
Published in Image Processing On Line on 2026–01–00.
Submitted on 2024–11–17, accepted on 2025–11–21.
ISSN 2105–1232© 2026 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2026.591

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Voronoi Diagrams for Page Segmentation

Marina Gardella1, Ignacio Ramirez2
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Abstract

Page segmentation is a key task in document processing, enabling effective extraction of struc-
tured information from diverse document types. This paper presents an in-depth analysis of the
method proposed by Kise et al., a bottom-up approach using area Voronoi diagrams to identify
spatial relationships between document parts. Our work provides a detailed description of the
method, emphasizing clarity, reproducibility, and transparency, particularly regarding aspects
not fully specified in the original paper. We highlight the impact of the parameter settings and
preprocessing steps on the method’s performance. Through extensive testing, we demonstrate
that the method can handle a wide range of layouts but exhibits notable sensitivity to specific
document characteristics, especially in handling complex elements like handwritten text, lists,
drop-caps, and tables.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Usage instructions are included in the README.md file of the archive.

Keywords: document layout analysis; Voronoi diagram

1 Introduction

Document layout analysis is crucial in the field of document processing, as it enables systems to
extract meaningful information from diverse types of documents. Page segmentation, in particular,
plays a pivotal role in this process by dividing a page into distinct regions, such as text blocks,
images, tables, and headers. Accurate segmentation is essential for enabling downstream tasks like
optical character recognition (OCR), content extraction, and layout reconstruction, ensuring that
different elements are appropriately interpreted.

Document layouts can vary significantly depending on the structure and formatting of the content,
making page segmentation a challenging task. Some documents exhibit non-overlapping layouts

1https://doi.org/10.5201/ipol.2026.591
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(a) Overlapping Layout (b) Manhattan Layout (c) Non-Manhattan Layout

Figure 1: Examples of documents with different layouts. The document in Figure 1a presents overlapping elements: a stamp
overlaps the text. The document in Figure 1b has a Manhattan layout: document parts have rectangular boundaries. In
contrast, the document in Figure 1c involves irregular boundaries, following a non-Manhattan layout.

where content blocks, such as text and images, are distinctly separated. More complex documents
may include overlapping regions where, for instance, text may flow over images or stamps may appear
over the text. Figure 1a shows an example of an overlapping layout. In terms of geometric structure,
the so-called Manhattan layouts follow rectangular divisions, which are common in standard forms or
structured documents, as shown in Figure 1b. Non-Manhattan layouts, often found in more visually
dynamic documents like magazines or presentations, involve irregular or slanted boundaries. Such a
layout is depicted in Figure 1c.

Various strategies have been developed to handle page segmentation effectively, each with its
own strengths and weaknesses. Bottom-up approaches [8, 9] start with small components, such as
connected pixels or characters, and progressively group them into larger structures like words, lines,
and paragraphs, based on spatial proximity or similarity. Conversely, top-down approaches [4, 6]
begin by dividing the page into large regions, which are then recursively split until the desired level
of granularity is achieved (lines, words, characters). Hybrid methods [13, 12] combine elements of
both strategies to leverage their respective advantages, offering more flexibility in handling diverse
layouts. Finally, there are holistic approaches that attempt to infer the whole structure of the
document in one shot. Recent methods based on deep learning [3, 2, 5, 14, 15] belong to this
category. These methods rely on learning their task from large amounts of labeled data, which has
become increasingly available [11, 16].

This work describes and provides an implementation of the method developed by Kise et al. [8]
that is as faithful as possible to the original. This method is a bottom-up approach which uses
the so called Area Voronoi Diagram of the connected components of the image as an auxiliary
data structure for determining the spatial relationship between such components. In describing
the method, we focus on clarity of presentation, unambiguous definitions, and total transparency
regarding the aspects that are either not fully described in the original paper, or which may have
a relevant influence on the performance of the method, such as thresholds, parameters, etc. As for
the implementation, we provide a clear, concise, and thoroughly documented implementation with a
rich command-line interface. The code can be run as a Python-only implementation, which is readily
portable.
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2 Voronoi Diagrams

Computational geometry is a branch of computer science that deals with the study and development
of algorithms for solving geometric problems. This field often emerges in response to challenges found
in image processing and pattern recognition, where the inherent geometry of visual data needs to be
analyzed, understood, and manipulated. Among the many tools of computational geometry, Voronoi
diagrams are particularly significant, as they arise as a natural partitioning of the space [1]. In this
section, we shall review the main concepts of Voronoi diagrams.

2.1 Point Voronoi Diagram

Let P = {p1, . . . , pn} ⊂ R2 be a set of points, which we shall refer to as generators. The Voronoi
region associated with pi is the set of points that are closer to pi than to any other point in P .
Formally, the Voronoi region associated with pi is given by

v(pi) = {p : d(p, pi) ≤ d(p, pj), for all j ̸= i} =
⋂
j ̸=i

{p : d(p, pi) ≤ d(p, pj)}, (1)

where d denotes the Euclidean or l2 distance. According to Equation (1), each Voronoi region is
an intersection of half-planes, that is, a convex polygon. The boundaries of such regions are line
segments, half-line segments, or infinite lines, which we shall refer to as Voronoi ridges2 and we shall
refer to their endpoints as Voronoi vertices. Finally, the Point Voronoi Diagram associated with the
set of generators P is the set of Voronoi regions associated with each point in P

V(P ) = {v(p1), . . . , v(pn)}. (2)

2.2 Area Voronoi Diagram

Point Voronoi diagrams define regions according to the distance to a set of isolated points. This idea
can be generalized to distances to a set of regions of connected points, which we call components.
Consider C = {c1, . . . , cn} a set of non-overlapping components in R2, and d(p, cr) the distance
between a point p ∈ R2 and a component cr, defined as the shortest Euclidean distance from p to
any point in cr. Analogous to the previous case, the Voronoi region associated with cr is the set of
points that are closer to cr than to any other component in C

v(cr) = {p such that d(p, cr) ≤ d(p, cl), for all l ̸= r}. (3)

Analogous to the Point Voronoi Diagram, the Area Voronoi Diagram associated with C is the set
of Voronoi regions associated with each component in C

V(C) = {v(c1), . . . , v(cn)}. (4)

2.3 Approximate Area Voronoi Diagram

Computing exact Area Voronoi diagrams can be computationally expensive. However, they can be
approximated using the Point Voronoi Diagram. Such a construction involves three steps:

1. For each component ci, sample points along its boundary Pci = {p
ci
1 , . . . , p

ci
nci
}.

2The original paper refers to these as Voronoi edges. We choose to keep the terminology used in the documentation
of SciPy, the library on which we rely for the computation of the Voronoi diagrams. This choice is intended to
facilitate the understanding of the code.
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2. Build the Point Voronoi Diagram using
⋃

ci∈C
Pci as generators.

3. Delete the Voronoi ridges generated from points that belong to the same component.

Note that, while the Voronoi regions in the Area Voronoi Diagram associated with points in R2

need not be polygons, those arising from this approximation shall be. Indeed, in this approximated
version, each ridge is a polygonal chain made up of Voronoi ridges that separate the same two
connected components.

In the following sections, we will refer to Voronoi diagrams as the collection of Voronoi ridges that
define the boundaries of the Voronoi regions, rather than as the sets of Voronoi regions themselves
as defined in Equation (2) or Equation (4). Note that these two are equivalent.

3 Method

The method proposed by Kise et al. [8] builds on the approximated Area Voronoi Diagram, described
in Section 2.3, using the connected components of the document image as generators. The authors
state that the ridges obtained using such a construction represent the candidates for the boundaries
of the document parts3. In this setting, page segmentation translates to selecting those Voronoi
ridges that are actually associated with those boundaries.

Equivalently, this problem can be stated as the deletion of superfluous ridges that lie between
elements in the same document part. To do so, the method relies on two characteristic features
of these ridges: i) the connected components separated by them are close and ii) their areas are
similar. The result of the above deletion process or pruning usually destroys the structure of the
Area Voronoi Diagram, leaving many isolated ridges and ridges that do not define closed boundaries.
Therefore, a final pruning step is applied in order to keep only those meaningful ridges that actually
define regions.

The following sections describe the algorithm as proposed by the authors. We highlight the details
that are left undefined or that are ambiguous in the original article and explicitly describe how we
handle these points in our implementation. A concise summary of the method pipeline is given in
Figure 2.

3.1 Binarization

The method [8] takes as input a binary image I whose connected components are assumed to be
the relevant objects for document segmentation, such as characters, symbols and graphics. It is not
specified how to deal with non-binary inputs, such as grayscale or RGB images.

Our implementation provides a preprocessing step to binarize such images. If the input is a color
image, we obtain a grayscale image IG by averaging the color channels. Then, IG is thresholded to
obtain a binary image. In our implementation, the threshold used at this step can be set manually
to an arbitrary value or it can be computed automatically using Otsu’s thresholding method [10].

We describe this method here for completeness. Let g be the empirical distribution of the pixels
in the grayscale input IG which range between 0 and M − 1; gi being the value for the i-th grayscale
level. Otsu’s threshold τ is the value that minimizes the intra-class variance of the two classes of
pixel intensities

τ = argmin
t

{∑
i≤τ

gi (i− µ0)
2 +

∑
j>τ

gi (j − µ1)
2

}
, where µ0 =

∑
i≤τ

gii and µ1 =
∑
j>τ

gjj. (5)

3The original paper refers to these as document components, but this is quite confusing as components are also
referred to as the connected components of the image. Instead, we shall refer to them as document parts hereafter.
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Input document image.

Pre-processing step to binarize

input images, as required by the

original algorithm.

Extraction of the borders of each

connected component of the input

image.

Points (in red) from the borders

are randomly sampled with a

probability ρ here set to 0.1.

Using the previously sampled

points, the point Voronoi diagram

is constructed.

The approximate area Voronoi

diagram is obtained by deleting

the ridges generated from points

in the same connected component.

Ridges are pruned based on two

features: the distance feature and

the area feature.

A final pruning step based on the

loop condition is applied to get

the output segmentation.

Binarization (Section 3.1)

Borders extraction (Section 3.2)

Borders subsampling (Section 3.3)

Point Voronoi Diagram (Section 3.4)

Area Voronoi Diagram (Section 3.5)

Prune by features (Section 3.6)

Loop condition (Section 3.7)

Figure 2: Summary of the main steps of the method’s pipeline together with their intermediate outputs.
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Assigning a different value to each of these two classes gives the desired binary output.

3.2 Labeling of Connected Components and Extraction of Border Points

For digital images, which are defined over a finite, discrete grid of coordinates Ω ⊂ N2, the set of
components C described in Section 2.2 can be fully specified by a labeling map: this is a pseudo-
image where a positive value 1 ≤ r = C(i, j) ≤ n indicates that the point at (i, j) ∈ Ω belongs to the
component cr ∈ C, and C(i, j) = 0 indicates that the corresponding point (i, j) does not belong to
a connected component. Using this map, a connected component cr can be recovered from the label
map as cr = {( i, j) ∈ Ω : C(i, j) = r}. As both definitions of C equivalent, we will use the label map
formalism hereafter.

For digital images, there is no unique definition of connectivity: the most common alternatives
are 4-connectivity and 8-connectivity. In the former case, two pixels are considered connected only
if they are either one above the other, or one next to the other. In the latter case, they are also
considered connected if they are adjacent in any diagonal direction.

The original work [8] uses a border following method [7] which produces an 8-connectivity label
map and gives the borders of the connected regions as a byproduct. While the implementation of
such a method is necessary to guarantee full reproducibility of the original method, it is outside the
scope of this paper, as it would imply the complete reproduction of another algorithm. Furthermore,
it is not a core part of the algorithm. Therefore, we opt to rely on off-the-shelf solutions: connected
components are extracted from the binary image using the morphology module in scikit-image,
and borders are obtained by eroding the binary image and subtracting the result from the original.
More details on the implementation are given in Section 5.

A simple denoising strategy is also applied at this point: small connected components having
borders of length smaller than N pixels are discarded. According to Kise et al. [8], the value of N
depends on the resolution of the document image. In their experiments, they vary this value between
4 and 13, without giving specific criteria for setting this parameter. The result of this step is the set
of all border points, which we shall refer to as B.

3.3 Borders Subsampling

As stated in Section 2.3, the Point Voronoi Diagram is constructed from a subset P of the border
points in B. As mentioned in Section 3.2, the original paper [8] uses a border tracking method to
extract border points. Based on this, they use this border parametrization to keep every Rth pixel,
with R being a parameter of the method.

Our choice is an independent random sampling where a border point from B is kept in P with
probability ρ and discarded otherwise. In principle, all the points can be used: this approach
would yield the exact Area Voronoi Diagram and, according to our experiments, often better results.
However, the computational cost of doing so might be too high. This parameter is actually important,
as it defines a quality/computational cost trade-off. The value of this parameter has a non-negligible
effect on the final result, which we shall explore in Section 6.

3.4 Point Voronoi Diagram

In this step, we construct the Point Voronoi Diagram V(P ) using the set of sampled border points
P as input, as described in Section 2.1. Two sampled border points (the generators) are associated
with each ridge. These are the two input points that are closest to the ridge and equidistant from
it by definition. Depending on whether the ridge is finite, half-finite or infinite it will also have two,
one or zero vertices associated with it. These vertices are important for later stages of the algorithm.

6



Voronoi Diagrams for Page Segmentation

3.5 Approximate Area Voronoi Diagram

The next step is to obtain the approximate Area Voronoi Diagram V(C) from the Point Voronoi
Diagram, as described in Section 2.3. This is done by removing the ridges in V(P ) generated by
points from the same connected component. In the resulting diagram, the elements are no longer
lines or segments but polygonal chains. This is an important difference compared with the original
Point Voronoi Diagram. Note that, given the discrete nature of images, this would still be true even
if we compute the exact Area Voronoi Diagram. However, this is no longer the case for the Area
Voronoi Diagram of a set of connected components in R2, where ridges may include smooth curves.

3.6 Pruning by Features

All ridges in the resulting Area Voronoi Diagram lie between two neighboring connected components.
As document parts are sets of connected components, the set of Voronoi ridges contains the actual
boundaries of the different parts. Here we shall introduce two features used by the authors to decide
if a ridge is superfluous or not: the distance between the connected components separated by it, and
the ratio between their areas.

Given a ridge r = {l1, . . . ln}, there exist two connected components ci and cj separated by it.
By construction, each line segment lk in r is generated by a pair of points pki and pkj lying on the
boundary of ci and cj respectively. The distance feature associated with the ridge r is defined as [8]

D(r) = min
k=1,...,n

d(pki , p
k
j ). (6)

Gaps between characters, words and text lines are narrower than those separating paragraphs or
columns. However, relying solely on the distance feature in order to discard superfluous ridges may
induce errors. Indeed, there are some cases where ridges separating different document parts are not
associated with a large value of D. This is where the area of the connected components comes into
play, as different document parts that lie close to each other usually have different areas.

This observation is captured by the area feature. Consider again a ridge r and the two connected
components ci and cj separated by it. The area feature associated with the ridge r is defined as [8]

A(r) =
max{a(ci), a(cj)}
min{a(ci), a(cj)}

. (7)

This pruning step aims at discarding ridges based on the above described features. A Voronoi
ridge r is deleted if it satisfies one of the following conditions

D(r) < T1, or (8)

D(r)

T2

+
A(r)

TA

< 1, (9)

where T1 and T2 are distance thresholds satisfying T1 < T2 and TA is an area threshold. The
intuition behind these criteria is that very close connected components, such as characters in the
same word, are part of the same document part (Equation (8)). Additionally, not-so-close connected
components that have similar areas, such as characters in different words or lines, are also part of
the same document part (Equation (9)).

These criteria require setting values for the thresholds. The area threshold TA is fixed by the
authors to 40 as they argue that this value approximately corresponds to the largest area ratio
between characters of the same font and size. On the other hand, the distance thresholds T1 and T2

are estimated from the image itself. To do so, the method relies on the histogram h of ridge distance
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features, discretized with step 1 and smoothed using an average filter over a symmetric window of
size 2×w+1, where w is an integer parameter. An example of such a histogram is given in Figure 3,
together with its corresponding smoothed version when setting w = 2. According to the paper [8],
the value of w depends on the resolution of the document image. In their experiments, they vary
this value between 0 and 2, without giving a specific criterion on how to set this parameter.

This histogram typically has three peaks indicating the most common spacing types: one for
distances between letters, another one for the distance between words and another for distances
between lines. According to the authors, the two largest ones, hv1 and hv2 , with v1 < v2 correspond
to the inter-character distance and to the inter-line distance, respectively. Indeed, the peak for word
spacing is generally smaller because fewer characters are located at the edges of words compared to
the number between lines or within words.

Figure 3: Raw distance features histogram (left) and its smoothed version (right) corresponding to the input document in
Figure 2. The smoothed version is obtained using an average filter over a symmetric window of size 5. In red, the largest
peaks found in the smoothed histogram.

As the distance between document parts is usually bigger than the inter-character distance, the
authors set T1 to v1. However, v2 is not an appropriate value for T2 as it only captures the maxima
and not the whole mode. Indeed, inter-line distances will concentrate around this value but might
exhibit bigger values. To tackle this issue, the authors add a margin to v2 and define T2 as

T2 = minT such that

{
T > v2
hT = thv2

(10)

where t is the margin parameter, set to 0.34 by the authors. As the histogram takes on discrete
values, the optimum value of T2 satisfying Equation (10) is found using linear interpolation.

3.7 Loop Condition

The diagram obtained once ridges are deleted based on their distance and area features needs further
processing. Indeed, some Voronoi ridges that survive the previously described pruning procedure
may not be part of the boundaries of a closed region. In order to discard those ridges, the authors
define the loop condition: a ridge is said to satisfy the said condition if each of its vertices is either
shared by another ridge or lies on the edge of the page. Ridges not satisfying the loop condition
are irrelevant for delimiting of document parts. Therefore, the final step of the method consists of
discarding them.

4 Demo

In this section, we provide a brief explanation of how to use the online demo.
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Input. The demo expects a single image as input, which may be binary, grayscale, or color. The
most common image formats are accepted, but as soon as the image is uploaded, the system will
convert it to an 8-bit-per-channel image. The maximum size allowed by the system is 3000 × 3000
pixels. If the input is larger than this, the demo will still work, but it will resize the image to meet
the size requirement. In this case, the demo displays a warning message:

Input #0 has been preprocessed {resized X%},

where X stands for the resizing factor needed to fulfill the size requirement.
It is important to mention that these restrictions are needed by the system to guarantee a rea-

sonable runtime but are not part of the source code. To avoid those, we advise the interested users
to download and run the provided code locally.

Parameters. By default, the demo shows five parameters:

� Binarization mode: Defines the binarization method used for non-binary input images, as
described in Section 3.1. The options are Otsu’s thresholding and Custom thresholding. If the
user selects the custom option, a threshold parameter is displayed for the user to choose a value
in the range 1-255.

� N : Defines the denoising strategy to be applied, according to Section 3.2. If set to zero, no
denoising is applied. If set to a value larger than zero, this will remove all blobs whose sizes
are smaller than the specified value. The original method [8] does not specify a value for this
parameter but, in their experiments, they vary it between 4 and 13. The user may choose a
value between 0 (no denoising) and 13, with 4 being the default one.

� ρ: Defines the borders subsampling parameter, as described in Section 3.3. By setting this
parameter, the user establishes the probability that a border point is kept. This parameter is
actually important, as it defines a quality/computational cost trade-off. This parameter ranges
from 0.01 to 1, with 0.1 as the default value.

� w: Defines a window of size 2×w+1 over which the histogram of distances between connected
components is smoothed by averaging during the pruning step (see Section 3.6). The paper [8]
does not clearly state a criterion for whether to smooth the distance features histogram. Fur-
thermore, the size of the smoothing window is not clearly defined. We allow the user to set
this parameter between 0 (no smoothing) and 4, with 2 as the default value.

� TA: Defines the area threshold in the pruning criteria defined by Equation (9) during the
pruning by features step (Section 3.6). The original method sets it to 40, arguing that this
value approximately corresponds to the largest area ratio between characters of the same font
and size. The demo allows the user to set this parameter to any value between 10 and 70,
allowing users to test other values that may be better suited to their use case.

Outputs. The outputs are displayed as a gallery of PNG images. The images shown in this gallery
follow the method’s pipeline, as in Figure 2. These are:

� Input: Input image, as submitted by the user.

� Binary input: Binary image obtained after the binarization step (Section 3.1).

� Blobs removed: Resulting image after small blobs (defined by parameter N) are removed. If
N is set to 0, this image is the same as the previous one.
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� Extracted borders: Image displaying the borders of the connected components extracted by
the method according to Section 3.2.

� Borders samples: Image displaying in red, on top of the borders, the points that have been sam-
pled to construct the Voronoi Diagram (see Section 3.3). For visualization purposes, sampled
points are slightly thickened.

� Point Voronoi Diagram: Point Voronoi Diagram computed using the sampled border points as
generators (see Section 3.4).

� Area Voronoi Diagram: Area Voronoi Diagram obtained once redundant ridges are pruned (see
Section 3.5).

� Distances histogram: Histogram of the ridge distance features (Equation (6)), discretized with
step 1, as described in Section 3.6.

� Smoothed distances histogram: Histogram after smoothing using an average filter over a sym-
metric window of size 2×w+1. Note that here w takes the value chosen by the user. If it is 0,
the original histogram will be displayed. The peaks found by the method are painted in red.

� Pruned by features: Diagram obtained once the Area Voronoi Diagram is pruned by the distance
and area features, according to Equation (8) and Equation (9). The pruned ridges are painted
in different colors according to the criterion that removed them: red for Equation (8), green
for Equation (9) and orange for both.

� Final segmentation: Final diagram once the loop condition is imposed, as described in Sec-
tion 3.7. This is the actual output of the method.

Log file. Besides the visual results displayed in the gallery, the method also outputs a log file
which provides the user with information about the execution. For a standard execution, these
messages include the number of connected components found in the image, the border points and
how many are sampled, the number of ridges and vertices of both the Point Voronoi Diagram and
the Area Voronoi Diagram, the numerical value of the peaks found in the histogram and the distance
thresholds computed from them, the number of pruned ridges and the criterion used to prune them,
finally, the number of ridges in the final diagram. Warning messages can also be displayed in the log
file. These indicate potential issues or risks that occurred during the execution but did not stop the
program from running. In those cases, we advise the user to check for unintended behavior.

However, if there were errors during the execution, not all of this information shall be provided.
In that case, the log file will show a message explaining the type of error encountered. Some com-
mon errors include having only a single connected component in the image, missing border points,
insufficient points to construct the Point Voronoi Diagram, or the absence of peaks in the distances
histogram.

5 Detailed Implementation

The whole algorithm is implemented in a single executable Python file voronoi.py; a few utilities
are provided separately in util.py. The program provides a command-line where the user can
optionally modify the default parameters of all stages and choose alternatives for those parts that
are not completely specified.
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Algorithm 1: Voronoi document layout analysis algorithm.

Input I: binary image.
Output V∗: resulting segmentation diagram.

1 C ← get connected components(I, N)
2 B ← get borders(C)
3 P ← sample border points(B, ρ)
4 V(P )← get point voronoi(P )
5 R← eval redundancy criterion(V(P ), C) # bool. list, one entry per ridge

6 V(C)← ridges ri in V(P ) such that Rri = 1
7 D,A← compute ridge features(V(C), C)
8 T1, T2 ← compute thresholds(D, t, w)
9 P← eval pruning criteria(V(C), D,A, T1, T2, TA) # bool. list, one entry per ridge

10 V ← ridges ri in V(C) such that Pri = 1

11 V∗ ← prune by loop condition(V)
12 return V∗

The complete method, which is described in Algorithm 1, is divided into functions that correspond
to each step defined in Section 3. We will now describe each of these using the actual function names
for easy cross-reference with the code.

I = get binary image(Iinput) Converts the submitted image Iinput into a binary image I. This
includes removing transparency (alpha channel) if present, converting color images to grayscale,
and thresholding the grayscale image in order to obtain a binary representation. Details on the
latter are provided in Section 3.1.

C = get connected components(I,N) Produces a label map C where C(i, j) = 0 indicates that
the pixel at position (i, j) in image I is background and C(i, j) = c > 0 means that the
corresponding pixel in I belongs to a connected component identified by the label c. Connected
components having borders of length smaller than N pixels are discarded.

B = get borders(C) Returns the bordering pixels of the connected components as a binary image.
This is obtained as the difference between the binarized input image and a binary erosion of it
using a 4-neighbors kernel.

P = sample border points(B, ρ) Samples border points randomly using a Z ∼ Bernoulli(ρ) pro-
cess where Z = 1 indicates to keep the point and 0 to discard it.

V = get point voronoi(P ) Takes the sampled border points as inputs and produces the initial
Point Voronoi Diagram. This is computed using SciPy.

R = eval redundancy criterion(V(P ), C) Returns a list of boolean values with a 1 in the i-th
position for those Point Voronoi ridges that should be kept, and 0 otherwise. This is described
in Algorithm 2. The approximate Area Voronoi Diagram V(C) is obtained once redundant
ridges are discarded.

Note that, at this step we do not merge the Point Voronoi ridges into Area Voronoi ridges.
Ridges are structurally kept as the original line segments. This detail is important in Algo-
rithm 3.
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D,A = compute ridge features(V(C), C) Computes the distance D(r) and area A(r) ratio fea-
tures of each ridge r in V(C). This is explained in Section 3.6. Algorithm 3 provides the
pseudocode for this function.

Note that, when computing Dr, the distances are not the actual distances between the compo-
nents but the distances between sampled points from their borders.

T1, T2 = compute thresholds(D, t, w) Computes the thresholds defined in Section 3.6. The pseu-
docode is provided in Algorithm 4.

P = eval pruning criteria(V(C), C,D,A, T1, T2, TA) Returns a list of boolean values P where Pi =
0 indicates that the i-th ridge, ri, does not satisfy Equation (8) and Equation (9) and thus
should be removed. The pseudocode for this function is given in Algorithm 5.

L = eval loop condition(V) Returns a boolean list L where a 0 in the i-th element indicates that
the corresponding ridge in V does not satisfy the loop condition. See Algorithm 6.

V∗ =prune by loop condition(V) This function takes V as input and prunes those elements that
do not satisfy the loop condition iteratively until no further pruning occurs, producing V∗. This
is described in Algorithm 7.

Algorithm 2: eval redundancy criterion.

Input V(P ): Point Voronoi Diagram
Input C: label map
Output R: pruning indicator vector.

1 for each ridge rk in V(P ) do
2 p1, p2 ← generator points of ridge rk
3 Rk ← boolean(C(p1) ̸= C(p2))

4 return R

Algorithm 3: compute ridge features.

Input V(C): Voronoi ridges (line segments)
Input C: label map
Output D: distance features
Output A: area ratio features

1 n← maxC # number of connected components

2 Di,j ← +∞, i, j = 1, . . . , n
3 Ai,j ← 0, i, j = 1, . . . , n # initial value does not matter

4 for each line segment l in V(C) do
5 p1, p2 ← generator points of line segment l
6 i, j ← C(p1), C(p2) # labels of the connected components of p1, p2 resp.

7 ci, cj ← connected components for labels i and j in C

8 Ai,j ← max(|ci|,|cj |)
min(|ci|,|cj |) # computes Equation (7)

9 Di,j ← min{Di,j, ∥p1 − p2∥2} # iteratively computes Equation (6)

10 return D,A
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Algorithm 4: compute thresholds.

Input D: distance features
Param w: smoothing window size parameter
Param t: margin parameter (set to 0.34)
Output T1, T2: thresholds

1 h̃← histogram of D

2 h← smoothed histogram, hi =
1

2w+1

∑w
k=−w h̃i+k # out-of-range values are repeated

# below, if only one peak is found, we set v1 = v2
3 v1, v2 ← index of the two largest peaks of h in ascending order
4 T1 ← v1
5 T ← v2
6 while hT > thv2 do
7 T ← T + 1

8 T2 ← T − 1 +
thv2−hT−1

hT−hT−1
# computes Equation (10) using linear interpolation

9 return T1, T2

Algorithm 5: eval pruning criteria.

Input V(C): Voronoi ridges (line segments)
Input C: label map
Input D: distance features
Input A: area ratio features
Param T1: Threshold 1
Param T2: Threshold 2
Param TA: area threshold
Output P: pruning indicator vector (boolean)

1 for each line segment lk in V(C) do
2 p1, p2 ← generator points of line segment lk
3 i, j ← C(p1), C(p2) # labels of the connected components of p1, p2 resp.

4 c1 = C(i1); c2 = C(i2) # components with labels i and j
5 Pk = Di,j ≥ T1 and Di,j/T2 + Ai,j/TA ≥ 1 # Pk = 1 means keep

6 return P

Algorithm 6: eval loop condition.

Input V(C): Voronoi ridges
Output L: Pruning indicator vector

1 for each line segment lk in V(C) do
2 v1, v2 ← vertices of lk

# the vertex value ∞ below means border vertex; Lk = 1 means keep

3 Lk ← v1 not only in li or v1 =∞ and v2 not only in li or v2 =∞
4 return L
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Algorithm 7: prune by loop condition.

Input V: Voronoi ridges
Output V∗: Pruned ridges

1 V∗ ← V

2 repeat
3 L← eval loop condition(V∗)
4 V∗ = {rk ∈ V∗ : Lk = 1, k = 1, . . . , |V∗|}
5 until L is all ones
6 return V∗

6 Experiments

6.1 Impact of the Parameters

Binarization mode. While Otsu’s thresholding method enables us to automate the binarization
procedure by minimizing intra-class intensity variance, custom thresholding might work better in
some cases, as shown in Figure 4. In this example, the background is completely white and the
foreground exhibits several grayscale intensities. Otsu’s threshold takes parts of the figures as back-
ground, causing an over-segmentation of the document that does not respect the figures’ borders.
On the other hand, a custom threshold set to a value close to 255 (250 in this example) correctly
identifies the pictures in the document as foreground. The final segmentation with this thresholding
approach correctly respects figures’ boundaries.

Binarized Final segmentation
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Figure 4: Comparison between Otsu’s thresholding and custom thresholding. When binarization is performed using Otsu’s
threshold, parts of the pictures in the document are taken as background, causing an incorrect segmentation of those parts.
A custom threshold set to 250 prevents such behavior and outputs correct region borders. The results shown here are
obtained by setting N = 4, w = 2, ρ = 0.4 and TA = 40.
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Blobs removal parameter N . The parameter N sets the size of blobs to be discarded as noise.
Its optimal value depends, of course, on the noise present in the document as well as on its resolution.
Kise et al. [8] vary this parameter across their experiments without setting a clear criterion for its
selection. While this parameter can be irrelevant for noiseless documents such as most modern digital
documents, it might be crucial to achieve a satisfactory result in noisy ones. Figure 5 shows such an
example. If no denoising is applied, the final segmentation presents several document parts that are
semantically meaningless to the document layout. This is because each blob is considered a generator
for the Area Voronoi Diagram construction. When setting N = 2, this phenomenon is mitigated,
but N = 2 is not enough to successfully remove all the noise. Setting N = 3 indeed produces the
desired output: blobs due to noise are correctly removed and the final segmentation actually reflects
the document layout. However, there is an undesirable side effect: characters (or part of them) may
also be removed. This becomes more evident when setting N = 13. In this case, entire parts of the
text are deleted and this causes an incorrect segmentation of the document parts.
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Figure 5: Comparison between different values for the blobs parameter N . When no denoising is applied (N = 0) or when
it is insufficient, the final segmentation generates document parts that are meaningless for the document layout. Setting
N = 3 produces the correct output. An excessive denoising (N = 13) can produce the loss of parts of the text and artifacts
in the final segmentation. The results shown here can be replicated by setting Otsu’s thresholding as binarization mode,
w = 2, ρ = 1 and TA = 40.

While tuning the parameter N can be effective in many cases, there exist degraded documents for
which no value yields a satisfactory result. Figure 6 illustrates such an edge case, where the document
suffers from two simultaneous issues: the presence of large blobs of noise, and the fragmentation
of characters due to insufficient ink or fading. In this scenario, setting N too low results in the
inclusion of noisy regions as valid layout elements, while increasing N inevitably removes legitimate
text components that appear small due to degradation. As a consequence, segmentation either fails
to discard noisy areas or disrupts the structure of textual elements. This example highlights the
limitations of blob-size filtering alone and suggests that more robust noise handling strategies may
be necessary for highly degraded documents.

15



Marina Gardella, Ignacio Ramirez

N = 0 N = 4 N = 8 N = 13
B
in
a
ri
ze
d
&

b
lo
b
s
re
m
ov
ed

F
in
a
l
se
gm

en
ta
ti
on

Figure 6: Limitations of blob-size filtering in a severely degraded document. The input document contains both large blobs
of noise and fragmented characters due to ink loss. Varying the parameter N demonstrates the trade-off: small values fail
to remove noisy regions, while larger values eliminate valid character fragments. No value of N yields a clean segmentation,
illustrating the need for more sophisticated denoising strategies in such cases. The results shown here can be replicated by
setting Otsu’s thresholding as binarization mode, w = 2, ρ = 0.1 and TA = 40.

Smoothing window size w. A key element in the success of the method [8] is the determination of
the thresholds T1 and T2, which are derived from the two largest peaks in the histogram of distances
between the components, as described in Section 3.6. The rationale behind the determination of T1

and T2 from the two largest peaks is that these peaks correspond to the centers of the two main
modes typically observed in these histograms: one for distances between letters, and another for
distances between lines.

However, the distance between two components, be it within a word or between different lines,
is actually a noisy estimator of the inter-character or inter-line distances. Indeed, as characters have
different shapes, this distance is affected by the particular characters involved in the measurement.
Features like tall letters (ascenders), letters that go below the line (descenders), and capital letters
especially affect the measurement of line spacing. Additionally, the distance between two components
is measured using the generator points rather than the component itself. Therefore, the subsampling
parameter ρ also adds noise to the histogram.

To reduce this noise and make the estimates clearer, the original method proposes smoothing
the histogram using an average filter over a symmetric window of size 2 × w + 1. The size of this
window, given by w, is left as a parameter of the method. In Figure 7 we illustrate the effect of this
smoothing. When no smoothing is applied (w = 0), the two highest peaks are very close and seem
to be part of the same noisy mode. Presumably, both represent the inter-character distance as, in
the final segmentation, words are separated into different cells. On the other hand, when smoothing
is applied (w = 2 or w = 4), these two peaks are merged into one and the second highest peak in
this case seems to accurately correspond to the inter-line distance. The final segmentation seems to
corroborate this, as paragraphs are correctly identified as belonging to the same region. It is worth
mentioning that the main difference between setting w = 2 and w = 4 is that while the peaks are
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Figure 7: Effect of the smoothing window size w on the distances histogram, the pruning by features step, and the final
segmentation. When no smoothing is applied (w = 0), the two largest peaks seem to correspond to the same noisy mode,
resulting in an erroneous segmentation. On the other hand, when smoothing is applied, these two peaks are merged into one
and the second highest peak in this case seems to correspond to the inter-line distance. In this case, the final segmentation
accurately represents the document layout. The results shown here can be replicated by setting the binarization threshold
to 200, N = 4, ρ = 0.3 and TA = 40.

still visible with both window sizes, their distance, relative heights, and sharpness change. Larger
values of w shall result in the merging of these two modes.

Subsampling parameter ρ. Subsampling was introduced in the original paper [8] in order to
reduce the computation time involved in computing the exact Area Voronoi Diagram. Our imple-
mentation keeps a random fraction ρ of the border pixels, which is set by default to ρ = 0.1. The
maximum value ρ = 1 keeps all border pixels, resulting in the exact Area Voronoi Diagram.

As shown in Figure 8, and confirmed in many experiments, for moderate to high resolution images
(e.g., above 150 DPI) the approximation obtained with the default value does not introduce artifacts
or errors in the resulting segmentation and reduces computational time. On the other hand, for
low resolution images (say, below 150 DPI), the default value may result in all border points of
an entire component being skipped (in the example, the letter “t”), often degrading the resulting
segmentation. At the same time, with modern computational resources, small images are quick to
process even with the maximum value ρ = 1. Therefore, our recommendation is to use ρ = 0.1 unless
the input image is small, in which case a larger value is recommended.
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Low resolution (734× 954 pixels) High resolution (1468× 1908 pixels)

ρ = 1 ρ = 0.1 ρ = 0.1

F
in
a
l
se
gm

en
ta
ti
on

S
am

p
li
n
g

Figure 8: Effect of subsampling parameter ρ. The first row shows the results obtained on the same page for different
resolutions and values of ρ. From left to right: low resolution with ρ = 1, low resolution with ρ = 0.1 and high resolution
with ρ = 0.1. There is an error in the segmentation in the second case (middle image), with the title of the book “Why I
Am Not A Christian” divided between “Not” and “A”. In the second row we show a zoom of that case where the source of
the error can be clearly attributed to the subsampling process: as the letter “t” was completely skipped, the space between
the “o” and the “A” surpasses the threshold and therefore it was considered a significant edge. This does not happen when
using the full border, as shown on the bottom right image.

Area threshold TA. The area threshold has a significant role in Equation (9). Still, setting it
is not straightforward: it should be permissive enough not to segment characters from the same
font and size, even when their areas differ substantially, while still being discriminative enough to
distinguish slight differences in the font size. Kise et al. fixed this threshold to 40 once and for all.
In our implementation, we allow users to modify this value according to their particular needs. In
Figure 9 we show an example of how modifying this threshold can impact the output of the method.
Indeed, when setting TA to 40, the subtitle “Takeoff and Climb” is not segmented separately from
the body text because it lies close to the text and the font size is not significantly larger. Lowering
the threshold to 30 results in a better segmentation as the method is better able to discriminate
characters having different font sizes.

6.2 Analysis of Sample Cases

In this section, we present a series of examples obtained using the analyzed method to illustrate its
performance in various scenarios. In each case, we aim to provide a comprehensive understanding
of the method’s performance and its strengths and weaknesses. All the examples shown here can be
replicated by setting Otsu’s thresholding as binarization mode, N = 4, w = 2 and ρ = 1.
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TA = 40 TA = 30

Figure 9: Comparison between different area thresholds (TA). When setting TA to 40, as done in the original article, the
subtitle “Takeoff and Climb” is not segmented separately as it lies close to the text and the font size is not significantly
larger. Setting an area threshold of 30 produces the correct segmentation, as the method becomes more discriminative.
The results shown here can be replicated by setting Otsu’s thresholding as binarization mode, N = 4, w = 2 and ρ = 1.

Simple layouts. Basic layout structures should represent the least challenging scenario for the
method. Still, even in these cases, some mistakes can happen. Figure 10 shows the segmentation
obtained for three examples. We observe that the method is able to correctly handle multiple
columns, as in the first and second document. Still, it is worth mentioning that, when paragraphs
are determined by indentation (first document), the method is not able to segment them. On the
other hand, when spacing between paragraphs is used (second document), paragraphs are segmented
separately. The second document contains a list where inter-line spacing is bigger than in the rest
of the document. Note that the method is not consistent in handling such a structure, as some
lines are merged together while others are not. This depends on the spacing between ascenders and
descenders in each line. Finally, the third example depicts a limitation of the method: text having
bigger inter-word spacing than the predominant spacing is likely to be over-segmented.

Figure 10: Results on simple layouts. The method is able to correctly handle multi-column text as well as paragraph
separation through spacing. However, document parts with different inter-line or inter-word spacing than in the main text
can cause errors in the segmentation.

Tables. Tables are versatile layout elements widely used in documents. Naturally, their design
can vary depending on the purpose and style of the document: the use of grid-lines, alignment and
spacing shall be different in each case. Figure 11 depicts the segmentation obtained in two examples.
Simple tables, such as the one in the first document, are correctly handled by the method as multi-
column text. However, complex tables, such as the one in the second example, are poorly handled.
In this case, grid-lines spanning over multiple columns cause text in different columns to be merged
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into a single cell. On the other hand, extra spacing in the table causes over-segmentation within a
single column.

Figure 11: Results on documents containing tables. Simple tables are correctly handled as multi-column text. More complex
ones generate an inconsistent segmentation: text in different columns is merged into a single cell while text in the same
column is sometimes segmented.

Light characters on dark backgrounds. The binarization step in the current implementation
assumes that background pixels are lighter than foreground ones. Therefore, whenever text is written
in lighter colors than the background, the segmentation shall be unsatisfactory. This situation is
depicted in Figure 12. In the first example, simply inverting the colors would be enough to avoid this
problem. However, the other two examples would require a local approach, as in those cases dark
and light fonts as well as background colors are intermixed throughout the document. We advise
users to handle these situations before submitting the image to the demo.

Figure 12: Results on documents with dark backgrounds and light-colored text. The binarization step in the current
implementation assumes that background pixels are lighter than foreground ones. Therefore, the segmentation results in
these examples are unsatisfactory.

Drop-caps. Drop-caps are large, decorative capital letters used at the beginning of a section or
paragraph in a document. In terms of semantics, drop-caps are part of the said section or paragraph.
However, their style does not match the rest of the body-text. Handling drop-caps is ambiguous and
defining whether they should be segmented separately or not depends on downstream applications.
Figure 13 presents the segmentation obtained for two examples having drop-caps. We observe that
the method is not consistent in its handling of these elements and that the final segmentation depends
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on each case. If drop-caps lie very close to the text and their area falls within the limits imposed by
Equation (9), they are likely to be merged with the text body, as in the first example. On the other
hand, when these criteria are not met, either because they are too large or lie too far from the text
(or a combination of both), drop-caps are segmented apart, as in the second example.

Figure 13: Results on documents with drop-caps. The segmentation depends on each particular case, mostly on the distance
between the drop-cap and the main text as well as the relative area with respect to the neighboring characters.

Non-Manhattan layouts. Contrary to most of the document layout analysis techniques in the
literature [9, 3, 2, 5, 14, 15], handling non-Manhattan layouts involving irregular boundaries is one
of the main strengths of the method. Figure 14 illustrates the method’s ability to segment such
layouts. In both examples, the irregular boundaries of the text surrounding the figures are correctly
managed. Still, note that in the second example, there is an over-segmentation of the figure in the
top-right of the document due to binarization artifacts.

Figure 14: Results on non-Manhattan documents. In both examples, the irregular boundaries of the text surrounding the
figures are correctly managed.

Overlapping layouts. The method is not designed to work on documents where overlapping
elements are present. This is, indeed, the most challenging scenario for document layout analysis.
When analyzing such documents, two situations can be encountered. First, the overlapping elements
can be taken as part of the background when binarizing the document; consequently, the resulting
segmentation is the same as if those elements did not exist. Alternatively, the overlapping elements
can be treated as a single element spanning the union of the intersecting parts. Figure 15 depicts
these two situations: in the first case, the watermark is considered as part of the background, while
in the second, the seal is merged into a single element together with the parts it intersects.
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Figure 15: Results on documents with overlapping elements. In the first case, the watermark is considered as part of the
background when binarizing the image. Therefore, the segmentation is the same as if it did not exist. In the second case,
the seal is considered as a single element together with the other parts it intersects.

Non-Latin scripts. Though the method is not explicitly designed for Latin scripts, there are some
implicit assumptions that call into question its ability to work on other scripts. It is assumed that
characters are, in most cases, a single connected component and that the most frequent spacings are
the inter-character spacing and the inter-line spacing. Furthermore, characters in the same font are
assumed to have a similar area. This is not the case in every language.

For instance, Arabic or Persian scripts are cursive, meaning that the characters are often con-
nected within a word, the spacing between words and characters is less uniform due to this cursive
nature, and the use of diacritics is more prevalent. Three examples of documents in these languages
are given in Figure 16. Here we observe that, even if the overall layout is correct, the method struggles
to manage diacritics correctly.

Another language that challenges these hypotheses is Korean. Korean characters typically consist
of complex, dense structures that are not necessarily connected. The fourth example in Figure 16
shows the result of the method on a Korean document. All in all, the result on this simple layout is
satisfactory despite the language’s complexities.

Figure 16: Results on documents written in different languages using other than Latin scripts. Note that, even if the results
are overall good, the method struggles with the use of diacritics in Arabic and Persian.

Handwritten text. Handwritten text presents several unique challenges for document layout anal-
ysis that make it significantly more complex than printed text. Unlike printed text, where spacing
between characters, words and lines is consistent, handwriting often features irregular spacing, mak-
ing it more difficult to determine semantically meaningful thresholds T1 and T2. Furthermore, indi-
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vidual writing styles such as the use of cursive or ligatures between words and the spacing between
punctuation marks and characters may affect the result. Figure 17 shows three examples of the
results obtained by the method on handwritten text. In the first two examples we observe that
some lines of text as well as some punctuation marks are segmented separately due to the mentioned
non-uniformity throughout the text. Note that this problem could also arise in fully justified (not
necessarily handwritten) text, as spacing is also non-uniform. On the other hand, the third exam-
ple shows a satisfactory segmentation, reinforcing the idea that the performance of the method on
handwritten documents depends on the specific writing style.

Figure 17: Results on handwritten documents. The performance depends on the particular writing style: while in the first
two cases the non-uniform spacing causes a wrong segmentation, in the third example the method achieves a satisfactory
result.

7 Conclusions

In this work, we presented an efficient and faithful implementation of the method proposed by
Kise et al. [8], rigorously testing it across a diverse set of samples. We showed that the method
has a reasonable performance in diverse scenarios and is able to handle some complex layouts. Still,
we found some inconsistencies in how elements such as lists, drop-caps, and tables are handled,
suggesting that the particular styling of each of these can affect the final result.

Furthermore, our experiments revealed a significant sensitivity of the method to parameter set-
tings, with even small adjustments leading to notable changes in the output. Additionally, the
method’s performance is also affected by the binarization process, highlighting the importance of
careful preprocessing even if this step is left unaddressed in the original article.

One key finding is that border sampling, which may seem like a minor detail, has a considerable
impact on the final results. This indicates that seemingly peripheral choices in the implementation
can alter the method’s behavior substantially. Overall, our analysis shows that there is no single
set of default parameters that consistently works well across all cases. Effective use of the method
requires a context-dependent tuning of parameters.
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