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Abstract

Color image denoising is a critical task in computer vision, often hindered by the underuti-
lization of inter-channel correlations, resulting in color distortion and loss of fine details. We
propose QMSANet, a Quaternion Multi-Scale Attention Network, to address these challenges
by leveraging quaternion operations for color image denoising. Operating in the quaternion do-
main, QMSANet preserves channel dependencies across all processing stages, enhancing noise
suppression and detail retention. The network comprises three innovative modules: the Quater-
nion Multi-Scale Sparse Block (QMSB) for extracting multi-scale features with sparsity enforce-
ment, the Quaternion Stacked Enhancement Block (QSEB) for refining deep features through
inter-channel interactions, and the Lightweight Quaternion Attention Block (LQAB) for adap-
tively focusing on salient features with minimal computational overhead. These modules col-
lectively mitigate color deviation, detail loss, and edge artifacts. Extensive experiments on
benchmark datasets demonstrate that QMSANet outperforms state-of-the-art denoising models
in both synthetic and real-world noisy conditions. Typically, a blind denoiser exhibits di-
minished performance in comparison to a non-blind denoiser. However, QMASNet-B, a blind
denoiser constructed based on our model, also surpasses most of the comparison models. At
σ = 15, QMASNet and QMASNet-B achieve PSNR improvements of 0.53 dB and 0.50 dB,
respectively, compared to the state-of-the-art method on CBSD68. Visual comparisons further
highlight its ability to preserve structural details. QMSANet offers a balanced, efficient solution
for high-quality color image denoising, with significant potential for real-world applications.
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1 Introduction

Color image denoising is crucial in computer vision, as noise from electronic interference, sensor lim-
itations, and environmental factors degrades image quality and impacts subsequent vision tasks [1].
This degradation particularly affects critical applications including object detection [2], autonomous
navigation [3], and remote sensing [4]. Image denoising serves as a critical preprocessing step, aiming
to remove noise while preserving structural integrity and information content.

Image denoising methods are divided into two main categories: traditional methods and learning-
based methods. Traditional methods focus on mathematical models that leverage image properties
to differentiate between noise and true image features. Early advancements introduced algorithms
like Nonlocal Means (NLM) [5], which utilizes nonlocal self-similarity (NSS) to generate pointwise es-
timates that reduce noise while preserving structure [6]. The BM3D algorithm [7,8] further employed
block matching in the wavelet domain to effectively separate noise from image details, establishing
a benchmark for traditional methods [9]. However, these methods exhibit limitations in process-
ing high-dimensional color images and adapting to complex real-world noise patterns, motivating
subsequent methodological developments.

The emergence of sparse representation theory revolutionized denoising by focusing on precise
modeling of local image structures and efficient handling of high-dimensional data through sparse
representations. The K-SVD algorithm [10] and learning-based methods [11] effectively preserved
fine image details. Subsequent improvements in sparse coding models, through enhanced data fidelity
and regularization terms, further boosted denoising performance [12]. Some specific quaternion-based
models, such as pQSTV [13], QWNNM [14], and QNMF [15], leverage their unique mathematical
structures to process color images. These methods are effective in reducing the impact of color
artifacts and distortions in image recovery. However, traditional models, often reliant on handcrafted
mathematical frameworks, struggle in dynamic, real-world scenarios due to high computational costs
and limited adaptability to diverse noise patterns.

The rise of deep learning has revolutionized the field of image denoising [16–18], addressing many
limitations of traditional approaches by harnessing the powerful learning capabilities of Convolu-
tional Neural Networks (CNNs) and other architectures. DnCNN [19], for instance, reframes image
denoising as a noise prediction problem, with a focus on predicting residual images to separate
noise from the underlying image. ADNet [20] employs the attention mechanism to circumvent the
constraints of network depth, exerting a guiding influence on feature extraction. More advanced
approaches like MWDCNN [21] integrate signal processing techniques with dynamic convolutions
to optimize noise suppression across diverse image types and depths. Hierarchical networks such as
HNN [22] further enhance performance through multi-scale feature extraction that preserves both
global structures and local details. Transformers, a recent breakthrough in deep learning, offer com-
pelling solutions for complex noise conditions by effectively modeling long-range dependencies in
image data [23, 24]. Models such as CTNet [25], HWformer [26], and SwinIR [27] exemplify the
synergy between the local feature extraction strengths of CNNs and the global dependency mod-
eling capabilities of Transformers, leveraging both short- and long-range dependencies to enhance
image quality. While deep learning-based approaches have advanced denoising performance, most
models process RGB channels independently, failing to exploit inter-channel correlations inherent in
color images. This oversight leads to suboptimal noise suppression, color distortion, and loss of fine
details—issues exacerbated in complex real-world scenarios.

Building on real-valued CNN-based color image denoising models, we recognize the strong ca-
pabilities of end-to-end denoising networks. Recently, Quaternion Convolutional Neural Networks
(QCNNs) [28] have leveraged quaternions to enhance CNNs’ ability to capture correlations among
the three color channels. This advancement highlights the potential of quaternions beyond tradi-
tional image processing techniques [29, 30]. However, existing QCNN-based denoising methods [31]
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still face two key challenges: (1) Many incorporate traditional optimization frameworks, compli-
cating end-to-end learning and limiting adaptability; (2) Their architectures lack mechanisms to
effectively prioritize salient features or adapt to multi-scale noise patterns, leading to computational
inefficiency and incomplete detail preservation. Moreover, while attention mechanisms have demon-
strated effectiveness in real-valued networks, their integration into quaternion-based models remains
underexplored, particularly in balancing computational cost and performance.

To address these limitations, we propose QMSANet, a novel framework comprising three key
modules: Quaternion Multi-Scale Sparse Block (QMSB), Quaternion Stacked Enhancement Block
(QSEB), and Lightweight Quaternion Attention Block (LQAB). First, QMSANet preserves strong
inter-channel correlations—reflected in consistent intensity variations—throughout the denoising
pipeline, mitigating distortion. Second, it achieves accurate detail recovery through efficient multi-
scale information extraction and deep mining of complex features. By integrating quaternion oper-
ations with a lightweight attention mechanism, QMSANet improves noise suppression while main-
taining structural fidelity. Finally, our approach balances performance and computational efficiency,
providing a practical alternative to state-of-the-art methods that rely on iterative refinement or heavy
transformer architectures, which are unsuitable for real-time applications.

In summary, the primary contributions of our paper are as follows:

(i) Innovative QMSANet Framework: QMSANet leverages quaternion operations to enhance color
image denoising, preserving inter-channel correlations, reducing color distortion, and improving
detail retention across all processing stages.

(ii) Advanced Module Design: QMSB, QSEB, and LQAB modules enable multi-scale feature ex-
traction, deep feature enhancement, and efficient attention, significantly boosting noise sup-
pression and detail preservation in complex scenarios.

(iii) Superior denoising performance: We conducted extensive color image denoising experiments
on several widely used datasets, demonstrating that our algorithm surpasses state-of-the-art
methods. Specifically, our method achieves a 0.53 dB PSNR improvement on CBSD68 at σ=15,
while maintaining competitive computational efficiency.

The remainder of the paper is organized as follows: Section 2 reviews related denoising models and
provides background on the proposed methods. The proposed network architecture is then elaborated
in Section 3, while Section 4 provides theoretical and experimental analyses of QMSANet. We give
the experimental results in Section 5 and conclude the whole paper in Section 6.

2 RELATED WORK

2.1 Deep CNNs for Color Image

Despite significant advancements in CNNs for color images, further research and innovation remain
necessary. DnCNN [19] proposes an end-to-end image denoising network based on real-valued convo-
lutions, with its residual learning paradigm widely adopted in subsequent research. As CNN depth
increases, the guidance from shallower layers to deeper layers diminishes, often leading to inadequate
feature extraction. To address this, Tian et al. [20] proposed an attention mechanism to guide CNNs
in feature extraction, effectively mitigating depth-related limitations.

While most CNN models are generally effective, they often overlook differences between color
and grayscale images. Grayscale denoising typically targets single-channel features, whereas color
images consist of three correlated channels that share structural information. To utilize these inter-
channel correlations, Zhu et al. [28] introduced quaternion convolution in CNNs, forming the QCNN
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definition. This approach enables interactive computation across the three color channels, enhancing
inter-channel feature extraction and improving image restoration. However, to our knowledge, a
general and powerful quaternion deep learning network for color image denoising that consistently
preserves inter-channel correlations throughout the denoising process remains unexplored.

2.2 Quaternion Algebra and Convolution

The quaternion q̇ ∈ H is a kind of hypercomplex number proposed by Hamilton [32], which extends
the concept of complex numbers and can be represented as:

q̇ = a+ bi+ cj+ dk, (1)

where a, b, c, d are real numbers, i, j, k are imaginary units, a is usually considered to be the real
part, and b, c, d are the imaginary parts and satisfy the following relation:

i2 = j2 = k2 = ijk = −1, ij = k, ji = −k,

jk = i,kj = −i,ki = j, ik = −j.
(2)

Quaternion matrices represent color images, enabling interaction among the three channels through
quaternion operations. This effectively leverages the strong correlations among the channel informa-
tion, thereby enhancing image restoration results. Let the input color image be represented by the
quaternion matrix Ẋ ∈ HM×N

Ẋ = X0 +Xri+Xgj+Xbk, (3)

where Xa ∈ RM×N(a = 0, r,g,b). When a quaternion matrix represents a color image, the real part
X0 of the quaternion matrix is set to zero.

The convolution kernel Ẇ ∈ HM×N can be expressed in the form of a quaternion matrix:

Ẇ = W0 +Wri+Wgj+Wbk, (4)

where Wt ∈ RM×N(t = 0, r,g,b).
Quaternion convolution operator ⊛̇ is defined by

Ḟ = Ẇ⊛̇Ẋ,

= (W0 ⊛X0 −Wr ⊛Xr −Wg ⊛Xg −Wb ⊛Xb)

+ (W0 ⊛Xr +Wr ⊛X0 +Wg ⊛Xb −Wb ⊛Xg)i

+ (W0 ⊛Xg −Wr ⊛Xb +Wg ⊛X0 +Wb ⊛Xr)j

+ (W0 ⊛Xb +Wr ⊛Xg −Wg ⊛Xr +Wb ⊛X0)k,

(5)

where ⊛ is the real-valued convolution operator, Ḟ denotes the output of quaternion convolution,
i.e., quaternion feature map [28, 29, 33]. Different from the real-valued convolution, the quaternion
convolution is the convolution operation ⊛̇ between each component of Ẋ and Ẇ with each other.
Quaternion convolution is a transformative process that involves rotating and scaling to identify the
optimal representation of a pixel within a limited color space of a color image [34]. It perfectly
describes the relationship between different channels of the color image.

Most existing QCNN-based deep learning models for color image denoising still demonstrate
limited performance. In contrast, we propose a powerful quaternion-domain denoising network ar-
chitecture that shows potential to surpass conventional real-valued approaches.
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Figure 1: Network architecture of the proposed QMSANet, is composed of five parts: a Quaternion
Encoding Block (QE), a Quaternion-based Stacked Enhanced Block (QMSB), a Quaternion-based
Stacked Enhanced Block (QSEB), a Lightweight Quaternion Attention Block (LQAB), and a Recon-
struction Block (RB).

2.3 SimAM Attention

Identifying key image features is crucial for training an effective image denoising model. Traditional
CNNs assign equal weight to all image regions, but attention mechanisms allow the model to focus
on important areas, reducing the computational load from irrelevant information and enhancing key
feature extraction [35]. A Simple, Parameter-Free Attention Module (SimAM) [36] is an attention
mechanism that can be utilized in the domain of computer vision, with a foundation in neuroscientific
theories [37]. Unlike many existing attentions [38–40], which are complex and typically focus on either
channel or spatial dimensions, SimAM attention considers both spatial and channel dimensions,
providing a simpler architecture.

Based on neuroscience theory, the most informative neurons are those that exhibit firing patterns
different from their neighbors, and active neurons can inhibit the activity of surrounding neurons.
SimAM employs this point by defining an energy function for each neuron in the feature map, with a
particular emphasis on those exhibiting significant spatial inhibition effects [41]. The approach effec-
tively acquires the three-dimensional weights of each neuron in the feature map without introducing
additional network parameters. Furthermore, it considers both the spatial and channel dimensions,
thereby reducing the necessity for extensive network tuning.

In light of this, we propose a computationally efficient lightweight attention block tailored for
quaternion-valued feature representations.

3 QMSANet

This section presents the Quaternion Multi-Scale Attention Network (QMSANet), a novel archi-
tecture designed for color image denoising. We first outline the overall framework and the role of
each component, followed by the loss function definition. Subsequent subsections provide detailed
descriptions of the key modules.

3.1 Network Architecture

The QMSANet architecture, depicted in Fig. 1, comprises five core components: the Quater-
nion Encoding (QE) module, the Quaternion Multi-Scale Sparse Block (QMSB), the Quaternion
Stacked Enhancement Block (QSEB), the Lightweight Quaternion Attention Block (LQAB), and
the Reconstruction Block (RB). These modules collectively leverage quaternion algebra to preserve
inter-channel correlations, extract multi-scale features, and focus on important features.

The QE module transforms the input RGB image into a quaternion representation, enabling
subsequent quaternion-based processing. The QMSB employs quaternion convolutions and dilated
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Figure 2: Internal structure diagram of Quaternion Multi-Scale Sparse Block (QMSB).

quaternion convolutions to capture multi-scale features, balancing local detail preservation with
global context awareness. The QSEB, a deep feature enhancement module, mitigates information
loss in deeper layers through stacked quaternion convolutions and long-path connections. The LQAB
adaptively focuses on salient features using a lightweight attention mechanism tailored for quaternion
data. Finally, the RB reconstructs the denoised image via residual learning. Detailed explanations
of each module follow.

3.2 Loss Function

QMSANet is trained to minimize the mean squared error (MSE) between the predicted residual and
the true noise component. The loss function is defined as:

L(θ) =
1

2N

N∑
i=1

||fQMSANet(I
i
N)− Ĩ iC ||

2, (6)

where θ represents the trainable parameters, fQMSANet denotes the network’s estimated denoised

image, N is the number of training samples, Ĩ iC and I iN are the given i-th clean image with zero-
channel-filled real part, and the noisy image, respectively. After obtaining the noise prediction
results, perform a residual operation by subtracting them from the input noisy image encoded as a
quaternion to obtain an estimated denoised image fQMSANet. Discard the real part padding of this
estimated denoised image and retain only the last three R, G, B channels to recover a color denoised
image. This formulation guides the network to effectively separate noise from the underlying image
content.

3.3 Quaternion Encoding

The Quaternion Encoding (QE) module transforms an input RGB color image Iinput ∈ R3×H×W into
a quaternion representation, enabling subsequent processing in the quaternion domain. This step
is foundational to QMSANet, as it prepares the conditions for exploiting inter-channel correlations
inherent in color images.

The encoding process begins by creating a zero-filled channel [29] with dimensions identical to
a single RGB channel (H × W ). This zero tensor is concatenated with the three RGB channels
along the channel dimension, yielding a four-channel quaternion tensor OQE ∈ HH×W , where the
dimensions transition from (3, H,W ) to (4, H,W ). Mathematically, the quaternion representation is
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Figure 3: The intensity variation curves of the red, green, and blue channels traverse different
regions of the image (cap, eyes, and neck).

(a) (b) (c)

Figure 4: Charting the “sparsity” of QMSB modules using a noisy image from the CC dataset.
Subfigures (a) and (b) display the histograms of activation values in feature maps before and after
QMSB module, respectively. Subfigure (c) presents the L1 and L0 norm curves across different layers
of the QMSB module.

expressed as:

OQE = 0+Ri+Gj+Bk,

where R, G and B denote the red, green, and blue channels, respectively, and the real part is set to
zero. The QE operation is formalized as:

OQE = fQE(Iinput), (7)

where fQE is the encoding function. This transformation preserves the original image content with-
out loss or alteration, standardizing the data for quaternion convolution operations in subsequent
modules. By embedding the RGB channels into the imaginary components of a quaternion, QE
ensures that inter-channel dependencies are maintained throughout the denoising pipeline, a critical
advantage over real-valued representations.

3.4 Quaternion Multi-Scale Sparse Block

The Quaternion Multi-Scale Sparse Block (QMSB) is a pivotal component of QMSANet, designed to
exploit the inherent properties of color images—namely, strong inter-channel correlations and infor-
mation sparsity—to achieve robust denoising. As illustrated in Fig. 2, QMSB operates in the quater-
nion domain, enabling it to jointly model the dependencies among RGB channels. This addresses
the limitations of traditional real-valued convolutions, which treat each channel independently. The

7



Yi Liu, Qi Xie, Yu Guo, Guoqing Chen, Boying Wu, Deyu Meng, Jean-Michel Morel, Qiyu Jin, Michael Kwok-Po Ng,

design of QMSB centers around three key functions: modeling inter-channel correlations, extracting
multi-scale features, and enforcing sparsity for robust noise suppression.

In color images, intensity variations across RGB channels exhibit high consistency, as illustrated
in Fig. 3. QMSB leverages this property by representing the input image as a quaternion matrix.
Quaternion convolution, defined in (5), processes these channels holistically, enabling comprehensive
inter-channel interactions that enhance feature representation over traditional methods.

To address the multi-scale nature of noise and image structures, QMSB integrates standard
quaternion convolution with dilated quaternion convolution. Quaternion convolution, with a 3 × 3
kernel, captures fine-scale features such as edges and textures, while dilated quaternion convolution,
with a dilation rate of 2, expands the receptive field to model large-scale structures and complex
noise patterns in textured or flat regions. This alternating pattern—implemented across a 12-layer
block with dilated convolutions at layers 2, 5, 9, and 12—ensures complementary extraction of local
and global features, improving denoising efficacy. Each layer is followed by BatchNorm2d [42] and
ReLU [43], accelerating convergence and enhancing noise-content separation.

QMSB also enforces sparsity through a structured design of convolution operations. The quater-
nion dilated convolution reduces dependence on locally continuous pixels, improving global feature
representation while lowering computational costs. Simultaneously, quaternion convolution preserves
fine-scale details, suppressing local noise. Together, these operations enforce spatial sparsity, allowing
efficient utilization of multi-scale information. As illustrated in Fig. 4, QMSB modules significantly
increase spatial sparsity in feature maps. The activation histograms (a-b) before and after passing
through the QMSB module show a significant increase in near-zero activation, while the cross-layer
L1 and L0 norm trend in sub-figure (c) shows a decrease in activation density but preserves infor-
mation size. These results empirically validate that QMSB structurally enhances spatial sparsity by
suppressing redundant responses and focusing on salient patterns. The consistent intensity varia-
tions across channels (Fig. 3) further indicate that holistic channel processing reduces redundancy
and enhances sparsity. Channel sparsity is implicitly enforced via quaternion multiplication, which
adaptively retains critical inter-channel interactions.

The QMSB process is formalized as:

OQMSB = fQMSB(OQE), (8)

where fQMSB denotes the QMSB function, transforming the quaternion-encoded input OQE into a
multi-scale, sparse feature map OQMSB. This output serves as input to the subsequent Quaternion
Stacked Enhancement Block (QSEB).

Compared to prior multi-scale approaches like MWDCNN [21], QMSB uniquely integrates quater-
nion operations with sparsity constraints, offering superior inter-channel modeling and computational
efficiency. Experimental results (Section 5) validate its contribution to QMSANet’s state-of-the-art
performance, particularly in preserving fine details and suppressing complex noise patterns.

3.5 Quaternion-based Stacked Enhanced Block

As network depth increases, deeper layers often face challenges in effectively leveraging features ex-
tracted from shallower layers, leading to information degradation and diminished expressive capac-
ity—a phenomenon termed the “fatigue phase”. To mitigate this, we introduce the Quaternion-based
Stacked Enhanced Block (QSEB), a novel module designed to enhance feature propagation, stabilize
training, and boost denoising performance by integrating multi-scale features and preserving critical
low-level information within the quaternion domain.

The QSEB module operates as a feature enhancement bridge, ensuring robust information flow
from shallow to deep layers. It comprises three key components: a four-layer quaternion convolutional
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stack, a long-path connection, and a Tanh activation layer. The convolutional stack, built with
quaternion convolutions, progressively refines features by modeling inter-channel correlations among
RGB components. Each of the first three layers is equipped with BatchNorm2d [42] and ReLU [43]
to stabilize training and introduce nonlinearity, enabling the capture of complex textures and noise
patterns. The fourth layer consolidates these features, preparing them for subsequent processing.

To counter information loss in deeper layers, QSEB incorporates a long-path connection that
directly links the noisy input image (via OQE) and the output of the preceding Quaternion Multi-
Scale Sparse Block (OQMSB) to the deeper layers. This design preserves both the original noise
distribution information and the extracted primary feature information. The incorporation of these
information both prevents the deep network from losing the noise distribution prior and corrects the
coarse-grained output of the QMSB, which is crucial for the network to more accurately separate
signal from noise. By facilitating gradient flow across the network, the long-path connection mitigates
vanishing gradient issues, enhancing training stability and feature utilization compared to standard
feedforward architectures.

The Tanh activation layer concludes the QSEB. By confining the output range to [−1, 1], it
directly ensures that each component of the quaternion remains within the unit range, effectively
averting amplitude explosion. This normalization approach furnishes gradients for both positive and
negative inputs, preserving the positive-negative relationships among the quaternion components.
As a result, it facilitates the QSEB module to further refine the features. Moreover, the bounded
nature of the Tanh output is compatible with the attention mechanism of the subsequently connected
LQAB module. This compatibility prevents the attention weights from being dominated by extreme
values.

Together, these components form a cohesive module that amplifies QMSANet’s capacity to recover
intricate details while suppressing noise effectively.

The QSEB operation is formalized as:

OQSEB = fQSEB(OQE, OQMSB), (9)

where fQSEB denotes the QSEB function, integrating the quaternion-encoded input OQE and the
multi-scale featuresOQMSB into an enhanced feature mapOQSEB, which is then fed into the Lightweight
Quaternion Attention Block (LQAB).

Compared to prior enhancement strategies, such as those in TSP-RDANet [44] or hierarchical
networks like HNN [22], QSEB distinguishes itself by leveraging quaternion operations to maintain
inter-channel consistency and employing long-path connections to preserve shallow-layer features.
Ablation studies (Section 5) confirm that QSEB significantly improves detail retention and noise
suppression, contributing to QMSANet’s superior performance on benchmark datasets. This module
exemplifies a balanced approach to deep feature enhancement, making it particularly effective for
complex color image denoising tasks.

3.6 Lightweight Quaternion Attention Block

Attention mechanisms are critical for directing a network’s focus toward salient features, yet their
integration into quaternion-based models remains underexplored, often incurring high computational
costs in traditional designs. To address this, we propose the Lightweight Quaternion Attention
Block (LQAB), a novel module tailored for quaternion-valued feature maps, which enhances feature
discriminability while minimizing computational overhead in QMSANet.

LQAB processes the quaternion feature map Ẋ ∈ HC×M×N output by the Quaternion Stacked
Enhancement Block (QSEB), where C,M , and N denote the number of channels, height, and width,
respectively. As shown in Fig. 5, the module comprises two stages: channel compression and attention
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Figure 5: Internal structure diagram of Lightweight Quaternion Attention Block (LQAB).

weighting. In the first stage, a single-layer quaternion convolution reduces the channel dimension
from 8 to 4, producing an intermediate feature map Ẋ1 ∈ H4×M×N . This compression, leveraging
the quaternion convolution defined in (5), eliminates redundant information while preserving inter-
channel correlations, producing a compact yet discriminative representation for subsequent attention
computation.

Next, inspired by the SimAM attention mechanism [36], we model the intermediate feature map
locally to assess the importance of each pixel in the entire map. For each neuron t in a channel of
C1

′
, an energy function quantifies its significance based on spatial suppression effects:

et(wt, bt, y, xi) = (yt − t̂)2 +
1

N − 1

N−1∑
i=1

(y0 − x̂i)
2, (10)

where t̂ is the target neuron, xi represents the other neurons in a single channel of the feature
map, N = H × W is the number of spatial positions, and wt and bt denote the weight and bias
transformations, respectively. Neurons with higher energy values—indicating greater deviation from
their surroundings—are assigned higher attention scores, reflecting their importance to the feature
map.

The intermediate feature map is then weighted by these attention scores, producing the final

output Ẏ ∈ HC1
′
×H×W . This process amplifies responses in high-energy regions while suppressing

those in low-energy areas, enabling QMSANet to focus on salient details and filter noise effectively.
The LQAB operation is expressed as:

IR = fLQAB(OQSEB), (11)

where fLQAB denotes the LQAB function, transforming the QSEB output OQSEB into a refined
residual map IR for image reconstruction.

LQAB’s lightweight nature stems from two design choices. First, by reducing the number of
channels, LQAB effectively eliminates redundant or noisy information, which not only reduces com-
putational overhead but also enhances the quality of the extracted features. Second, the attention
mechanism relies solely on statistical computations (energy function and weighting), avoiding the
parameter-heavy layers typical of methods. This efficiency, combined with quaternion-based process-
ing, distinguishes LQAB from existing attention modules, offering a practical balance of performance
and cost.

Compared to real-valued attention mechanisms, LQAB leverages quaternion representations to
maintain inter-channel consistency, enhancing detail preservation in color images. As shown in Fig. 6,
thermodynamic images generated by the LQAB module highlight key detail regions with prominent
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(a) (b)

Figure 6: Thermodynamic images of the LQAB module are shown using some CC dataset images.
(The left is the real noise image and the right is the LQAB module’s corresponding thermodynamic
image.)

red markings, indicating higher attentional weights assigned to these areas. Experimental results
(Section 5) further confirm its effectiveness in QMSANet, particularly in complex noise scenarios,
demonstrating its role as a lightweight, quaternion-based attention solution for improved denoising
performance.

3.7 Reconstruction block

The Reconstruction Block (RB) serves as the final stage of QMSANet, tasked with synthesizing
the denoised image from the refined features produced by preceding modules. By leveraging residual
learning principles [45], RB integrates the noisy input image with the learned residual map to achieve
a balance between noise suppression and detail preservation, a critical requirement for high-fidelity
color image denoising.

RB takes as input the residual map IR ∈ R3×H×W , generated by the Lightweight Quaternion
Attention Block (LQAB), which encapsulates the estimated noise component across RGB channels.
The block reconstructs the clean image estimate Ioutput through a subtraction operation:

Ioutput = Iinput − IR, (12)

where Iinput ∈ R3×H×W is the original noisy RGB image. The residual map IR is derived from the
sequential processing of the input through QMSANet’s core modules:

IR = fLQAB (fQSEB (OQE, fQMSB (fQE(Iinput)))) , (13)

where fQE, fQMSB, fQSEB, and fLQAB represent the functions of the Quaternion Encoding (QE),
Quaternion Multi-Scale Sparse Block (QMSB), Quaternion Stacked Enhancement Block (QSEB),
and LQAB, respectively. This formulation ensures that IR captures noise patterns while preserving
inter-channel correlations encoded in the quaternion domain.

4 Network Analysis

To provide a rigorous theoretical foundation for QMSANet, this section analyzes the core properties
of quaternion convolutions underpinning its architecture. We focus on two critical aspects: the trans-
lation equivariance of quaternion convolutions, which ensures spatial consistency, and their parameter
efficiency, which enhances computational practicality. These properties are substantiated through
mathematical derivations and empirical comparisons with real-valued convolutional networks.

4.1 Translation Equivariance of Quaternion Convolution

Translation equivariance is a fundamental property of convolutional operations, ensuring that spatial
shifts in the input are preserved in the output—a cornerstone of traditional CNNs [46]. To verify
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this for quaternion convolutions, we represent the input feature map as a quaternion-valued function
ḟ : Z2 → H over a bounded domain, where for a coordinate z = (z1, z2), ḟ(z) = fa(z) + fb(z)i +
fc(z)j + fd(z)k, with fa, fb, fc, fd ∈ R. The quaternion filter is similarly defined as ψ̇(z) = ψa(z) +
ψb(z)i+ ψc(z)j+ ψd(z)k, where ψi ∈ R for i ∈ {a, b, c, d}.

The quaternion convolution operation is given by:

[ḟ⊛̇ψ̇](x) =
∑
y∈Z2

ḟ(y) · ψ̇(x− y), (14)

where “⊛̇” denotes the quaternion convolution operator, and “·” adheres to quaternion multiplication
rules (see Section 2.2). Expanding this yields:

ḟ(y) · ψ̇(x− y)

= [fa(y)ψa(x− y)− fb(y)ψb(x− y)

− fc(y)ψc(x− y)− fd(y)ψd(x− y)]

+ [fa(y)ψb(x− y) + fb(y)ψa(x− y)

+ fc(y)ψd(x− y)− fd(y)ψc(x− y)]i

+ [fa(y)ψc(x− y)− fb(y)ψd(x− y)

+ fc(y)ψa(x− y) + fd(y)ψb(x− y)]j

+ [fa(y)ψd(x− y) + fb(y)ψc(x− y)

− fc(y)ψb(x− y) + fd(y)ψa(x− y)]k.

(15)

For a translation vector t ∈ Z2, the translated input is Ltḟ(y) = ḟ(y − t). We test equivariance
by examining the convolution of the translated input:

[[Ltḟ ]⊛̇ψ̇](x) =
∑
y∈Z2

ḟ(y − t) · ψ̇(x− y)

=
∑
y′∈Z2

ḟ(y′) · ψ̇((x− t)− y′)

= [ḟ⊛̇ψ̇](x− t)

= [Lt[ḟ⊛̇ψ̇]](x)

(16)

where substitution y′ = y − t. This derivation confirms that quaternion convolution is translation-
equivariant, mirroring the behavior of real-valued convolution while leveraging quaternion algebra to
model inter-channel dependencies more effectively.

4.2 Parameter Efficiency and Comparative Analysis

Quaternion convolution also offers significant parameter efficiency, a key advantage for resource-
constrained applications. Consider a real-valued convolution Conv2d(Cin, Cout, 3 × 3) with Cin =
Cout = 64; the parameter count is 64 × 64 × 3 × 3 = 36, 864. In contrast, quaternion convolution
distributes channels across four components (real, i, j, k), reducing the effective channel dimensions to
Cin/4 and Cout/4. For the same Cin = Cout = 64, the parameter count is 4×(16×16×3×3) = 9, 216,
a fourfold reduction due to the shared weight structure across quaternion components.

Table 1 empirically validates this efficiency. With 64 channels, QMSANet using quaternion
convolution achieves a PSNR of 32.28 dB on CBSD68 at σ = 25 with only 0.13M parameters and
0.21G FLOPs, outperforming its real-valued counterpart (31.02 dB) with the same parameter and
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computational budget. Increasing the real-valued model’s channels to 64 to match the quaternion
network leads to a higher cost (0.52M parameters, 0.84G FLOPs) while still yielding a lower PSNR.

These results demonstrate that quaternion convolution not only reduces parameter overhead
but also enhances denoising efficacy by leveraging inter-channel correlations. Moreover, it preserves
essential geometric properties, such as translation equivariance, while improving both efficiency and
performance over real-valued convolutions. This dual advantage positions QMSANet as a compelling
advancement in color image denoising, as further evidenced by the experimental results in Section 5.

Table 1: Ablation study of key components. Best results are in bold and second best results are
underlined. The same settings are applied to Table 2, 3, 5 and 6.

Model Channels CBSD68KodakMcMaster FlOPsParams

QMSANet 64 32.28 33.27 33.25 0.21 0.13

QMSANet 128 32.28 33.25 33.39 0.84 0.52

QMSANet w.o. QCNN 64 31.33 32.39 32.57 0.84 0.52

QMSANet w.o. QCNN 32 31.02 32.01 32.06 0.21 0.13

5 Experiments

This section evaluates our proposed method against 18 baseline methods on four widely used datasets,
demonstrating highly satisfactory results. Additionally, we conduct ablation studies to further vali-
date the effectiveness of our approach.

5.1 Experimental Settings

5.1.1 Training datasets

We conduct two primary denoising experiments: one for synthetic colored noise removal and an-
other for real-world colored noise removal. Through repeated experiments, we determine an optimal
training set of 4,259 images, comprising 400 images from the Color Berkeley Segmentation Dataset
(CBSD) [55] and 3,859 images from WED [56]. Since synthetic noise may not fully capture the
diversity of real-world noise patterns, we develop a real-noise denoising model trained on the PolyU
dataset [57], which consists of 80 noisy images captured in 40 distinct scenes. To enhance scale-
invariant feature learning, we apply double-triple interpolation with reduction factors ranging from
0.7 to 1.0 for dataset expansion. Additionally, eight geometric transformations are used to improve
viewpoint invariance and model generalization.

5.1.2 Test datasets

To comprehensively assess model performance, we evaluate it on four benchmark datasets: CBSD68
[55], Kodak24 [58], McMaster [59], and CC [60].

5.1.3 Implementation details

All experiments are conducted on the same computing system, equipped with a 13th Gen Intel Core
i9-13900HX CPU and an NVIDIA GeForce RTX 4060 GPU.
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Table 2: PSNR (dB) results of different methods on CBSD68, Kodak24, and McMaster.

Methods
CBSD68 Kodak24 McMaster

σ = 15 σ = 25 σ = 35 σ = 50 σ = 15 σ = 25 σ = 35 σ = 50 σ = 15 σ = 25 σ = 35 σ = 50
CBM3D [47] 33.44 30.69 29.01 27.35 34.39 31.83 30.23 28.63 34.03 31.67 30.12 28.50
DnCNN [19] 33.90 31.10 29.58 27.79 34.69 32.03 30.46 28.83 34.21 31.73 30.14 28.55
IRCNN [48] 33.87 31.18 29.50 27.88 34.69 32.15 30.55 28.94 34.58 32.18 30.60 28.91
FFDNET [49] 33.88 31.22 29.59 27.97 34.75 32.25 30.69 29.11 34.66 32.36 30.83 29.19
ADNet [20] 33.99 31.31 29.66 28.04 34.76 32.26 30.68 29.10 34.93 32.56 31.00 29.36
AirNet [50] 34.14 31.48 - 28.23 35.09 32.63 - 29.53 35.05 32.79 - 29.66
VIRNet [51] 34.27 31.65 30.04 28.45 35.27 32.86 31.34 29.81 35.32 33.09 31.59 30.02
DRANet [52] 34.18 31.56 29.96 28.37 35.02 32.59 31.06 29.50 35.09 32.84 31.36 29.77
QCNN∗ [28] 33.85 30.93 - 27.53 34.49 31.96 - 28.73 33.91 31.99 - 28.58
DQRNDL∗ [31] 34.19 31.79 - 28.80 35.25 33.01 - 30.08 35.38 33.31 - 30.43
TSP-RDANet [44] 34.07 31.45 29.84 28.25 34.87 32.59 31.06 29.50 35.09 32.84 31.36 29.77
DMID-d [53] 34.45 31.86 30.26 28.72 35.51 33.12 31.61 30.14 35.72 33.49 32.00 30.50
CFMNet∗ [54] 34.26 31.64 - 28.46 35.09 32.69 - 29.64 35.23 32.98 - 29.99
CTNet [25] 34.36 31.70 30.06 28.43 35.28 32.82 31.26 29.67 35.54 33.21 31.67 30.02
Ours 34.98 32.33 30.66 29.06 35.81 33.33 31.71 30.16 35.72 33.39 31.77 30.17
Ours-B 34.95 32.28 30.64 28.97 35.78 33.27 31.68 30.03 35.55 33.25 31.70 30.01

The method marked with ∗ indicates that the PSNR values are sourced from the original paper.

Table 3: SSIM results of different methods on CBSD68, Kodak24, and McMaster.

Methods
CBSD68 Kodak24 McMaster

σ = 15 σ = 25 σ = 35 σ = 50 σ = 15 σ = 25 σ = 35 σ = 50 σ = 15 σ = 25 σ = 35 σ = 50
CBM3D [47] 0.9269 0.8740 0.8278 0.7701 0.9196 0.8709 0.8289 0.7775 0.9130 0.8707 0.8329 0.7831
DnCNN [19] 0.9312 0.8832 0.8452 0.7833 0.9224 0.8756 0.8390 0.7830 0.9171 0.8757 0.8412 0.7964
IRCNN [48] 0.9285 0.8824 0.8403 0.7998 0.9210 0.8779 0.8398 0.7943 0.9195 0.8818 0.8486 0.8070
FFDNET [49] 0.9290 0.8821 0.8408 0.7887 0.9224 0.8780 0.7952 0.7952 0.9216 0.8862 0.8550 0.8150
ADNet [20] 0.9335 0.8888 0.8487 0.7974 0.9247 0.8826 0.8445 0.7993 0.9286 0.8942 0.8640 0.8245
AirNet [50] 0.9356 0.8928 - 0.8057 0.9288 0.8895 - 0.8121 0.9293 0.8981 - 0.8343
VIRNet [51] 0.9340 0.8918 0.8549 0.8082 0.9289 0.8912 0.8589 0.8186 0.9312 0.9017 0.8759 0.8433
DRANet [52] 0.9326 0.8895 0.8520 0.8048 0.9266 0.8876 0.8551 0.8131 0.9274 0.8964 0.8698 0.8354
QCNN∗ [28] 0.9264 0.8714 - 0.7671 0.9210 0.8690 - 0.7892 0.9100 0.8796 - 0.7973
DQRNDL∗ [31] 0.9333 0.8950 - 0.8215 0.9288 0.8931 - 0.8261 0.9331 0.9077 - 0.8588
TSP-RDANet [44] 0.9316 0.8878 0.8498 0.8016 0.9247 0.8847 0.8507 0.8080 0.9252 0.8936 0.8662 0.8304
DMID-d [53] 0.9359 0.8952 0.8587 0.8155 0.9309 0.8950 0.8627 0.8270 0.9360 0.9085 0.8839 0.8553
CFMNet∗ [54] 0.9376 0.8969 - 0.8149 0.9301 0.8927 - 0.8195 0.9336 0.9043 - 0.8453
CTNet [25] 0.9378 0.8963 0.8590 0.8107 0.9309 0.8929 0.8596 0.8170 0.9360 0.9062 0.8795 0.8437
Ours 0.9442 0.9125 0.8763 0.8377 0.9384 0.9077 0.8759 0.8416 0.9373 0.9132 0.8849 0.8545
Ours-B 0.9446 0.9085 0.8759 0.8337 0.9390 0.9056 0.8759 0.8371 0.9365 0.9086 0.8836 0.8494

The method marked with ∗ indicates that the SSIM values are sourced from the original paper.

The QMSANet denoising model is trained for 100 iterations with a batch size of 128. The initial
learning rate is set to 1 × 10−3 and remains constant for the first 20 epochs. It is then reduced to
1× 10−4 from epochs 21 to 50 and further decays to 1× 10−5 in the final 50 epochs.

We optimize the training process using the RMSProp [61] algorithm and employ mean squared
error (MSE) [62] as the loss function.

5.2 Color Image Denoising

To evaluate the denoising performance of our model on synthetic noisy color images, we compare
it with 14 state-of-the-art algorithms across three widely used benchmark datasets. These methods
include the traditional CBM3D model [47], classical deep-learning-based denoising models such as
DnCNN [19], IRCNN [48], and FFDNet [49], as well as more recent approaches, including ADNet [20],
AirNet [50], MWDCNN [21], VIRNet [51], DRANet [52], QCNN [28], DQRNDL [31], TSP-RDANet
[44], DMID-d [53], CFMNet [54], and CTNet [25].

We assessed our model comprehensively using peak signal-to-noise ratio (PSNR) [63], structural
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(a) Original image (B) CBM3D (C) DnCNN (d) FFDNet (e) ADNet (f) DRANet (g) TSP-RDANet (h) Ours
33.72 dB 33.60 dB 34.44 dB 34.63 dB 35.02 dB 34.80 dB 35.35 dB

Figure 7: Denoising visualization results of different methods for the image “12” from the McMaster
dataset with a noise level of 25.

(a) Original image (B) CBM3D (C) DnCNN (d) FFDNet (e) ADNet (f) DRANet (g) TSP-RDANet (h) Ours
36.96 dB 36.08 dB 38.29 dB 38.39 dB 39.11 dB 38.89 dB 39.22 dB

Figure 8: Denoising visualization results of different methods for the image “3096” from the CBSD68
dataset with a noise level of 35.

(a) Original image (B) CBM3D (C) DnCNN (d) FFDNet (e) ADNet (f) DRANet (g) TSP-RDANet (h) Ours
31.45 dB 31.53 dB 31.77 dB 31.96 dB 32.23 dB 32.13 dB 32.8 dB

Figure 9: Denoising visualization results of different methods for the image “14037” from the CBSD68
dataset with a noise level of 50.
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Table 4: Running time of 6 popular denoising methods for the noisy images of sizes 256 × 256, 512
× 512 and 1024 × 1024.

Device Methods 256*256 512*512 1024*1024

GPU

DnCNN [19] 0.012 0.016 0.034
IRCNN [48] 0.013 0.013 0.020
FFDNET [49] 0.011 0.013 0.020
ADNet [20] 0.014 0.018 0.039
AirNet [50] 0.120 0.481 2.182
VIRNet [51] 0.107 0.477 1.919
DRANet [52] 0.781 1.652 7.664
TSP-RDANet [44] 0.459 1.340 4.298
CTNet [25] 2.408 10.444 49.413
Ours 0.020 0.022 0.043

similarity (SSIM) [64], and runtime metrics. Notably, we also evaluated a blind denoising variant,
QMSANet-B. QMSANet-B model is implemented by assigning each training sample a randomly
sampled Gaussian noise level, promoting noise-agnostic adaptation.

Tables 2 and 3 present the PSNR and SSIM results across CBSD68, Kodak24, and McMaster
datasets for noise levels σ = 15, 25, 35, 50. The results indicate that our method outperforms most
baseline models in both PSNR and SSIM. For instance, at σ = 15 on the CBSD68 dataset, QMSANet
achieves a 0.53 dB higher PSNR than the leading diffusion-based method [53], while QMSANet-B
improves by 0.50 dB. In comparison to the non-blind denoising method QMSANet, which employs
the a priori information of the noise, the blind denoiser QMSANet-B often results in a certain loss
of denoising performance due to the absence of precise knowledge regarding the noise properties.
However, QMSANet-B also surpasses the majority of the comparison models on both PSNR and
SSIM metrics, thereby substantiating that our model attains superior denoising capabilities under
both blind and non-blind conditions. For σ = 25 and 35, our model consistently surpasses all baselines
in both PSNR and SSIM on CBSD68 and Kodak datasets. Although our method does not achieve
the highest overall performance on the McMaster dataset, it excels in specific scenarios. It attains
the highest PSNR at σ = 15 and the best SSIM for σ = 15, 25, 35, remaining competitive across
other cases. DMID-d [53] performs slightly better on some metrics, but requires computationally
expensive multi-step iterative sampling. In contrast, our model achieves efficient denoising in a single
forward pass, balancing performance and computational efficiency.

Figs. 7–9 present a visual comparison of denoising performance across methods. The first row of
each figure shows denoised color images from competing algorithms, while the second row displays
pseudo-color residual images generated by computing absolute differences between noisy inputs and
denoised outputs, followed by normalization and pseudo-coloring. In Fig. 7, our method effectively
preserves the distinct black spots on bananas within the zoomed region. Fig. 8 demonstrates superior
reconstruction of aircraft logo details, with our approach accurately recovering the pentagram’s sharp
edges compared to blurred results from other methods. As shown in Fig. 9, our algorithm preserves
both arms of the subject, whereas alternatives only partially recover one arm. These qualitative
comparisons underscore our method’s enhanced structural detail preservation during noise reduction.
The results demonstrate improved visual fidelity over existing approaches, positioning our framework
as a promising solution for high-quality image denoising.

Table 4 reports the runtime of ten deep-learning-based denoising methods across different image
sizes. Each model was evaluated using pre-trained weights at σ = 25, with the reported values
representing the average execution time over ten runs. As shown, DnCNN [19], IRCNN [48], and
FFDNet [49] achieve the shortest runtimes, making them ideal for real-time applications. Although
our method requires approximately twice the runtime of these models, it remains highly competitive,
achieving a substantial PSNR improvement of over 1 dB. In contrast, while AirNet [50], VIRNet [51],
DRANet [52], TSP-RDANet [44], and CTNet [25] outperform DnCNN, IRCNN, and FFDNet in
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Table 5: PSNR (dB) / SSIM results of different methods on real noisy images.

Dataset
Methods

CBM3D [47] DnCNN [19] TWSC [12] ADNet∗ [20] DudeNet [65] MWDCNN [21] WACAFRN∗ [66] Ours
Canon 5D ISO=3200 1 38.99/0.9719 37.26/0.9623 40.55/0.9793 35.96/0.9630 36.66/0.9702 36.97/0.9725 40.12/0.9819 38.60/0.9790
Canon 5D ISO=3200 2 35.84/0.9479 34.13/0.9467 35.92/0.9368 36.11/0.9398 36.70/0.9477 36.01/0.9491 37.18/0.9602 37.88/0.9644
Canon 5D ISO=3200 3 35.76/0.9603 34.09/0.9451 33.83/0.9467 34.87/0.9475 35.03/0.9509 34.80/0.9478 37.03/0.9695 37.35/0.9714
Nikon D600 ISO=3200 1 34.24/0.9327 33.62/0.9370 35.36/0.9584 33.94/0.9452 33.72/0.9381 33.91/0.9497 35.47/0.9565 36.61/0.9655
Nikon D600 ISO=3200 2 34.99/0.9124 34.48/0.9182 37.09/0.9569 34.33/0.9110 34.70/0.9245 34.88/0.9302 37.12/0.9557 37.50/0.9553
Nikon D600 ISO=3200 3 36.65/0.9118 35.41/0.9362 41.13/0.9863 38.87/0.9351 37.98/0.9364 37.02/0.9370 40.35/0.9840 41.22/0.9684
Nikon D800 ISO=1600 1 37.21/0.9411 37.95/0.9575 39.36/0.9678 37.61/0.9458 38.10/0.9591 37.93/0.9572 39.33/0.9681 40.28/0.9732
Nikon D800 ISO=1600 2 38.00/0.9376 36.08/0.9320 41.91/0.9811 38.24/0.9601 39.15/0.9684 37.49/0.9359 41.28/0.9812 41.06/0.9767
Nikon D800 ISO=1600 3 36.73/0.9099 35.48/0.9230 38.81/0.9468 36.89/0.9341 36.14/0.9311 38.44/0.9416 39.23/0.9537 40.44/0.9581
Average 36.49/0.9362 35.39/0.9398 38.22/0.9622 36.31/0.9424 36.46/0.9394 36.38/0.9468 38.57/0.9679 38.99/0.9680

The method marked with ∗ indicates that the PSNR and SSIM values are sourced from the original paper.

(a) Original image (b) Noisy image (c) CB3D [47] (d) TWSC [12] (e) DnCNN [19] (f) DudeNet [65] (g) MWDCNN [21] (h) Ours
35.47 dB 37.21 dB 39.36 dB 37.95 dB 38.10 dB 37.93 dB 40.28 dB

Figure 10: Ablation visualization results of real image denoising of “d800 iso1600 1” image from CC
dataset by different methods.

denoising quality, they incur a 10 to 200-fold increase in computational cost, yet still fall short of our
method’s performance. This underscores the efficiency of our approach, which not only achieves a
strong balance between runtime and performance but also delivers superior image restoration quality.

The experimental results demonstrate that our proposed color image denoising model excels across
various noise intensities and image datasets. The superior performance metrics validate the model’s
robustness, computational efficiency and broad applicability.

5.3 Experimental Analysis on Real-World Denoising

On the real-world noisy image CC dataset [60], we compare with traditional denoising models,
including CBM3D [47] and TWSC [12], as well as state-of-the-art deep learning-based models such
as DnCNN [19], ADNet [20], DudeNet [65], MWDCNN [21], and WACAFRN [66]. Notably, we
rigorously evaluate all quantitative results for the baseline models to ensure reliability and provide
meaningful comparisons.

Table 5 presents the PSNR and SSIM results for denoised images from a subset of the CC dataset.
Our method achieves outstanding PSNR performance on specific images. For instance, the “Nikon
D600 ISO=3200 3” image attains a PSNR of 41.22 dB, indicating minimal distortion and high-quality
denoising. Similarly, our approach excels in SSIM, demonstrating effective structural preservation.
Specifically, the “Nikon D800 ISO=1600 1” image achieves an SSIM of 0.9732, closely resembling
the original structure. On average, our method surpasses all state-of-the-art models by 0.42 dB in
PSNR, highlighting its superior denoising capability while maintaining image integrity. Compared
to other approaches, our method offers distinct advantages for practical applications.

Fig. 10 illustrates QMSANet’s effectiveness in real-world denoising. The zoom in region reveals
that our method removes noise while preserving fine petal details without introducing artifacts. Al-

17



Yi Liu, Qi Xie, Yu Guo, Guoqing Chen, Boying Wu, Deyu Meng, Jean-Michel Morel, Qiyu Jin, Michael Kwok-Po Ng,

though TWSC [12] achieves a comparable PSNR, its residual images exhibit frequent red-highlighted
areas, indicating significant detail loss during reconstruction. In contrast, QMSANet’s minimal light-
blue residuals confirm superior structure preservation.

(a) Original image (b) Noisy image (c) QMSANet (d) QMSANet w.o. QMSB (e) QMSANet w.o. QSEB (f) QMSANet w.o. LQAB
36.06 dB 40.44 dB 39.32 dB 36.89 dB 40.28 dB

Figure 11: Visualization results of real image denoising of “d800 iso1600 3” image from CC dataset
by different methods.

5.4 Ablation Study

To dissect the contribution of each QMSANet component, we conducted a systematic ablation study
using the CC dataset as a baseline. We evaluated the impact of progressively removing the Quaternion
Multi-Scale Sparse Block (QMSB), the Quaternion Stacked Enhancement Block (QSEB), and the
Lightweight Quaternion Attention Block (LQAB). Table 6 quantifies the contribution of each module,
demonstrating their complementary benefits to denoising performance.

Table 6: Ablation study of key components.

QMSB QSEB LQAB PSNR(dB) FlOPs(G) Params(M)

% " " 37.71 4.16973 0.02018

" % " 36.62 19.68865 0.09544

" " % 38.00 27.44648 0.13306

" " " 38.15 27.44812 0.13307

In the complete QMSANet model, the parameter count increases by only 0.0075% compared
to the model without the LQAB. This illustrates that our LQAB effectively improves denoising
performance by 0.15 dB while maintaining a lightweight architecture, achieving its design objective.

To assess the role of QMSB, we compare the first and last rows of Table 6. The PSNR values
indicate that QMSB is essential for capturing both local details and global structures, leading to
more effective noise removal. This is further supported by the pseudo-colored residual images in
Fig. 10, which illustrate QMSB’s ability to preserve fine details and reduce artifacts. Similarly, to
evaluate QSEB, we analyze the second and last rows of Table 6 and examine Fig. 11. Results show
that QSEB enhances the network’s ability to distinguish signal from noise while mitigating learning
fatigue in deeper layers.
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These ablation experiments provide strong empirical evidence of the scientific validity and effec-
tiveness of our proposed innovations.

6 Conclusion

We introduce QMSANet, a Quaternion Multi-Scale Attention Network designed for color image de-
noising, addressing the critical challenge of preserving inter-channel correlations in RGB images. By
operating in the quaternion domain, QMSANet ensures consistent channel dependency modeling,
effectively minimizing color distortion and detail loss commonly observed in traditional methods.
The network integrates three innovative modules: the Quaternion Multi-Scale Sparse Block (QMSB)
for multi-scale feature extraction, the Quaternion Stacked Enhancement Block (QSEB) for deep
feature refinement, and the Lightweight Quaternion Attention Block (LQAB) for efficient attention
allocation. These components collectively enhance noise suppression while retaining fine structural
details. Extensive experimental evaluations demonstrate that QMSANet significantly surpasses ex-
isting state-of-the-art denoising methods across multiple benchmark datasets in both synthetic and
real-noise settings. This work underscores the potential of quaternion-based deep learning for high-
quality image restoration, offering a robust and efficient solution for color image denoising challenges.

References

[1] L. Fan, F. Zhang, H. Fan, and C. ming Zhang, “Brief review of image denoising techniques,”
Vis. Comput. Ind. Biomed. Art, vol. 2, 2019.

[2] M. Shi and H. Wang, “Infrared dim and small target detection based on denoising autoencoder
network,” Mobile Netw. Appl., vol. 25, no. 4, pp. 1469–1483, 2020.

[3] Y. Lee, J. Lee, H. Ahn, and M. Jeon, “Snider: Single noisy image denoising and rectification for
improving license plate recognition,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2019,
pp. 0–0.

[4] Z. Wang, M. K. Ng, L. Zhuang, L. Gao, and B. Zhang, “Nonlocal self-similarity-based hyper-
spectral remote sensing image denoising with 3-d convolutional neural network,” IEEE Trans.
Geosci. Remote Sensing, vol. 60, pp. 1–17, 2022.

[5] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2, 2005, pp. 60–65 vol. 2.

[6] G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale
Modeling & Simulation, vol. 7, no. 3, pp. 1005–1028, 2009.

[7] K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian, “Image denoising with block-matching
and 3d filtering,” in J. Electron. Imaging, 2006.

[8] J. Guo, Y. Guo, Q. Jin, M. Kwok-Po Ng, and S. Wang, “Gaussian patch mixture model guided
low-rank covariance matrix minimization for image denoising,” SIAM J. Imag. Sci., vol. 15,
no. 4, pp. 1601–1622, 2022.

[9] Y. Hou, J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao, “Nlh: A blind pixel-level non-local
method for real-world image denoising,” IEEE Trans. Image Process., vol. 29, pp. 5121–5135,
2019.

19



Yi Liu, Qi Xie, Yu Guo, Guoqing Chen, Boying Wu, Deyu Meng, Jean-Michel Morel, Qiyu Jin, Michael Kwok-Po Ng,

[10] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned
dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, 2006.

[11] J. S. Turek, I. Yavneh, and M. Elad, “On mmse and map denoising under sparse representation
modeling over a unitary dictionary,” IEEE Trans. Signal Process., vol. 59, no. 8, pp. 3526–3535,
2011.

[12] J. Xu, L. Zhang, and D. Zhang, “A trilateral weighted sparse coding scheme for real-world image
denoising,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 20–36.

[13] T. Wu, ChaoyanJin, ZhengmengJia, Zhigang, and M. K. Ng, “Total variation based pure quater-
nion dictionary learning method for color image denoising,” Int. J. Numer. Anal. Model., vol. 19,
no. 5, pp. 709–737, 2022.

[14] C. Huang, Z. Li, Y. Liu, T. Wu, and T. Zeng, “Quaternion-based weighted nuclear norm mini-
mization for color image restoration,” Pattern Recognit., vol. 128, p. 108665, 2022.

[15] Y. Guo, G. Chen, T. Zeng, Q. Jin, and M. K.-P. Ng, “Quaternion nuclear norm minus frobenius
norm minimization for color image reconstruction,” Pattern Recognit., vol. 158, p. 110986, 2025.

[16] I. Hong, Y. Hwang, and D. Kim, “Efficient deep learning of image denoising using patch com-
plexity local divide and deep conquer,” Pattern Recognit., vol. 96, p. 106945, 2019.

[17] W. Shi, F. Jiang, S. Zhang, R. Wang, D. Zhao, and H. Zhou, “Hierarchical residual learning for
image denoising,” Signal Process. Image Commun., vol. 76, pp. 243–251, 2019.

[18] J. Li, Z. Zhang, X. Liu, C. Feng, X. Wang, L. Lei, and W. Zuo, “Spatially adaptive self-
supervised learning for real-world image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2023, pp. 9914–9924.

[19] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual
learning of deep cnn for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp.
3142–3155, 2017.

[20] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided cnn for image denoising,”
Neural Netw., vol. 124, pp. 117–129, 2020.

[21] C. Tian, M. Zheng, W. Zuo, B. Zhang, Y. Zhang, and D. Zhang, “Multi-stage image denoising
with the wavelet transform,” Pattern Recognit., vol. 134, p. 109050, 2022.

[22] A. Joshi, N. Akalwadi, C. Mandi, C. Desai, R. A. Tabib, U. Patil, and U. Mudenagudi, “Hnn:
Hierarchical noise-deinterlace net towards image denoising,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, June 2024, pp. 3007–3016.

[23] H. Yin and S. Ma, “Csformer: Cross-scale features fusion based transformer for image denoising,”
IEEE Signal Process. Lett., vol. 29, pp. 1809–1813, 2022.

[24] J. Xiao, X. Fu, F. Wu, and Z.-J. Zha, “Stochastic window transformer for image restoration,”
Proc. Adv. Neural Inf. Process. Syst., vol. 35, pp. 9315–9329, 2022.

[25] C. Tian, M. Zheng, W. Zuo, S. Zhang, Y. Zhang, and C.-W. Lin, “A cross transformer for image
denoising,” Inf. Fusion, vol. 102, p. 102043, 2023.

20



QMSANet: A Quaternion Multi-Scale Attention Network for Color Image Denoising

[26] C. Tian, M. Zheng, C.-W. Lin, Z. Li, and D. Zhang, “Heterogeneous window transformer for
image denoising,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–12,
2024.

[27] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir: Image restoration
using swin transformer,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2021, pp. 1833–
1844.

[28] X. Zhu, Y. Xu, H. Xu, and C. Chen, “Quaternion convolutional neural networks,” in Proc.
Eur. Conf. Comput. Vis., V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham:
Springer International Publishing, 2018, pp. 645–661.

[29] J. Miao, K. I. Kou, Y. Yang, L. Yang, and J. Han, “Quaternion matrix completion using
untrained quaternion convolutional neural network for color image inpainting,” Signal Process.,
vol. 221, p. 109504, 2023.

[30] J. Miao and K. I. Kou, “Color image recovery using low-rank quaternion matrix completion
algorithm,” IEEE Trans. Image Process., vol. 31, pp. 190–201, 2022.

[31] Z. Zhou, Y. Chen, and Y. Zhou, “Simultaneously learning deep quaternion reconstruction and
noise convolutional dictionary for color image denoising,” IEEE Trans. Emerg. Top. Comput.
Intell., pp. 1–14, 2024.

[32] Y. Xu, L. Yu, H. Xu, H. Zhang, and T. Nguyen, “Vector sparse representation of color image
using quaternion matrix analysis,” IEEE Trans. Image Process., vol. 24, no. 4, pp. 1315–1329,
2015.

[33] Y. Cao, Y. Fu, Z. Zhu, and Z. Rao, “Color random valued impulse noise removal based on
quaternion convolutional attention denoising network,” IEEE Signal Process. Lett., vol. 29, pp.
369–373, 2022.
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