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Abstract

This work describes the symmetric method by Kervrann et al. for change detection. The
algorithm processes a pair of images using a hypothesis testing technique with an a contrario
approach. We perform a brief analysis of the results produced by the method and evaluate its
quality and limitations on the Sentinel-2 OSCD dataset.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article. Usage instructions are included in the README.txt file of the archive. The code is a
symmetric version of the method from Kervrann et al.
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1 Introduction

Change detection is a classic problem in computer vision and notably in spatial remote sensing,
where recurrent views of the same scene are taken by Earth observation satellites. This technique
has numerous applications in the observation and surveillance of urban development (e.g. [7], [8]),
agricultural land exploitation (e.g. [12], [10]), prediction of natural disasters (e.g. [2], [1]), etc. In this
context, change detection relies mainly on the comparison of images taken between two dates. In
recent years, supervised deep learning has achieved remarkable results on this problem, see Jiang et
al. [9], Cheng et al. [5], and Wu et al. [13]. In this study we are interested in the Kervrann et al.
approach [11] which is an unsupervised method of change detection which has the advantage of being
agnostic to the learning data, therefore independent of the satellite, and allowing an a priori control
of the number of false alarms. Although this type of algorithm does not have semantic power, it
should be considered as the first step in a processing chain that would employ, in a second stage,
specialized semantic classifiers trained on labelled data and focusing on the detected regions.
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ϕuv The dissimilarity measure between the patches of u and v.
ε The number of false alarms threshold.
b The square neighborhood around x.
B The square search window related to x.
S The number of scales.

Table 1: Table summarizing the parameters of the proposed method.

2 Algorithm Description

The algorithm under scrutiny [11] was originally designed for change detection in video surveillance.
In this context, its design was guided by the requirements for robustness to illumination changes
and camera vibration, and for false alarm control. The method is patch-based and multi-scale and
estimates the change between two gray-scale images u and v defined on the same discrete domain Ω,
where u is considered as the reference image. Pixel positions are denoted by x = (x1, x2)

⊤ ∈ Ω.

Detection framework. We introduce a dissimilarity measure ϕuv(x,y, s) between two windowed
patches Ws of u and v, respectively centered at x and y where s is a scale parameter. Its general
formulation is

ϕuv(x,y, s) =
∑
t∈Ws

g(u(x+ t), v(y + t)), (1)

where g : R → R
+ is a distance function and Ws a square window of side 2s + 1. Kervrann et

al. consider various possible functions g whose desired properties mainly address the robustness
to changes in illumination (see [11, eq. (2.2) to (2.8)]). To ensure some stability, a collaborative
neighborhood-wise decision is computed from a fusion rule. It consists in counting the total number
of positive decisions denoted by

Fs(x) =
∑

y∈B(x)

1(ϕuv(x,y, s) ≥ τu,s(x)), (2)

where 1(·) is the indicator function, B(x) is a square search window centered at x and τu,s is a
spatially-varying threshold defined by

τu,s(x) =max( max
y∈b(x)\{x}

ϕuu(x,y, s), θu,s),

θu,s =
1

|Ω|
∑
x∈Ω

min
y∈b(x)\{x}

ϕuu(x,y, s).
(3)

The formulation of (3) is justified as follows. On one hand, the set b(x) corresponds to a small
neighborhood (e.g. 3 × 3) around x taking into account the possible vibrations of the camera. The
values ϕuu(x,y, s) of the patches calculated in b(x) \ {x} are assumed to correspond to slightly
noisy values of that of the patch centered at x. The size of this neighborhood b(x) is linked to
the amplitude of the imager jitter. On the other hand, the term τu,s(x) takes the maximum of two
bounding values. The first one, max

y∈b(x)\{x}
ϕuu(x,y, s), corresponds to the maximum value calculated

in a neighborhood of x in the reference image u. Obviously, the fact that this value is exceeded by
ϕuv(x,y, s) can reflect a local change between images u and v. The second term, θu,s, is defined as
the average of the smallest distance calculated in the image domain Ω. It ensures that in the case
where both images u and v are in a low signal-to-noise ratio regime (e.g. low luminosity), the fact
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that ϕuv(x,y, s) exceeds the threshold τu,s(x) would indeed be due to a significant change, and not
to a large noise difference between u and v. Note that in the original paper, the window sizes b(x)
and B(x) are both 3. However, there is no particular relationship between them, as they address
two distinct tasks. Their values can therefore be chosen independently.

A second very restrictive binary decision function Ds is used. It requests the meaningful changes
being observable in all the neighborhood B(x) to be set to 1:

Ds(x, B) = 1(Fs(x) = |B(x)|). (4)

Statistical framework. One of the main goals proposed by Kervrann et al. is controlling the false
alarms rate. To this end, they formulate the change detection problem as hypothesis testing in a
statistical framework. The authors first analyze a theoretical formulation of the detection problem
assuming a parametric image model containing Gaussian additive noise. However, Kervrann et al.
conclude that this modeling would make it difficult to estimate the probability densities of changes
or to detecting insignificant changes [11, §2.3]. In addition, the authors experimentally observe in
several scenes that the empirical distributions of the values ϕuu and ϕuv are very similar. For these
reasons, Kervrann et al. establish an empirical statistical model with no prior on the distribution of
changes.

A null hypothesis H0 is introduced which states that patches from u and v centered at the same
location are similar. The authors first define the empirical probability that |B(x)| positive detections
occur under the H0 hypothesis as

Pfa(x, B, s) ≜ P(Fs(x) = |B(x)| |H0). (5)

It is proved that this probability of false alarms can be bounded, thanks to Markov’s inequality, as

Pfa(x, B, s) ≤ E(exp(Fs(x)− |B(x)|)). (6)

In order to make local detection more robust, the authors then apply a multiscale strategy to
the problem by considering the combination of S windows (Ws)1≤s≤S; the size of these windows vary
while B(x) remains constant. Although the nested neighborhoods Ws share pixels, Kervrann et al.
consider this overlap to be small, and define the variable

∑S
s=1Ds as a sum of weakly dependent

random variables following a Bernoulli distribution. This assumption allows them to apply Chen’s
theorem [4] stating that the sum of weakly dependent random variables can be approximated by a
Poisson distribution. From definitions (4) and (5) follows that E(Ds|H0) = Pfa(x, B, s). Hence the
Poisson law parameter can be expressed by

λ(x, B) =
S∑

s=1

Pfa(x, |B(x)|, s). (7)

The probability of false alarms of the multiscale approach is then defined by

PFA(x, S) ≜ P

(
S∑

s=1

Ds(x) > kD(x)|H0

)
= 1−

kD(x)∑
k=0

λk(x, B)
e−λ(x,B)

k!
, (8)

where “(kD(x) + 1) is the actual number of changes (positive decisions) detected for the S different
patch sizes at location x”[11, §4.2].

To take into account the long range information contained into the entire images, Kervrann et
al. extend the neighborhood V(x) up to Ω so that Pfa does not depend on x anymore. More, they
approximate Pfa by its majorant found in (6). This yields

Pfa(s) =
1

|Ω|
∑
x∈Ω

exp(Fs(x)− |B(x)|). (9)
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It follows that the tail of the Poisson distribution is estimated by

PFA(x, F ) = 1−
kD(x)∑
k=0

λk e
−λ

k!
, (10)

where

λ =
1

|Ω|

S∑
s=1

∑
x∈Ω

exp(Fs(x)− |B(x)|). (11)

In order to detect the meaningful changes and control the number of false alarms, the authors
adopt the Bonferroni strategy for multiple tests. The authors then define the uniform threshold

α = max

(
ε

|Ω|
, inf
x∈Ω

PFA(x, F )

)
, (12)

which they prove to imply that the expected number of false alarms in Ω is lower than the user-
defined term ε [11, Prop. 4.2]. The value ε is set to 1, meaning that about 1 pixel on average is
falsely detected. Finally, the multiscale change detection map Hε(u, v) : Ω→ {0, 1} is defined as

Hε(u, v)(x) = 1(PFA(x, F ) ≤ α). (13)

Symmetrization of the problem. As the threshold τu,s(x) introduced in (3) depends on the
image u, the change detection map between the images u and v is different if one permutes the
reference image in the pair (u, v). To make the problem invariant to such permutation, one replaces
the functions τu,s and ϕuv by their symmetrical versions

τs(x) = min(τu,s(x), τv,s(x)), (14)

φuv(x,y, s) = min(ϕuv(x,y, s), ϕvu(x,y, s)). (15)

3 Experiments

3.1 The Dissimilarity Measures

Among the dissimilarity measures suggested by Kervrann et al. , we have chosen three functions. We
selected the function

ϕρ
uv(x,y, s) =

∑
t∈Ws

((u(x+ t)− uρ(x))− (v(y + t)− vρ(y)))
2, (16)

where uρ = u ∗ Gρ and vρ = v ∗ Gρ are images convolved with a Gaussian kernel Gρ with standard
deviation ρ and which is less sensitive to local additive contrasts between the two input images, the
function

ϕmult
uv (x,y, s) =

∑
t∈Ws

(
u(x+ t)− uρ(x)

vρ(y)
v(y + t)

)2

, (17)

which is invariant to multiplicative illumination change, and the function

ϕcorr
uv (x,y, s) = 1−

∑
t∈Ws

u(x+ t)v(y + t)

(
∑

t∈Ws
u2(x+ t)×

∑
t∈Ws

v2(y + t))1/2
, (18)
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Algorithm 1: Kervrann et al. symmetric change detection algorithm.

Input u, v: The image pair.
Input S: The number of patch scales.
Input ϕuv: The dissimilarity measure between patches.
Input b: The square neighborhood around x.
Input B: The square search window related to x.
Input ε: The number of false alarms threshold.
Output Hε(u, v): The multiscale change detection map.

1 for s← 1, . . . , S do
2 Computation of the global thresholds

3 θu,s ←
1

|Ω|
∑

x∈Ω min
y∈b(x)\{x}

ϕuu(x,y, s)

4 θv,s ←
1

|Ω|
∑

x∈Ω min
y∈b(x)\{x}

ϕvv(x,y, s)

5 Computation of the decision thresholds
6 for x ∈ Ω do
7 τu,s(x)← max( max

y∈b(x)\{x}
ϕuu(x,y, s), θu,s)

8 τv,s(x)← max( max
y∈b(x)\{x}

ϕvv(x,y, s), θv,s)

9 τs(x)← min(τu,s(x), τv,s(x))

10 Computation of the number of positive decisions
11 for x ∈ Ω do
12 φuv(x,y, s)← min(ϕuv(x,y, s), ϕvu(x,y, s))
13 Fs(x)←

∑
y∈B(x)

1(φuv(x,y, s) ≥ τs(x))

14 Probability of positive detections under H0

15 Pfa(s)←
1

|Ω|
∑
x∈Ω

exp(Fs(x)− |B(x)|)

16 Computation of the Poisson law parameter

17 λ←
S∑

s=1

Pfa(s)

18 for x ∈ Ω do
19 Computation of the number of positive detections

20 kD(x)←
∑S

s=1 1(Fs(x) = |B(x)|)
21 Computation of the probability of false alarms

22 PFA(x, F )← 1−
∑kD(x)

k=0 λk e
−λ

k!
23 Computation of the uniform threshold to detect meaningful changes

24 α← max

(
ε

|Ω|
, inf
x∈Ω

PFA(x, F )

)
25 Computation of the change detection map
26 for x ∈ Ω do
27 Hε(u, v)(x)← 1(PFA(x, F ) ≤ α)

28 return Hε(u, v)
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which is a correlation measure mitigating magnitude scaling. In addition, we introduce the measure
denoted LIN2 by Delon et al. [6] which is invariant to affine contrast changes and different from the
normalized cross correlation in that it can distinguish flat patches from those containing edges

ϕLIN2

uv (x,y, s) = max(Us(x), Vs(y))

(
1−

∑
t∈Ws

u(x+ t)v(y + t)

Us(x)Vs(y)

)
(19)

where Us(x) ≜
∑

t∈Ws
u2(x+ t) and Vs(x) ≜

∑
t∈Ws

v2(y + t).

3.2 Quantitative and Qualitative Results

To carry out our experiments, we used the ONERA satellite image pair dataset (OSCD) [3] composed
of 24 Sentinel-2 orthorectified pairs from various locations. We measure performance in terms of
precision, recall and F-1 score, from the false positives, true positives, false negatives and true
negatives computed pixel-wise then summed over all the locations. To observe the influence of the
main parameters i.e. b ∈ [3 × 3, 5 × 5, 7 × 7], B ∈ [3 × 3, 5 × 5, 7 × 7], S ∈ [1, 3, 5, 7] and the four
dissimilarity measures on the performances, we combine them according to a Cartesian product so
that 144 configurations of parameters were computed per location. Results are shown in Table 2.
Although the parameter B has little influence, performance depends mainly on the number of scales
S and the type of measure. We observe that the LIN2 measure, which is invariant to affine contrast
changes, yields the best scores. By applying the optimal parameters of each category, i.e. B = 3× 3,
b = 3× 3, S = 7 and ϕLIN2

, one finds a recall of 31.72, a precision of 29.76 and a F1 score of 30.71.
Qualitative and quantitative results are shown in Figures 1, 2, 3 and 4. Their change maps were

estimated from the previously mentioned optimal set of parameters. We must emphasize that, as
the method is applied in an unsupervised manner, a proportion of the detections are considered false
alarms according to the ground truth, because they have no semantic relevance. Furthermore, some
ground truths (see, e.g., the Beirut harbor on the top right of Figure 1) are represented by dense
polygons while the real observable difference surfaces are more sparse and more similar to those of the
estimated surfaces. That is why we can affirm that, most of the time, large changes in cityscapes are
globally well detected. This observation is not true when dealing with the countryside (see Figure 4)
where the dissimilarity measures are not sufficiently invariant to attenuate the contrast changes due
to the vegetation. In the case of Saclay, and contrary to the preceding figures taken in dry or even
desert countries there is noticeable strong seasonal change in the aspect of objects due to shadows
in the cities and cultivation cycles. This points out to the necessity of comparing images taken at
similar seasons to reduce the number of false alarms (see Figure 5).

Param. B Recall Precision F1 score

3× 3 7.65 25.99 11.83
5× 5 7.58 25.83 11.72
7× 7 7.65 25.99 11.83

Param. b Recall Precision F1 score

3× 3 18.57 21.30 19.84
5× 5 7.46 39.91 12.57
7× 7 4.48 38.38 8.03

Param. S Recall Precision F1 score

1 4.90 18.61 7.76
3 5.27 23.07 8.58
5 7.94 28.67 12.44
7 12.45 30.45 17.67

Measure Recall Precision F1 score

ϕcorr 7.74 25.03 11.83

ϕLIN2
10.62 30.14 15.71

ϕmult 7.05 27.16 11.20
ϕρ 9.39 30.04 14.31

Table 2: Trends of the performances according to the main parameters of the algorithm.
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Image 1 Image 2

Ground truth Estimated map

Figure 1: The Beirut pair. The large change areas are globally well located.
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Image 1 Image 2

Ground truth Estimated map

Figure 2: The Cupertino pair. The large change areas are globally well located.
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Image 1 Image 2

Ground truth Estimated map

Figure 3: The Las Vegas pair. Most of the large change areas are globally well located. However as the dissimilarity metric
is quite invariant to illumination changes, the large areas where only a contrast change happens (see e.g. the black area at
the center of image 2) are under-estimated.

9



Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

Image 1 Image 2

Ground truth Estimated map

Figure 4: The Saclay pair. The change estimation totally fails in this pair: the large change areas are not located and a lot
of false alarms occur in the countryside areas.
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2018-08-11 2019-02-12

2019-08-11 2020-02-02

2018-08-11 vs. 2019-02-12 2018-08-11 vs. 2019-08-11

Figure 5: This example illustrates the importance of seasonality in image comparison. Although the detection maps
presented here are calculated from two different pairs, it is clear that the left map contains many false alarms in the form of
small isolated regions, while the right map does not. In the first case, these false alarms are due to the variation in building
shadows between February and August. In the second case, where both images were acquired in August, this phenomenon
is not observed.

11



Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

4 Conclusion

In this paper, we investigated the symmetrical version of the change detector of Kervrann et al. We
first theoretically described the algorithm by its equations, then by an explicit pseudo-code, and
finally evaluated it on satellite image pairs. As the method is highly interpretable, false alarms
as well as misses can be easily interpreted. Despite that the method was originally designed for
video surveillance, its application to remote sensing imagery shows interesting and valid results in
cityscapes. As the method is independent of the satellite technologies and of the spectral band, it
could be integrated to any unsupervised first stage observation pipeline.
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