graph and b a vector with integer entries corre-
sponding to the residues. A node-arc incidence matrix of a directed graph G' with n nodes and m
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edges is an n X m matrix where each column corresponds to a directed edge and is full of zeros except
at the line index corresponding to the starting node which is 1 and at the line index corresponding
to the end node which is —1. The matrix A is thus totally unimodular, as one can use the row
partition Lemma 2 with I; = {All the rows} and I, = (). The minimum-cost flow problem consists
in exhibiting a vector v > 0 satisfying the above condition and minimizing

Cc-v.

So MCF is just a particular case of LP for which fast solvers exist. In particular, due to the
theorem invoked in the previous section, the solutions ¢ remain integers. In our case, we usually pick
c=(1,1,...,1) just like in Section 3.1. Then one can use an MCF solver such as the one provided by
OR-Tools to find the § and infer the corrected gradient f°* used to unwrap the data by integrating
over any spanning tree. It is easy to see that this definition of the ¢ along with this objective
function implies, for any edge (x,y), 5; y,=0o0rd, =0 (because otherwise we could decrease each
of the 5;'[71/ by one unit and get a new feasible flow with a cost reduced by two units). Therefore, we
recover implicitly the old definition of 6 :— 6" — §~ with 6T = max(d,0) and §~ = — min(J, 0).

The general theory of minimum-cost flow problems allows one to upper-bound the flows §* using
so-called capacities. However, in practice, most of the time, the capacities will be ignored and set
to infinity. Nevertheless, if a bound S is known in absolute value for the true gradients, then since
the wrapped gradients lie in [—, 7], the correction to be added to the estimated gradients in integer
units of 27 is bounded by L%J Therefore one can set uniform capacities on all edges, yielding
0<d* < |57

The pseudocode described in Algorithm 5 summarizes this section.

3.4 When the 0 Are Not Integer Multiples of 27: the Generic Method

It might arise that in some situations, we estimate the gradient of a function other than phases using
a regression associated with a model, such as the estimation of the gradients of the deformation
velocity and the residual topographic error in the PS technique [9]. In this case, the aforementioned
0 in the previous sections are not integer multiples of 27 anymore, i.e. the approximated gradient does
not match the actual gradient modulo 27 point-wise. In other words, the optimal § regarding LP
or MCF are not necessarily integers and the approximate gradient f’ doesn’t come from a wrapping
operator anymore. However, the LP method remains valid without changing anything other than
the approximate gradient f’ and the formula of the bound of the gradients which doesn’t make sense
anymore. The only exception concerns the factors involving 27, which are such that 27 can be set
to 1 to do away with unneeded complexity (though leaving the methods as is would still function).
The relationship between the observed gradient f' and the corrected gradient f°° is now given by

fo=fo = foy = 0oy = L5 (3)

The result is the gradient closest in L; norm to the approximate gradient, with real point-wise
differences d,,,, not necessarily integer multiples of 27.

When it comes to MCF, since OR-Tools supports only integers, the method cannot be used as is
and would return spurious results. However, since MCF was used in the case modulo 27 by storing
the integers such that § € 277, thereby approximating a true gradient by adding integer multiples
of 27, it should be possible to use the same reasoning by replacing 27 by a very small value € > 0.
To ensure the solutions ¢ remain integers, the gradients on each edge are divided by e and rounded
to the nearest integer as shown in Equation 4, where |-| denotes the rounding operation.

fy_fx: \‘%—‘ € = Ogy € — ;:Zr' (4)
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If € is small enough, the rounded-out part is relatively small and does not significantly affect the
end result. Of course, the smaller the gradients in absolute value, the smaller ¢ should be. Setting
€ exceptionally small leads to intensive calculations and long computation times, but setting it too
large can lead to imprecision, which can add up upon integration. A good trade-off for most intents
and purposes is to set € = 1073, but this could depend on the magnitudes of the gradients. One
should also exercise caution by setting extremely high capacities, such as 10° to be safe, because
“None” (i.e. boundless, infinite capacity) isn’t supported and a very small € can lead to very large
residues and flows (typically on the order of %)

Finally, note that only antisymmetric gradient estimates are supported here as well. This means
that we make the reasonable assumption that the estimated gradient from z to y is minus the
estimated gradient from y to x and that the rounding operator is antisymmetric, e.g. by rounding
up positive half-integers and down negative half-integers.

3.5 Instructive Elementary Examples

Before proceeding to the experiments, which were conducted on graphs containing several thousands
of points, it might be instructive for beginners to better understand the concepts and machinery
above using examples based on small graphs with at most a few dozen points. This section contains
interesting mathematical curiosities which are nonetheless either very well-known or problems so
simple that they can be solved by hand, but can shed some light for the inexperienced. The seasoned
reader might want to skip this section entirely.

3.5.1 Planar vs.
Non-Planar Graphs: Towards Another Characterization

The two most common classes of graphs are the complete graphs and the complete bipartite graphs.

To allow for intuitive proofs, one might cite Fary’s theorem 1 which states that a graph is planar
if and only if the edges can be drawn without crossings such that they form straight line segments.
Therefore, in the following, we shall henceforth only consider planar configurations where edges are
straight line segments.

Theorem 1 (Fary’s theorem [21]). A graph is planar if and only if it can be drawn in the plane such
that its edges do not cross and are straight line segments.

The complete graph with n vertices, denoted by K, is the graph containing n vertices and the
maximum number of edges, i.e. every pair of vertices is linked by an edge, so the number m of edges
is (g) One can show that K, is planar if and only if 0 < n < 4. The first few complete graphs are
shown in Figure 3 and the planarity of K,, for 0 < n < 4 is obvious.

An elementary proof that Ky is non-planar is the following: assuming only straight edges, one
first draws two vertices 1,2 at any two different positions in the 2D Euclidean plane. Then one
adds the third vertex 3 anywhere on the plane which does not lie on the line containing the first
two vertices 1,2, otherwise the graph contains edges which would cross each other. This creates a
non-degenerate triangle (1,2,3), i.e. a triangle with a non-empty interior. Drawing the fourth vertex
while avoiding an intersection with the triangle necessarily leads to a configuration where a triangle
is partitioned into three others (see Figure 4). But then, it becomes obvious any fifth vertex will
induce a crossing. Therefore, K5 is necessarily non-planar.

An obvious corollary is that K, is non-planar for n > 5, because it contains K3 as a subgraph.

The complete bipartite graph with vertices ny,ny, denoted by K,,, ,,, is the graph containing
ny + no vertices with two sets of vertices forming a partition, set s; containing n; vertices and set s
containing ny vertices. Each vertex of s; is linked to all the vertices of s, (and as a result, each vertex
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Figure 3: A list of complete graphs K, for 2 < n < 7. Planar graphs are drawn with green vertices while non-planar ones
are drawn with red vertices.

of sy is linked to all the vertices of s1). Its number of edges is thus nyny. The first few complete
bipartite graphs are shown in Figure 5.

It is clear that K 1, K2 and K 3 are planar from Figure 5. It is also clear that K, 5 and K3 are
planar despite the crossings in Figure 5 as one can move the bottom left vertex of the corresponding
graphs far to the right, leading to a planar graph configuration in both cases. Using the same
reasoning, one shows that K, and K, , are planar for any n € N.

However, K3 3 is non-planar. An elementary proof is the following: assuming straight edges, place
any two distinct vertices 1, 2 belonging to s;. Then place vertex 3 belonging to s,. It can lie anywhere
on the plane except on the line containing vertices 1 and 2, thereby forming triangle (1,2,3) and
yielding Figure 6. Place vertex 4 also belonging to s,. If it lies within the light-green region of the
topmost illustration of Figure 6, then this leads to two triangles (1,2,3) and (1,2, 4) (illustration on
the left in the middle), one containing the other, which then necessarily leads to an impossibility
while drawing the last vertex in s; (last row of illustrations). Otherwise, we get the middle right
illustration, and upon placing the fifth vertex in sy, we get a special case of the illustration of the
middle left, which was shown to lead to an impossibility. Therefore, K33 is non-planar.

An obvious corollary is that K, ,, is non-planar for ny,ny > 3, because it contains K33 as a
subgraph.

Now that the planarity of two of the most common classes of graphs has been characterized,
a mathematical curiosity is worth mentioning: in the two classes, the first two non-planar graphs
encountered were K5 and Ks33. It happens that they occur in a characterization of the planar
graphs: these two graphs constitute, in a way, an obstruction to planarity. They are sometimes
called “forbidden graphs”.

To introduce the theorem, one requires the definitions of graph isomorphisms, graph subdivisions
and graph homeomorphisms.

Definition 1 (Graph isomorphism). Two graphs G and H are said to be isomorphic if there exists
an edge-preserving permutation o of the vertices of G such that o(G) = H. Edge preservation means
edge (i,7) exists in G if and only if (0(i),0(j)) exists in H.
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Figure 4: The first figure shows the first three vertices and in green are the regions where the fourth vertex may be drawn.
The second figure shows an example of a drawing with four vertices, leading to the impossibility of drawing a fifth vertex (in
red are the regions which would induce a crossing with the larger triangle and in pink are the regions which would induce a
crossing inside the triangle).

Definition 2 (Graph subdivision). A subdivision of G is a graph H obtained from G by adding an
arbitrary number (possibly 0) of vertices iji,ija, ..., ijn,, to its edges (i,j) such that (i,j) is replaced
by edges (i,1j1), (ij1,152), - -, (iJn,;,J) and the new vertices ijy are not involved in any other edges
than these ones.

Definition 3 (Graph homeomorphism). Two graphs G and H are homeomorphic if there exist a
subdivision G' of G and a subdivision H' of H such that G' and H' are isomorphic.

The exact statement of the aforementioned planarity characterization theorem based on forbidden
subgraphs is the following:

Theorem 2 (Kuratowski’s theorem [16]). A finite graph is planar if and only if it does not contain
any subgraphs homeomorphic to K5 or Ks 3.

Corollary 1. A finite graph is non-planar if it contains either K5 or Ks3 as one of its subgraphs.

Caution: the converse of Corollary 1 is false because subgraphs homeomorphic to K5 or Ks s,
also called Kuratowski subgraphs, are not restricted to K5 or K3 3.

3.5.2 Gradient Correction on Elementary Examples

It can be insightful to present some very elementary gradient correction examples which can be
solved without a computer to better understand the machinery involved in the previous sections. As
before, only connected graphs are considered, since for disconnected graphs one can simply process
each connected component independently.

The first class of elementary graphs on which gradient correction is trivial might be worth men-
tioning for beginners not yet accustomed to the theory. It concerns connected graphs which are
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Figure 5: A list of complete bipartite graphs K,,, », for 1 < n; < 3 and n; < ny. Planar graphs are drawn with green
vertices while non-planar ones are drawn with red vertices. The graphs are drawn using a canonical form, so some graphs
can exhibit crossing edges despite their being planar.

acyclic, i.e. which contain no cycles (see Figure 8 for a few examples of cycles). These graphs are
trees (see Figure 7).

The theory of the previous sections still applies as is, and if the number of vertices is n then the
number of edges is m = n — 1 and as a sanity check, one notes that the formula still holds: the
cycle basis has cardinality m —n + 1 = 0, i.e. the space generated by cycles is the zero vector space,
as expected. This means its orthogonal, the gradient space, is the whole space. As a result, any
gradient estimates on its edges is a gradient and there is nothing to do. The solution is §* = 0 and
the gradient is the differences of the class of functions obtained by integrating on the tree (which is
the only spanning tree of itself), starting from any root node with an arbitrary constant.

The next class of elementary graphs on which gradient correction is the easiest are the graphs
containing a single cycle. If the graph contains n vertices, they are usually denoted by C,, (see
Figure 8).

A first interesting fact easy to compute by hand and to understand mathematically, although not
the central subject, is to use the orthogonal projection formula onto the space generated by cycles
which, in this case, has dimension 1. It has well-known analytical expression X (X7 X)™1X7T where
the rows of X7 correspond to the cycle basis. In this case, the cycle basis is simply the cycle itself, so
X7 is just a transposed vector corresponding to it. In this particular case, assuming our cycle is C,,,
we have X7 X = || X[|* = n which is a scalar and (X7 X)™! = L. Assuming our estimated gradient

is given by fT (f1,.-., fa), then the corrected gradient ﬁor can be obtained by subtracting to it
its orthogonal projection onto the cycle space:

foor = = X(XTX)'XTf

Using our previous analytical expression and derivation and assuming the edges are directed clockwise
or counterclockwise, one notes that this is equivalent to subtracting the mean of the components of
f componentwise. It is then trivial to check that the obtained gradient is indeed irrotational as a
sanity check. We also note that we derived from linear algebra the result usually obtained through
elementary calculus that the mean f of fi, ..., f, is the number minimizing Y7, (fi — f)? = || Feor| 2.
because orthogonal projections minimize the L2 distance between the input and the projected output.
In other words, we corrected the estimated gradient by finding by hand the only solution minimizing
the L, norm. In particular, one can note that the solution is unique, and it remains so for any graph
using the analytical formula for fcor.
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Figure 6: The topmost figure shows the first three vertices mentioned in the proof, and in green shades are the regions
where the fourth vertex belonging to so may be drawn. The second row shows two typical examples of a drawing with four
vertices (one for each shade), where shades of green indicate the possible positioning of the fifth vertex in sq, leading in all
cases to the impossibility of drawing the remaining sixth vertex in s; without inducing a crossing (last row, with two typical
examples of graphs with five vertices and in which drawing the last one in s; necessarily induces a crossing). Vertices of s;

are displayed in dark blue whereas those of sy are shown in light blue.

Figure 7: Examples of trees, on which gradient correction is trivial.
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Figure 8: Examples of cycles C), on which gradient correction is easy to understand for 3 < n < 8. The cases n = 1 and
n = 2 are not treated because self-loops C; make no sense in our framework, and cycles C5 are not involved because we
only consider antisymmetric gradient estimates.

This is interesting because the uniqueness of the solutions is not preserved when minimizing the
L1 norm instead of the L, norm, and contrary to the Ly case, there is no analytical formula. However,
in the case of a single cycle, the problem is easily solved by hand. Suppose we have the same vector
f as a gradient estimate and it yields residue (say, without loss of generality) Res > 0. Then it is
trivial to check that the solutions §* minimizing the L; norm is given by = = 0 and §* > 0 such
that Zedges 0" = Res. In particular, the solution is clearly not unique anymore.

3.5.3 Construction of a Fundamental Cycle Basis

® @ @ L ® @ L @ ® ®

@ @ @ L L @ @ ® ® o

@ @ @ L L L . . @ @

@ L @ L L L o o @ o

o @ @ L @ o o L o o
(a) Graph of a regular 5 x 5 grid. (b) Example of a spanning tree of graph (a)

Figure 9: Grid graph (left) along with one of its spanning trees (right).
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Figure 10: The 16 cycles forming the fundamental cycle basis associated to the spanning tree of Figure 9

This subsection is devoted to a graphical example of the construction of a fundamental cycle basis,
starting from an arbitrary spanning tree on the 5 x 5 grid, which is a very intuitive graph (see
Figures 9 and 10). Note that the 16 elementary squares obviously form a cycle basis, which are
the equivalent of the Delaunay simplices in the case of a (less intuitive) Delaunay triangulation,
so as a reality check, the basis sought has cardinality 16, which also matches the usual formula
m—n-+1=40—-25+1 = 16. Using a Delaunay triangulation instead of the grid would yield similar
results.

3.5.4 An Illustration of Inconsistent Estimates Leading to the Loss of Path-Independence

In this section, a simple example of how inconsistent estimates lead to the loss of the path-independence
property of gradients is given. Consider the graph of a square whose vertices are numbered from 1
to 4 counterclockwise. Assume fio = fo3 = f3x = 1 and fi4 = 2. This leads to an inconsistency,
because integrating following the spanning tree 1 — 2 — 3 — 4 starting from constant 0 yields values
0,1,2,3 for the vertices 1, 2, 3,4, respectively. However, choosing the spanning tree 1 — 4 — 3 — 2
yields values 0,0, 1,2 instead. A visualization is available in Figure 11, where the z-axis represents
the estimated original function starting from constant 0 at vertex 1. The blue graph corresponds to
integration on the first spanning tree and the red graph corresponds to integration on the second
spanning tree.
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(a) Graph of the underlying square along with from root vertex 1 and value 0. No global constant
its nonzero residue, leading to the loss of path- can be added or subtracted to make the two graphs
independence upon integration. overlap completely.

Figure 11: Square graph (left) along with two inconsistent integrations due to path-dependence (right).

4 Experiments

We conducted experiments both on artificially generated data and real data. The first experiments
were carried out on toy models such as a two-dimensional Gaussian to model e.g. a hill or several
Gaussians to simulate a mountainous area with passes, valleys and peaks. The advantage is that
the experiments are easy to generate and easier to understand due to the relative smoothness of the
simulated terrain. The second set of experiments tested the algorithms on a few arbitrary images
such as paintings. The point was to examine the behavior of the algorithms in complex cases where
many discontinuities arise, even if the data is not related to an elevation profile. The third set
of experiments was carried out on realistic InNSAR topographic phase simulation data containing
mountainous terrain such as Mount Zeil, Mount Sinai, etc. Details of the simulation can be found
in [7]. These first three sets of experiments were conducted without noise and the only sources of
error were the magnitudes of the gradients becoming greater than h as this characteristic length
was decreased (or equivalently, the magnitudes of the gradients becoming greater as the profile was
dilated by a homothety at a constant characteristic unit of length). The fourth set of experiments
involved simulated terrains with various levels and types of noise (Gaussian, impulsive, plane cuts,
atmospheric etc.). Then, edge cases are discussed, followed by a fifth set of experiments conducted
on interferograms and where temporal consistency was tested. The last set of experiments concerns
generic gradient correcting, tested essentially on a grayscale image of the Mona Lisa with various
noise levels added to its original gradient.

In order to have enough comparable data sets, one can note that modulating a phase profile
mod 27 is equivalent to modulating an elevation profile mod % Since the behavior of the algorithms
depends mainly on the magnitude of the gradients, it can be interesting to compare them on the same
terrain up to a contraction or a dilation. This is equivalent to simulating an elevation terrain once
and using a parameter h > 0 as a characteristic length instead of m to modulate mod 2h. By changing
h, one can monitor the L, error (formally defined as the difference between the unwrapped data and
the ground truth, minus the median of this difference, as we are working up to a constant, taken in
absolute value) as a function of h or as a function of the ratio of initial wrong gradient estimations
from Equation 1 of 1.2 (so, essentially the fraction € [0, 1] of the gradients whose magnitudes exceed
h, including the redundant edges if there are any), i.e. as the relative steepness of the terrain varies.

Ly Error :— ||Ground truth — Unwrapped signal — Median (Ground truth — Unwrapped signal)||;.

In the following, every experiment with no redundancy was carried out using MCF, unless specified
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otherwise (for e.g. a comparison like in Figure 28), although using LP instead should not make a
significant difference other than longer computation times. There could be some slight differences in
terms of results because the L; solution is not necessarily unique and the algorithms could converge
to distinct solutions, but the discrepancy between them is usually barely noticeable to the naked eye.

4.1 Toy Models
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40 20 40 - ’ 20
604 15 60 15
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(a) Most basic toy model: a simulated hill. (b) Toy model: a simulated mountainous area.

Figure 12: Simulated toy models.

Figure 12a is the first model on which the unwrapping algorithms were tested. The range of values
goes roughly from 0 to 30 and the characteristic lengths A which were used lie typically between 0
and 3. The larger the characteristic length, the smaller the wrong gradient estimation ratio and the
better the unwrapping. The results can be seen in Figures 13a for redundancies r € {0, 1,2}.

In particular, Figure 13a shows that while there is indeed an information gain at a given wrong
estimation ratio of the gradients going from r = 0 to » > 0 (but not from r = 1 to r = 2) as shown
by the lower L; error at fixed ratio (rightmost figure), the figure in the middle shows that at a given
characteristic length h, more gradient estimation errors are made with higher redundancy. The figure
on the left shows that the information gain shown on the rightmost figure is not enough to offset
this increase in errors (at given h, more L; error is made with higher redundancy, except when h is
so small that all the unwrappings have failed and comparison is not relevant).

Similar observations can be made when simulating a more elaborate terrain (see Figure 12b and
Figure 13b), although the information gain using redundancies r > 0 is smaller.

One notices in all cases a phase transition (i.e. sudden change of behavior) of the error depending
on parameter h or the wrong estimation ratio. This causes the curve to suddenly increase in a step-
like fashion with breakpoints. A visual representation of an example of a phase transition can be
seen in Figure 14, precisely by comparing the first and the third picture from the second row around
the two peaks in the center.

In the unwrapped figure with no redundancy, a “step” can be visualized where a small erroneously
unwrapped region (left, h = 1.505) ends up correctly unwrapped (right, h = 1.506). The change in
h is so slight that the ratio of errors in initial gradient estimates has not changed meanwhile in an
amount greater than 1072, This shows the abruptness of the unwrapping process. Besides, the figure
also shows for the same parameter i (but not the same errors in wrong estimations) the evolution of
the unwrapping process with redundancy 1, which is far behind the one with redundancy 0. In other
words, unwrapping with no redundancy is far more efficient in this case, and actually in most cases,
as more examples will confirm. For the record, the smaller the characteristic length h for a given
terrain, the steeper it is and the harder it is to unwrap, because gradients become larger in magnitude
relative to h. This is why the erroneously unwrapped region becomes correctly unwrapped when A
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(b) Experiment result for terrain of Figure 12b.

Figure 13: From left to right: L; error vs. half-modulus, percentage of wrong gradient estimations vs. half-modulus, L, error
vs. percentage of wrong gradient estimations; associated to the elevation profiles in Figure 12. Note the phase transition
occurring around h = 1.505 in subfigure b, left. Snapshots of the first two frames are shown in Figure 14 using steps of size
103 for h.

is increased from 1.505 to 1.506. However, the point is that, while in most cases this difficulty grows
continuously with decreasing h, this is not the case for the special value h = 1.505 at redundancy
zero. Indeed, increasing it from 1.505 to 1.506 fixes a whole region and corresponds to a jump in
the error, but this is not the case for » = 1, where the error grows continuously in a neighborhood
of 1.505, hence the absence of visible change between figures d and d' (indeed, Figure 13b on the
left shows that there is no phase transition or “jump” around h = 1.505 for » = 1). Also, one can
observe that there are many more incorrectly estimated gradients at » = 1 than at » = 0. This is
because redundant edges are not only longer and thus more prone to being large in magnitude, but
they also comprise the majority (two thirds) of the gradients. The exact numbers of edges are given
in the caption of Figure 14. The empirical facts about the number of redundant edges was covered
in SubSection 3.2.1.

Finally, an observation worthy to be made is that while the error exhibits a sudden transition
around a certain critical threshold on h, the percentage of wrongly estimated gradients is more or
less a continuously decreasing function of h, so that the critical threshold in A is equivalent to a
critical threshold in the ratio of incorrect gradient estimates. As a consequence, in Figure 13, the
leftmost plots look like almost mirror images of the rightmost plots with respect to the Y-axis. Of
course, the aforementioned decreasing function of A seen in the plots in the middle are dependent on
the redundancy, so we cannot draw the conclusion that hei(r = 0) < hqi(r = 1) = peie(r = 0) >
Perit(r = 1), and this is actually often false as evidenced by the rightmost plots.
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Figure 14: The four leftmost figures (a, b, ¢, d): h = 1.505, just before a transition; the four rightmost figures (e, f, g,
h): h = 1.506, past a transition, when r = 0. Note how a whole region around the two peaks in the middle of the image
was corrected using MCF (Figure (c) vs. Figure (g)). Meanwhile, the unwrapped signal when r = 1 is still far from the
ground truth (Figure (d) vs. Figure (h)). Note that this is called a transition because normally, while a smaller i makes the
unwrapping process easier, such a small difference usually does not change anything (i.e. the error is a continuous function
of h almost everywhere). These snapshots show a sizeable difference because it is in an isolated neighborhood of a special,
pivotal value of i showing up as the first jump or step in the error plot versus h in the previous Figure 13. For reference,
there are 29969 edges at » = 0 and 94580 at » = 1, which means about % of the edges are nonredundant and % of the
edges are redundant. In both cases (h = 1.505 and h = 1.506), the percentage of wrongly estimated gradients is 4.5% at
r =0 and 20.9% at r = 1 (actually the ratios are slightly different but not up to 1073). They are the same in the two
blocks because the change in h is so slight that the percentages have not been affected up to a precision of 1073, yet this
change was sufficient to entail a clearly noticeable correction when r = 0.

While it can be interesting to look at the gradient histograms instead of the percentage of wrongly
estimated gradients, as shown in Figure 15, these figures cannot predict a phase transition because
they are highly dependent on the image. They can go from concave to convex with a huge peak
around zero, and if we look at the gradients of a wrapped terrain like in Figures 15b for redundancy
0, the distribution or histogram might become multi-modal with small modes around +2h due to
the creation of discontinuities of 2h from the wrapping (“fringes”, going from h to —h or vice
versa). However, what matters always seems to be the percentage of wrongly estimated gradients
or gradients whose magnitudes exceed h in absolute value, so the information from a histogram is
essentially contained in a single number, making them rather inefficient.

A last remark has to be made, however, regarding the percentage of wrongly estimated gradients,
as it might readily be overlooked and yet is quite important. While it can be tempting to think that,
e.g. the 3% of wrong gradients are relatively uniformly distributed, this is almost never the case, and
is also the reason why we witness phase transitions. Indeed, it becomes obvious if one imagines a
2D gaussian profile which is stretched (e.g. by proxy by decreasing h). The first wrong gradients to
emerge will be distributed along the ellipse at the steepest points. In other words, the percentage of
wrongly estimated gradients is terrain-dependent and tend to border the steep, prominent features
of the terrain, and the enclosed regions might then be wrongly evaluated, leading to the staircase
appearance of the error curve versus parameter h. An example was just given in Figure 14 in which
an error is made around the largest structure of the figure (the two peaks in the middle). The only
case in which the percentage of wrong gradients might be uniformly distributed is when the terrain
is trivial or eclipsed by high-intensity noise which is uniformly distributed in space. In this case,
there are no particular shapes formed by the wrong gradients, leading to isolated errors and such
that there is no phase transition, i.e. the error curve responds continuously with A. This is the only
case where unwrapping does not suffer a phase transition. An example showcasing this will be given
in the subsequent section pertaining to noise, in particular in Figure 27.

In this case, for r = 0, the histogram height of the original image becomes significant around the
critical threshold, but this is not always the case.
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Figure 15: Histograms of the distributions of gradients sorted by magnitudes for Toy model b in Figure 12b, for the original
profile (top, Figure 15a), the wrapped profiles for h = 2 in the middle (Figures 15b, 15c), and for h = 1 at the bottom
(Figures 15d, 15e). By looking at Figure 13b on the left, note that, for r = 0, h = 1 corresponds to a large Ly error while
h = 2 corresponds to a small L error. Figures on the left (15b, 15d) correspond to the gradient of the wrapped image,
while those on the right (15c, 15e) correspond to the wrapped gradient which is actually used as input for unwrapping.
All histograms are plotted for the three redundancy levels 0,1,2. Obviously, the innermost blue histogram corresponds to
7 =0, the red one in the middle to » = 1 and the orange overarching one to 7 = 2. Note that this pattern comes from the
fact that the gradients of length r are counted in the histogram corresponding to redundancy r’ > r, so its height will be
higher at every magnitude.
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4.2 Paintings

In this subsection, a single painting was studied: that of Mona Lisa, see Figure 16. Using the same
methodology as that of the previous subsection, one obtains Figure 17. This time, no information
gain occurs (see the rightmost figure) as the error curve follows the same trend depending on the
wrong estimates ratio independently of r. However, more errors are made with higher redundancy
and this results in a worse unwrapping (see the leftmost figure). It seems like the more intricate the
terrain or figure to be unwrapped, the less information is gained through nonzero redundancy (the
rightmost figure shows that, at a fixed percentage of wrong gradients, adding more redundant edges
does not result in smaller errors, contrary to the toy models of the previous section). This is not
immediately intuitive, because one might think that adding edges while keeping the same percentage
of mistakes could help recover information. Unfortunately, this does not seem to be the case here
when there is no noise.

Figure 16: Painting of Mona Lisa. The image in grayscale ranges from 0 to 229 and, for reference, the gray levels on the
top right corner from Mona Lisa's dark hair to the lighter gray background go from about 10 to about 150. Most of the
pixels above 200 in grayscale intensity are located on Mona Lisa's face (forehead, cheeks and chin).
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Figure 17: From left to right: L; error vs. half-modulus, percentage of wrong gradient estimations vs. half-modulus, L;
error vs. percentage of wrong gradient estimations; associated to the elevation profile in Figure 16.

What follows is the gradient histograms of the Mona Lisa, using the same scheme as the previous
section.
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Figure 18: Histograms of the distributions of gradients sorted by magnitudes for the Mona Lisa painting in Figure 16, for
the original profile (top, Figure 18a), the wrapped profiles for o = 75 in the middle (Figures 18b, 18c), and for h = 10 at
the bottom (Figures 18d, 18e). By looking at Figure 17 on the left, note that, for = 0, h = 10 corresponds to a large
L, error while h = 75 corresponds to a smaller L; error. Figures on the left (18b, 18d) correspond to the gradient of the
wrapped image, while those on the right (18c, 18e) correspond to the wrapped gradient which is actually used as input
for unwrapping. All histograms are plotted for the three redundancy levels 0, 1,2. Obviously, the innermost blue histogram
corresponds to 7 = 0, the red one in the middle to » = 1 and the yellow overarching one to » = 2. Note that this pattern
comes from the fact that the gradients of length r are counted in the histogram corresponding to redundancy v’ > r, so its
height will be higher at every magnitude.

In this case, the height of the histogram of the original image around the transition threshold
for r = 0, close to h = 75, is small and serves as a counterexample to 15 where the histogram has
significant height close to the critical threshold. This shows that histograms cannot consistently
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predict a phase transition alone. The weight of the tails is more important, and corresponds roughly
to the percentage of wrong gradients depending on the definition of the cut-off for the tails, but even
this condensed data, while more efficient in capturing the essence of a phase transition, is not enough
as the critical threshold in percentage of wrongly estimated gradients depends on the image. Note
the presence of small but visible modes (bulges) to the left and to the right of the peak in Figure 18b
around £150 = 2h. Since this figure represents histograms of the gradients of the wrapped painting
for h = 75, these modes are the result of the creation of discontinuities of 2h (“fringes”) from the
wrapping.

4.3 Realistic Terrain Simulations
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Figure 19: Realistic terrain simulations.

In this subsection, attempts to unwrap realistic simulated terrain profiles such as Mount Zeil,
Mount Sinai and El Capitan, using the same methodology, have been made. The ground truth
elevation profiles can be seen in Figures 19a, 19b and 19c.

Each profile has its own characteristics, but contrary to basic toy models, the terrains are relatively
rough and discontinuous. However (see Figure 20), in all cases, the same scenario occurs: when errors
are small, very slight gains in information are made (on each plot triplet, when the wrong estimations
ratio is small enough and the error reasonable [a zoom-in might be necessary as it is very close to zero],
the rightmost plot exhibits error curves such that the curve with no redundancy is above the ones
with redundancy) but significantly more errors are also made at fixed parameter A (this is immediate
from the plot on the middle), leading to a worse unwrapping result overall (see the leftmost plot, the
error curve vs. parameter h explodes at larger values with redundancy than without, meaning that
no redundancy offers more flexibility and indicates that it is generally a better choice).

Note that while we always witness a critical threshold in h with a nontrivial terrain, the behavior
of the error vs. h is usually erratic and unpredictable when below it. However, in all cases, when A is
below the critical threshold, no matter the behavior, the error is always large and as a consequence
the unwrapping is unexploitable. This means that an unwrapping is either quite good or quite poor
with barely any intermediate cases (except when snapshots are taken right around the neighborhood
of the transition for a simple image like in Figure 14 but the neighborhood is very small). There
is an exception, however: when the terrain is trivial (e.g. flat) or when the noise intensity is large
compared to the terrain so that it can essentially be considered flat, there is no phase transition
and the error becomes a continuous function of h, as is evidenced by experiment 27 of the next
section. This is probably due to the fact that phase transitions appear when relatively large regions
become erroneously unwrapped. These regions are relevant to the topography, so when there is no
global structures from the topography or mostly uniformly-distributed noise, these do not exist and
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the errors made, while dependent on h in number, are essentially isolated among the vertices of the
graph, and so contribute continuously to the error made.

4
14><’IO
—r=
< —p =
= 12 r=1
§ r=2
2 10
>
o
(@]
£
o
=
S
)
- mi
8 10
Half modulus h
5
3.5><10
—r=0
% 3 | —r=1
i= f f r=
T 25
3
5 2
§ 15
=
S 1
@
705
0 ‘
0 10 20 30 40
Half modulus h
5
4x10
—r=0
£ —r=1
g r=2
- 3
[
>
o
(o))
2 )
£ 4
$ g
5 ‘
5 1 T
s
0
0 10 20 30

Half modulus h

0.15

Percentage of wrong estimations

(a) Experiment result for terrain of Figure 19a.
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Figure 20: From left to right: L; error vs. half-modulus, percentage of wrong gradient estimations vs. half-modulus, L;
error vs. percentage of wrong gradient estimations; associated to the elevation profiles in Figure 19

Regarding information gain due to the redundancy, note that a similar scenario as the one of
the previous section (see Figure 17, rightmost plot) occurs with the realistic terrain simulations,
contrary to what one could observe with mild toy models (rightmost plots of Figure 13), i.e. very
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little information is gained through redundancy, and sometimes it looks like redundancy can even
lead to information loss (see Figure 20, rightmost plot), but in reality this is just the critical threshold
which is smaller in intricate terrains than in simple toy models. Below the threshold (in a very small
neighborhood of zero for the percentage of wrong gradient estimations), information gains still occur
due to the use of redundancy, but it is less pronounced than in toy models.

To conclude for the last three subsections, when working with noiseless wrapped profiles, using
no redundancy is always a better choice than using redundancy. This comes from the fact that
redundancy is mainly helpful when dealing with regular noise (e.g. Gaussian or impulse-like), because
in this case repeating a message (that is, adding redundancy) may help convey additional information
that would otherwise be lost. However, when no such noise exists, the only source of errors comes from
gradients being larger than a certain characteristic length A in magnitude. When adding redundancy,
the redundant edges outnumber the nonredundant ones, and are also longer (distance-wise), and thus
more likely to be greater in magnitude (although not necessarily). Since the estimates come from
Equation 1, whenever the magnitude of a gradient exceeds h in absolute value, an error is made
in its estimate, so adding redundancy adds more errors than it helps recovering information. As a
consequence, the use of redundancy, while an excellent regular noise denoiser, is extremely sensitive
to wrapping or modular noise, and its use should be restricted to cases when (severe) regular noise
is involved on mild terrains. This is the subject of the next subsection.

4.4 Noisy Toy Models

In this subsection, the effect of various types of noise (Gaussian, impulsive, plane cuts, atmospheric)
and intensities have been studied.

The first case is the one involving centered Gaussian noise. Every point of the toy model in
Figure 12b had its value bumped up or down by a Gaussian random variable with a given standard
deviation o. We varied h, and for each h a new noise realization was made, leading to a “thick”
or rapidly oscillating curve instead of a smooth one due to noise variations. This process is more
useful than choosing a specific noise realization and varying h as this would show that redundancy
is deleterious in one noise realization, whereas the experiment in Figure 21 shows that the error is
always larger with redundancy than without in all noise realizations.

In particular, the graph 21 shows that it is harder to unwrap a noisier (and thus rougher) terrain
(the higher o, the higher the error magnitudes at a given redundancy level).

The second case involves impulse noise. We shall proceed in the same way as the first case, i.e.
a new noise realization for each new A on toy model 12b. There are two subcases: the first one
involves a percentage of points selected uniformly at random which received an impulse noise of 4+ a
fixed amplitude, where the amplitude is a nonnegative real number. An example of the experiment
is given in Figure 22 with amplitude 3 and several percentages. The second subcase involves impulse
noise which cuts the plane with a line of width 1 (i.e. impulse noise with the same sign was added to
a line of points in a rectangular array, cutting it into several disconnected components). An example
of this experiment is given in 23 with amplitude 3 and one or several cuts.

In both cases, the error grows again almost systematically with the redundancy. Essentially, the
same observation is made as the one in the first case.

The next case involves an atmospheric phase signal. In this simulation, a stack of 29 Sentinel-1
images acquired over Teramo in 2023, for orbit 44, covering about 874 km?, was used to determine
the positions of the PSs. A point is considered a PS when its amplitude dispersion index (relative
amplitude variation in time) is relatively small. The amplitude dispersion index is defined as

Ua

D, — —,
Ha
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L1 error as a function of h for various centered gaussian noise levels
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Figure 21: L, errors vs. parameter h for noisy toy model realizations (Gaussian noise)
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Figure 22: L; errors vs. parameter h for noisy toy model realizations (Impulse noise)

where 1, and o, are the mean and standard deviation of the amplitude over time (in this case, the
29 dates). We used D, < 0.25 [10] as a criterion to detect persistent scatterers (PSs). For the phase
simulation, a ramp of slope zj5; radians per pixel was used. We also added a fractal atmospheric
phase signal with a fractal surface of dimension 2.67, stretched to the interval [—8.74, 8.74]. The code
to generate this atmospheric simulation was adapted from the DORIS software [14]. The interval
for the atmospheric phase signal complies with the literature [15], which documents a maximal
variation of 2 radians per 100 km?. Centered gaussian phase noise was then added to each PS, with
a fixed standard deviation of 0.289 corresponding to the average D, multiplied by 1.5. This yields

an irregular grid. A regular sampling of the ramp was also made with roughly the same amount of
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Figure 23: Ly errors vs. parameter h for noisy toy model realizations (Plane cut noise)

points (around 57000) and the same noise distribution to compare the impact of the shapes of the
underlying Delaunay graph and of the distances between PSs. The same simulations were used for
each h and the results are given in Figures 24, 25 and 26. In particular, a zoom-in when errors are
small shows that redundancy helps reduce the error in all cases around h := m, which is the value
the simulation was initially created for. Also note that the regular grid yields smoother curves, with
lower values of L1 error as well. This result confirms that unwrapping on a regular grid is easier than
on an irregular grid.
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Figure 24: L, errors vs. parameter h for simulated atmospheric phase signal (left: full graph, right: zoom-in) sampled on
an irregular PS grid

A special case deserves to be mentioned: the case where Gaussian noise is added to a flat region.
This corresponds to the setting of the first case (Figure 21) but where the toy model 12b ground truth
is replaced with a flat profile, i.e. the zero function. The experiment in Figure 27 shows improvement
in accuracy when the redundancy is higher. In this experiment, a new noise realization is made for
each h. Note the absence of a critical threshold due to the absence of nontrivial topography. Like in
the toy models, the regular grid was used.
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Figure 25: L errors vs. parameter h for simulated atmospheric phase signal (left: full graph, right: zoom-in) sampled on a
regular grid
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Figure 26: L; errors vs. parameter h for simulated atmospheric phase signal (left: full graph, right: zoom-in), both regular
and irregular plots superimposed for comparison. A regular grid seems to yield a smoother result.
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Figure 27: Ly errors vs. parameter h for noisy flat model realizations (Gaussian)

A conclusion we can draw here is that for redundancy to be helpful, the noise levels should
be significant compared to the terrain, i.e. the terrain should be as mild as possible and the noise
intensity as high as possible. This can be well approximated by simulating severe noise on a mild
ramp or a flat region. One can also note that, albeit to a much lesser extent, the error and the
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critical threshold grow slightly with the noise intensity. This can be witnessed mainly in Figure 21
since the curves are plotted on the same graph, but this is also true for the other experiments (one
can compare with the noiseless curve). While it is less obvious in Figure 23, it remains true that
increasing the number of plane cuts increases the error and the critical threshold. This is reasonable
and simply means that noise makes the unwrapping process more difficult and so the algorithms are
more demanding (h must be larger for the unwrapping to be successful, or, equivalently, the terrain
must be milder the more noise there is).

4.5 Edge Cases

40 60 80 100 120 40 60 80 100 120 a0 60 80 100 120

Figure 28: From left to right: original image, unwrapped image with no redundancy, unwrapped image with redundancy 1.
In both cases, parameter h = 75 was chosen for wrapping, and no other sources of noise were added. With no redundancy,
the percentage of wrongly estimated gradients at the beginning, using Equation 1, is 4.9%; for r = 1 this percentage
becomes 6.3%.

Even if in the vast majority of cases, redundancy worsens the unwrapping process, edge cases do
exist where redundancy yields slightly better results with fine-tuned parameters. This is usually the
case when the unwrapping process without redundancy is close to being perfect. Slight variations
might cause the error curve with r > 0 to go under the one with r = 0 when the error is small. An
instance is given in Figure 28. However, these exceptional events are unpredictable without a ground
truth and thus do not imply that using redundancy helps when the error is relatively small. It is
actually quite rare and as a consequence, it is recommended to use no redundancy when no ground
truth is available, unless one is dealing with the last cases of the previous subsection, i.e. when the
noise intensity is high on top of a mild topography.

In the edge case of Figure 28, the leftmost picture is the ground truth, the middle image is the
unwrapped image with no redundancy and the rightmost image was reconstructed with redundancy
1, both using the same method (LP). However, this event is essentially due to luck and simply shows
that edge cases may exist, but not that they are usual (they are not, and by a large margin). In this
case, the original image was treated as a 128 x 128 array of integers lying in [0, 255].

4.6 Example of Interferogram Unwrapping

An example of the unwrapping of an interferogram where each point is a PS (i.e. a point whose
amplitude dispersion is small enough, D, < 0.25) is shown in Figure 29. An interferogram is a
measure of terrain deformation between two dates.
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Wrapped interferogram, Saint Lazare

Unwrapped interferogram, Saint Lazare
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Figure 29: Sentinel-1 interferogram of Saint Lazare, Paris, obtained from dates 2018-04-15 and 2018-04-21.
right: wrapped profile, unwrapped profile using MCF.
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Figure 30: Interferogram of Teramo obtained from dates 2023-01-06 and 2023-01-18. From left to right: wrapped profile,
unwrapped profile using MCF.

Experiments on Sentinel-1 interferograms of Teramo, Abruzzo were also conducted, using 29
images of consecutive dates, labelled chronologically from 0 to 28 in an attempt to reproduce the
unwrapping inconsistency experiment of article [5]. An example is shown in Figure 30.

From these images, 27 consecutive image triplets were drawn, of the form (a, b, ¢) = (i,i + 1,7 + 2)
for 0 <1 < 26. For each of these triplets, three wrapped interferograms were deduced: pg;, Ppe and
Pea using couples (a,b), (b,c¢) and (¢, a), respectively. The corresponding unwrapped profiles ©up, ©pe
and ., were computed using either MCF with zero redundancy or LP with redundancy 1 and 2.
Then temporal inconsistency coefficients were deduced, defined as the percentage of nonzero elements

of
Pab + Pbe + Pea — Mode (Soab + Pbe + Qpca> (5)

where a mode was subtracted to ensure the consistency of the unwrapping constants, averaged over
the 27 triplets. This metric can be construed as a measure of the quality of the unwrapping process
(but is actually an underestimation of the error rate because, ignoring the unlikely cases where errors
cancel each other out, subtracting a mode maximizes the number of zeros). Other candidates for
global constants could be the median, but it has the weakness of sometimes largely overestimating
the error rate. For instance, contrary to the mode, it is not necessarily a value of the array considered,
and if it is not a multiple of 27, then we would get an error rate of 100%. In practice, and because the
number of PSs is very large (tens of thousands) compared to the typical number of values assumed
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Table 1: Temporal inconsistency as a function of redundancy, PS-wise (top) and gradient-wise (bottom).

H Redundancy Mean temporal inconsistency Median temporal inconsistency Standard deviation H

0 0.0184 0.0048 0.0386
1 0.0154 0.0048 0.0198
2 0.0906 0.0307 0.1342

H Redundancy Mean temporal inconsistency Median temporal inconsistency Standard deviation H

0 0.0056 0.0052 0.0026
1 0.0060 0.0052 0.0028
2 0.0076 0.0062 0.0043

(a few integer multiples of 27), the median is very often equal to the mode. This was observed
to be true for all the triplets at all redundancy levels except for triplet number 15 at » = 2. Also
note that the metric given by Equation 5 is a multiple of 27. Indeed, since we are dealing with PS,
we are in full resolution and there is no phase closure [6], because phase closure only appears with
multilooking.

Another way to proceed is to compute the temporal consistency of the gradients V¢ corresponding
to the edges of the same spanning tree of the Delaunay graph obtained from the PSs. This permits
one to do away with the unknown constant and could lead to more accurate estimates. The temporal
inconsistency would simply be defined as the percentage of nonzero elements of

V(,Oab + V%c + vQpca

The results are shown in Table 1 and the detailed distributions are shown in Figure 34.

According to these metrics, and over the elevation profiles of Teramo, similar performances can
be observed when using MCF with redundancy 0 as opposed to LP with redundancy 1 (and exactly
the same when considering the median error using both methods), but the results are significantly
worse for LP with redundancy 2. While there seems to be a non-negligible relative improvement
using redundancy 1 instead of redundancy 0 in terms of mean error PS-wise, one ought to look at
the distribution of Figure 34 and note that the number of outliers is small for these redundancies,
so it makes sense to ignore them by prioritizing the median instead.Indeed, since the median metric
is robust to the outlier occurring at triplet 22 for redundancy 0, this metric shows no improvement
from redundancy 0 to 1. Also, one has to keep in mind that a gradient error can induce PS-wise
errors in a large region, so the PS-wise distribution is probably less accurate and more likely to
be affected by statistical anomalies, leading to outliers, so the gradient-wise metric might be more
relevant. However, while the degree to which these metrics are correlated with unwrapping quality
could be called into question, the associated results seem to match those associated with most of
the previous experiments, showing the deleterious effects of nonzero redundancy with a much more
straightforward approach (directly comparing with a ground truth by computing the L; error).

To understand better how temporal inconsistency helps pinpoint errors when unwrapping inter-
ferogram triplets without a ground truth at hand, a visual proof follows. The errors are clearly
visible in the (PS-wise) temporal inconsistency graph of Figure 33 as points with nonzero temporal
inconsistency.
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Figure 31: From left to right: wrapped interferograms between dates 2023-06-23/2023-07-05, 2023-07-05/2023-07-17 and
2023-07-17/2023-06-23.
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Figure 32: From left to right: unwrapped interferograms between dates 2023-06-23/2023-07-05, 2023-07-05/2023-07-17
and 2023-07-17/2023-06-23, with redundancy 2.
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Figure 33: Left: Temporal inconsistency in the interferogram triplet with the worst result PS-wise (50%). This means the
error rate is at least % Note that temporal inconsistency is necessarily an integer multiple of 27, and that while (PS-wise)
temporal inconsistency is supposed to be zero, this is up to an unknown constant, so it is not possible to be sure where the
errors lie. Having more than a single color simply shows there must be errors, with correctly unwrapped points belonging
to a single color. Right: corresponding gradient-wise temporal inconsistency (where each point corresponds to an edge
of the spanning tree and was placed in the middle of it). Since they are not up to a constant, a properly unwrapped
(error-free) gradient must show up as zero on the graph, otherwise, an unwrapping mistake has been made. Note that a
few gradient-wise errors can induce PS-wise errors in a large region.

The example of Figure 33 is a special case where significant errors were made (by far the worst
result of the unwrapping process for the 27 triplets with redundancy 0,1 and 2, with a temporal
inconsistency of approximately % PS-wise). It was deliberately cherry-picked to show the usefulness

of temporal inconsistency.
Figures 35 and 36 showcase a comparison of the worst (PS-wise) temporal inconsistency results

for each redundancy level 0, 1,2 across the 27 triplets.
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Figure 34: Temporal inconsistency for each of the 27 triplets, numbered chronologically, for each level of redundancy,
PS-wise (top) and gradient-wise (bottom).
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Figure 35: From left to right: worst temporal inconsistency results PS-wise (19%, 7%, 50%) across the 27 triplets for
redundancy levels 0, 1 and 2, respectively.
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Figure 36: From left to right: gradient-wise inconsistency corresponding to the scatter plots of Figure 35.

4.7 Generic Gradient Corrector

As was discussed briefly in SubSection 3.4, it might happen that one wishes to correct an approximate
gradient on a graph which is a gradient plus some global, moderate centered Gaussian noise and some
local, sparse but severe impulse noise. To do so, it was explained that the aforementioned LP method
simply works without congruency mod 27, and MCF can also be used as long as one exercises caution
due to the way OR-Tools handles flows which must be integers. The residues (integration of the noisy
gradient around each cycle of a cycle basis) just aren’t integer multiples of 27 anymore, and so the
0 aren’t so anymore either. However, the result is still the closest gradient in L; norm. The impulse
noise justifies the use of the L; norm which is less sensitive to outliers. If impulse noise were not
present, the L, metric would suffice and the theory would be much more elementary, as the closest
gradient in Ly norm is simply its orthogonal projection onto the space of gradients, which is the image
of matrix X7 if X is the node-arc incidence matrix of the graph. The projector has the well-known
analytical formula X7 (X X7)~! X though its computation might prove computationally costly.

In the following, the Delaunay triangulation of the regular grid of Mona Lisa was made to compute
its gradients, then noise was added to them, and an attempt at restoring the original one was made,
finding one of the closest gradients in L; norm to the noisy gradient. Then a discrete integration of
it was performed using a random spanning tree whose choice, as usual, does not matter.

The notable results can be found in Figure 37 for both MCF and LP, with various amounts of
redundancy and noise levels.

If one has a priori knowledge of the noise levels, using confidence weights (or costs) proportional to
the inverse square of the noise intensity aids considerably the denoising process. The square exponent
is used to exclude outliers bound to provide wrong information. It can be shown empirically that an
exponent of 2 works best in most situations. A table equivalent to Figure 37 using these weights is
shown in Figure 38.

Redundancy is much more efficient in this case because only regular noise is used (e.g. Gaussian or
impulse-like) and redundancy works better at denoising it because it repeats noisy signals, allowing
one to retrieve information, whereas when wrapping noise coexists, the gradients should be as small
as possible in magnitude to get a correct estimate, and redundancy has a tendency to add gradients
which are longer in distance (pixel-wise) and thus also larger in magnitude, thereby causing more
errors than corrections.
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80 120 80 100 120 120 120

Figure 37: Results for generic field reconstitution. Rows from top to bottom: original picture, reconstitution using MCF
(redundancy r = 0 and € = 10~2), reconstitution using LP with redundancies 7 = 0, r = 1 and r = 2, respectively. Columns
from left to right: low noise level (impulses of intensity =25 with probability 0.1 and centered Gaussian noise with o = 5)
moderate noise level (impulses of intensity +50 with probability 0.2 and centered Gaussian noise with ¢ = 10), high noise
level (impulses of intensity +100 with probability 0.25 and centered Gaussian noise with o = 20) and very high noise level
(impulses of intensity 100 with probability 0.25 and centered Gaussian noise with o = 50). For reference, the Mona Lisa
picture is a 128 x 128 array of integers ranging from 0 to 229.
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Figure 38: Results for generic field reconstitution, using a priori knowledge of noise levels. Rows from top to bottom: original
picture, reconstitution using MCF (redundancy » = 0 and € = 10*3), reconstitution using LP with redundancies r = 0,
r =1 and r = 2, respectively. Columns from left to right: low noise level (impulses of intensity +25 with probability 0.1
and centered Gaussian noise with o = 5) moderate noise level (impulses of intensity =50 with probability 0.2 and centered
Gaussian noise with o = 10), high noise level (impulses of intensity £100 with probability 0.25 and centered Gaussian noise
with o = 20) and very high noise level (impulses of intensity 100 with probability 0.25 and centered Gaussian noise with
o = 50). For reference, the Mona Lisa picture is a 128 x 128 array of integers ranging from 0 to 229.
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4.8 Comments
4.8.1 On Phase Unwrapping (with Congruency)

It was shown that the algorithms tend to respond abruptly to the wrong gradient estimation ratio
at arbitrary values depending on the terrain under consideration and the redundancy. The exhibited
error curves all include regions with small variations where the error magnitude is almost constant,
and sudden large, step-like variations. In toy models, the error curve tends to look like a curve
exhibiting a phase transition, namely a sudden change of behavior, at a given threshold whose value
depends on the terrain under scrutiny, below which order dominates (L; error close to zero) and
above which large errors occur. In the former region, the curve is almost constant and equal to
small variations above but close to zero, whereas in the latter, the curve looks like a power-law when
smoothed out, and zooming in, small steps can be observed, corresponding to mini-transitions and
giving it the appearance of a tiny staircase.

What is actually happening is an information-theoretic phase transition such that below a critical
threshold in wrong gradient estimates the profile is reconstructed without errors and above which
large regions of the plane delimited by discontinuities are erroneously bumped up (or down) by a
correction of 2h, leading to a curve looking like a staircase when zoomed in, and a power law when
zoomed out, past the critical threshold.

In paintings and real data, where relative order and continuity might be lost, the error curve
loses its well-behaved, almost analytical form but step-like discontinuities still occur in all cases. In
particular, there is still a critical threshold below which the reconstruction is almost perfect and above
which large errors occur. In most cases, the critical threshold lies between 0% and 5% of wrongly
estimated gradients. Ignoring edge cases where the gradients are equal to h, this ratio corresponds
to the percentage of gradients larger than h in absolute value. Usually, the more intricate the image
(presence of discontinuities or large variations/dynamic range of values, etc.), the smaller the critical
threshold. Since the ratio of wrong estimates tends to depend relatively smoothly on h, a similar
behavior and critical threshold can also be seen when plotting the error as a function of A (though
order dominates past this new threshold instead of before, since the ratio of wrong estimates is a
decreasing function of h).

In particular, unwrapping results were compared depending on the redundancy parameter r.
It was shown that while redundancy might help recover information at a given wrong estimation
rate (lower L; error), the additional gradient estimation errors it entails tend to largely offset this
recovery such that the net error made unwrapping a given terrain (i.e. at fixed h instead of fixed
wrong estimation ratio) seems to be significantly worse the higher the redundancy, except for cases
involving flat surfaces plus Gaussian noise or a ramp with atmospheric phase signal. Also, it seems
like the information recovered via the redundancy at a given wrong estimations ratio is only significant
for very small r and when the profile is straightforward (e.g. a toy model). It becomes insignificant
when a painting or real data is involved. There are still critical thresholds when dealing with nonzero
redundancy and plotting the error as a function of h, the critical point is often higher than the one
with no redundancy. Note that since the percentage of errors in gradient estimates is a continuously
decreasing function of h (corresponding to the plots in the middle of Figures 13, 17 and 20), it also
translates into a phase transition when plotting against the error against this percentage. Thus, the
plots on the right almost look like the mirror images of the plots on the left with respect to the Y
axis. However, since the decreasing functions are different for each redundancy level, this does not
simply invert the order of the critical thresholds for the various redundancies and one cannot draw
any predictions from this. While one would expect the critical thresholds for higher redundancies
to be smaller, the reverse usually happens because the decreasing function decreases more quickly
when the redundancy is zero.

The takeaway is that perfect unwrapping is only achievable when a reasonably small number of

47



ALEXANDRE ACHARD-DE LUSTRAC, ROLAND AKIKI, AXEL DAVY, JEAN-MICHEL MOREL

gradients are wrongly estimated. Typically, this means that no more than 5% (and preferably fewer
than 3%) of the gradients should be greater than h in absolute value (the more uneven the terrain,
the smaller the threshold). Also, it is almost always better not to use any redundancy at all, except
when one is dealing with atmospheric phase signal. Not only does the MCF' algorithm run much
faster than LP, but it is also more precise in the unwrapping process.

4.8.2 On Generic Gradient Correcting

Closely related to phase unwrapping, the more general method involving the determination of the
closest gradient in L, norm to an approximate, noisy gradient was studied. In this case, no “wrap-
ping” was used, only “regular” noise on the edges, usually normally distributed or impulse-like.
Contrary to phase unwrapping with enforced congruency, redundancy is much more helpful than
none and reduces noise very significantly even when noise levels are high, involving both global
centered Gaussian noise and severe but local and sparse impulse noise.

In the case when the ¢ are not constrained to be congruent, LP with redundancy » > 0 outperforms
MCF and LP with » = 0 by a wide margin, and increasing the redundancy further improves the image
or field recovery. In other words, the behavior of the recovery (which, in this case, is an integration
process rather than an unwrapping process) is opposite to that of conventional unwrapping trying to
invert a modulo operator: the more redundancy, the better in almost all cases, even when the noise
level is very high. This might be due to the fact that for fixed values of reasonably low probability
of an arc incurring severe impulse noise, adding a new gradient implies information gain very often,
whereas in the modular noise, adding a gradient longer than usual often implies adding an error due
to a large gradient (larger than half the modulus), resulting in information loss, thereby explaining
the apparently contradictory phenomena.

5 Conclusion

We have implemented Costantini’s algorithms to unwrap data with a minimum-cost flow method
with no redundancy and with linear programming with redundancy in a general setting (Delaunay
triangulation, possibly redundant). We have investigated the effects of redundancy on the unwrap-
ping process thoroughly and found a few (but not none) cases in which redundancy is helpful (e.g. a
relief map plus severe atmospheric phase signal). However, in most cases, the increase in redundancy
proves to be deleterious for the unwrapping process and the algorithm, requiring linear programming
instead of minimum-cost flow, is much slower. Therefore in most cases, it is reasonable to use no
redundancy at all unless one is dealing with a specific case of noise (either Gaussian noise on a flat
region or atmospheric phase signal on a gentle slope). It is also worth mentioning that in [5], the
author uses linear programming to unwrap a graph constructed using the Persistent Scatterer Pairs
(PSP) [4] technique. While the aforementioned graph was shown to yield better connections than
a simple Delaunay triangulation, it is not planar in the general case. Therefore, the use of linear
programming is necessary for this graph.

In the case of generic gradient correction in L; norm when trying to recover a field on a graph
with a noisy, approximate gradient involving global, low-intensity centered Gaussian noise and high-
intensity but sparse and local impulse noise, using redundancy aids significantly the recovery, and
using no redundancy at all usually yields lower-quality results. The behavior of the recovery with
the redundancy seems almost opposite to what happens in conventional unwrapping with enforced
congruency. This might be due to the fact that in regular noise, adding a gradient often conveys an
information gain whereas in the modular noise, adding a gradient, which links points farther away
from one another, usually results in a mistake and information loss. In the case of PS deformation
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velocity and residual topography estimation, the connection of spatially distant points through re-
dundancy might decrease the quality of the estimate due to the increase in atmospheric phase signal
and nonlinear deformation phenomena. In this case, the previous recommendation of avoiding large
redundancy might still be valid.

Allin all, it seems like redundancy helps denoising regular noise (Gaussian, impulse, atmospheric,
...) rather than modular, “wrapping” noise. This might be due to the fact that in regular noise, new
gradients often convey information due to the low probability of incurring a severe impulse noise,
whereas in modular noise, they often lead to information loss because points far from one another
lead to large gradients which, as we have seen, necessarily induce an error when the gradient is larger
than half the modulus.

6 Demo Interface

The default mode showcases phase unwrapping. The user can either upload an image or use one of
the several blobs available and wrap it modulo 2h where h > 0 is at the user’s discretion. The user can
choose MCF over LLP when the redundancy level is set to 0 by checking the corresponding checkbox,
otherwise LP is used. The user can also choose the “small basis” option to prompt the algorithm
to find a small cycle basis as described in Section 3.2, otherwise it uses a fundamental cycle basis.
The redundancy level is also left at the user’s discretion, however its maximum value cannot exceed
2 because otherwise the computing times would be forbiddingly long by IPOL’s standards even for
small images. An example of such a mode is shown in Figure 39, along with an execution result using
the Mona Lisa blob and running the algorithm with the default parameters in Figure 40. In the latter
figure, the “compare” checkbox was checked, the “input” chosen on the left and corresponding to the
wrapped initial input image, and the “output” on the right where an unwrapping attempt was made.
The quality of the unwrapping can only be measured against the initial ground truth provided by
the user which is not shown, and not the wrapped input which is shown only as a reference for the
user to witness the uncanny nature of the noise induced by the wrapping process and its intensity.
At the bottom, in the gray rectangular area, information about the time taken to process the image
is indicated, and at the very bottom left of the screen, an option to download the output in the form
of a .tif file is provided.

An integration mode is also available via a radio button. When this option is chosen, all the
previous options remain valid except for half-modulus A which is not used anymore as this button
implements the integration technique of 3.4 where instead of wrapping the image, a noise whose
intensity and nature at the user’s discretion is added to its gradients and a gradient-correcting
attempt is made in L; norm. From this attempt, a signal reconstruction is done up to a global
constant. The option to use a priori knowledge of the noise levels is also left to the user to aid the
denoising process in the form of an additional checkbox. An example of such a mode is shown in
Figure 41, along with an execution result using the Mona Lisa blob and running the algorithm with
the default parameters in Figure 42. In the latter figure, the “compare” checkbox was checked, the
“Input” chosen on the left and corresponding to the initial input image (since the noise is only added
to the gradients and not to the image directly, it is not possible to show a noisy input version like
in the unwrapping mode), and the “output” on the right where a gradient-correcting attempt was
made, followed by an integration. Contrary to the unwrapping mode, the quality of the correction
can be witnessed directly by comparing the input with the output. Just like in the unwrapping mode,
the information about the running time and an opportunity to download the output is provided at
the bottom.
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Figure 39: Demo interface in Unwrapping mode
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Figure 40: Default execution of phase unwrapping for Mona Lisa

A A Bound on Residues

This appendix is dedicated to the proof of the following statement:

Proposition 3. Integrating the wrapped gradient of a wrapped signal modulo 27 around a cycle C of
length n yields a residue bounded in absolute value satisfying
Res ¢ n=l ifn is odd

< 2 . .
2r | = | § — 1 if n is even.

Proof:
Suppose C'is a cycle of length n > 2 whose points are numbered in a certain direction along it
from 1 to n and that we have f;, :— W(®; — %;), where the @; are the phases ¢; wrapped into the
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interval [~ 7]. In particular, we saw that B; — %; € (—2m,27) so fi; :— ©; — @i + 27a; ; where
a;; € {0,£1} is the ambiguity. Therefore, we have

n—1 n—1
/ !/
Resg = f, 1 + E Jijpr =2m | an1 + E Qijit1
i=1 =1
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Now let € > 0 be small enough, and

P1L=T =€

O =P — T — €= —2¢,
Y3 =P+ 1T —€=1— 3¢,
Oy =3 — 1 — € = —e,
O = Qs+ 1T —€=m— De,

7 — ne if n is odd
—ne if n is even,

Pn = Pna — (—1)"1 — e = (nmod 2)m — ne = {

by starting from m — € and alternatively subtracting m + € or adding © — €. If € is small enough for
fixed n, then the @; all lie in [—7, 7), so this choice is feasible. Obviously, this yields

a12 = 1,
23 = 0,
az 4 = 1,
aq5 = 07

{ 0if n is odd
Ap—1n =

1 if n is even,

—1if n is even.

{ 0 if n is odd
an1 =

This feasible choice obviously yields

Resc { 2L if n is odd

27 5—1 if n is even.
It remains to show that this choice maximizes R;%.
To achieve this, consider the list
a:— a12; A23; ...Apn—1n; Qn1

as cyclic (i.e. every term has a left and a right neighbor, the left neighbor of the first term is the last
term and the right neighbor of the last term is the first one). With this is mind, it is easy to see that
no two consecutive 1s can occur, otherwise we would have

Pirl —Pit+Pi —Pit =Pi1 —pir < —2mi€{2,...,n—1}

or

Pl=—PntP2—P1=9P2—pp <27
which is a contradiction.

Therefore, the first n — 1 values of a, which are 1,0,1,0, ... maximize the sum of the first n — 1
possible values. When n is odd, the last value of a is 0. It cannot be equal to 1, for otherwise along
with its right neighbor in the cyclic list, i.e. with a2, they would constitute two consecutive 1s,

which has been shown not to be possible. Therefore when n is odd, this feasible choice maximizes
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R;%. While 0,1,0,1,... would also maximize the sum of the first n — 1 possible values (and would
be the only alternative), the same result holds as the last ambiguity would not be equal to 1 since
its left neighbor would also be equal to 1.

When n is even, the first n — 1 values of a still maximize the sum of the first n — 1 possible
values, but the last value of a is —1. It could never have been 1 because its right neighbor a;, in
the cyclic list is equal to 1. Therefore it remains to show that it is not possible to obtain the list
1,0,1,0,---,1,0 when n is even. Indeed, because of the “no two consecutive ones” rule, if the list
started with a 0, the n — 1 first values (0,1,0,...) would sum to at most one unit less than the
previous values (1,0, 1,...), so if it could be shown that the last ambiguity is 1 (its maximum value),
then the sum of all the ambiguities would not exceed the previous sum with the list starting with
1 and ending with the last value equal to 0. Therefore, it remains to show that the last value a,,
cannot be 0 when the first n — 1 values are 1,0,1,0,1,... to conclude.

Suppose this were the case. Then the cyclic list would endlessly alternate between 0 and 1
(contrary to the case when n is odd). This would imply

n

- - _ - _ o - . _ _ n
02Wh—@ﬂ+@%—¢ﬁ+@ﬂ—¢@+'“+W%—wmﬁﬁﬂ¢r—%ﬂ<§W—§W:0

which is a contradiction.

A similar reasoning could have been done, replacing the 1s with —1s, so the bound holds in
absolute value.

This is enough to conclude. [
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