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Abstract

Denoising is the problem of removing the inherent noise from an image. The standard noise
model is additive white Gaussian noise, where the observed image f is related to the underlying
true image u by the degradation model f = u+ η, and η is supposed to be at each pixel inde-
pendently and identically distributed as a zero-mean Gaussian random variable. Since this is
an ill-posed problem, Rudin, Osher and Fatemi introduced the total variation as a regularizing
term. It has proved to be quite efficient for regularizing images without smoothing the bound-
aries of the objects.
This paper focuses on the simple description of the theory and on the implementation of Cham-
bolle’s projection algorithm for minimizing the total variation of a grayscale image. Further-
more, we adapt the algorithm to the vectorial total variation for color images. The implementa-
tion is described in detail and its parameters are analyzed and varied to come up with a reliable
implementation.

Source Code

ANSI C source code to produce the same results as the demo is accessible at the IPOL web
page of this article1.
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1 Introduction

An important problem in image analysis is the reconstruction of an original image from an observation
to extract meaningful information. Such a process, called image restoration, has been studied at
length from different points of view [1, 4, 5].

The transformation or degradation to which an image is subjected during formation, transmission
and recording processes is in general the result of two phenomena. The first one is deterministic and
is related to the mode of image acquisition. The second is a random phenomenon and corresponds to
the inherent noise coming from the quantum nature of light emission. Denoising is the problem that
only takes into account the random phenomenon and it consists of removing noise from an image.
The most commonly studied noise model is additive white Gaussian noise, where the observed noisy
image f is related to the underlying true image u by the degradation model

f = u+ η, (1)

and η is supposed to be at each point in space independently and identically distributed as a zero-
mean Gaussian random variable.

Unfortunately, this is an ill-posed inverse problem in the sense of Hadamard [6]. The information
provided by f and the model (1) are not sufficient to ensure the existence, uniqueness and stability of
a solution u. It is therefore necessary to regularize the problem by adding a constraint on the solution.
Observing that quadratic regularization functionals did not allow recovering sharp discontinuities,
Rudin, Osher and Fatemi proposed [1] the total variation as regularization. The denoised image u is
the solution of the minimization problem

min
u∈BV (Ω)

∫
Ω

|∇u(x)|dx, (2)

subject to the constraints∫
Ω

u(x)dx =

∫
Ω

f(x)dx and

∫
Ω

|u(x)− f(x)|2dx = σ2|Ω|. (3)

The first constraint assumes that the noise η has zero mean, whereas the second one uses the a priori
information on the noise standard deviation σ. In a posterior paper, Chambolle and Lions [7] proved
that (2)-(3) is naturally linked to the following unconstrained minimization problem:

min
u∈BV (Ω)

∫
Ω

|∇u(x)|dx+
λ

2
‖u− f‖2

2, (4)

for an adequate Lagrange multiplier λ > 0. This problem is referred to as the Rudin–Osher–Fatemi
(ROF) model. The first term in (4) is a smoothing term and the second one measures the fidelity to
the data. Hence, the parameter λ is a positive weighting constant that controls the trade-off between
a good fit to f and an irregular solution.

In view of (4), denoising is performed as an infinite-dimensional minimization problem, where
the search space is the set of all images with bounded variation. Let us develop their justification of
this choice. We are interested in obtaining a denoised image u in such a way that edges and other
singularities are preserved. Classical Sobolev spaces do not authorize such singularities. When u is
discontinuous, its gradient has to be understood as a measure, and the space of functions of bounded
variation [8] is well adapted for this purpose. Therefore, BV-functions appear as a natural model for
images, characterized by the appearance of discontinuous hypersurfaces. Let Ω ⊂ RN be a bounded
domain, N ≥ 2, then the Total Variation (TV) of a function u ∈ L1(Ω,R) is defined by

TV(u) := sup

{∫
Ω

u divξ dx : ξ ∈ C1
c (Ω,RN), ‖ξ‖∞ ≤ 1

}
. (5)
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It is well known [8] that TV(u) is finite if and only if its distributional derivative Du is a finite
Radon measure, in which case we have TV(u) = |Du|(Ω). If u has a gradient ∇u ∈ L1(Ω,R2),
then TV(u) =

∫
Ω
|∇u|. Without risk of ambiguity, we will adopt this notation even when u is not

smooth enough to justify this integral notation. With this notation, the space of functions of bounded
variation is defined as

BV (Ω) :=

{
u ∈ L1(Ω) :

∫
Ω

|∇u| <∞
}
.

The TV-term introduced in (4) discourages the solution from having oscillations, yet it does allow
the solution to have discontinuities. If f ∈ L2(Ω,R), the minimizer of (4) exists, and it is unique and
stable in L2(Ω,R) with respect to perturbations in f [9].

Many algorithms for TV-denoising have been developed, especially for the Gaussian noise model.
To name a few, there are algorithms based on duality [10, 11], Newton-based methods [12], graph
cuts [13], frame shrinkage [14] and operator splitting methods [15, 16, 17, 18], particularly the split
Bregman algorithm discussed in the paper by Getreuer [19]. In this paper we discuss the projection
algorithm proposed by Chambolle [2] for minimizing the total variation of an image and we adapt it
to the vectorial total variation for color images.

2 Chambolle’s Projection Algorithm

Chambolle’s projection algorithm [2] for TV-denoising is based on a dual formulation and it is
related to the works of Chan, Golub and Mulet [20] or of Carter [21]. Chambolle discusses not only
its application to the image denoising problem (4) for additive white Gaussian noise, but also to the
inverse problem of zooming and to the computation of the mean curvature motion of interfaces. It has
also been extended to image deblurring [22] or image inpainting and colorization [23]. For denoising,
the algorithm provided in Chambolle’s paper [2] has proved to be quite efficient for regularizing noisy
images without over-smoothing the boundaries of the objects.

2.1 Minimization of the ROF Model using a Projection Approach

Let us call F (u) = TV(u), then the Euler–Lagrange equation associated to (4) is

∂F (u) + λ(u− f) 3 0, (6)

where ∂F is called the sub-differential of F and is defined by

ω ∈ ∂F (u) ⇔ F (v) ≥ F (u) + 〈ω, v − u〉L2(Ω,R) ∀v ∈ L2(Ω,R).

Note that if F is differentiable at u and F (u) < ∞, then ∂F (u) = {∇F (u)}. Now, according to
convex analysis [24, 25], (6) can be rewritten as

u ∈ ∂F ∗ (λ(f − u)) ,

where F ∗ is the Legendre–Fenchel transform of F defined by

F ∗(v) = sup
u

{
〈u, v〉L2(Ω,R) − F (u)

}
.

Equivalently,

λf ∈ λ(f − u) + λ∂F ∗ (λ(f − u)) ,
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which implies that ω = λ(f − u) is the minimizer of

1

2
‖ω − λf‖2

2 + λF ∗(ω). (7)

It is a standard fact in convex analysis that the Legendre-Fenchel transform of a convex and one-
homogeneous2 functional F is the characteristic function of a closed convex set KF :

F ∗(v) = XKF (v) =

{
0 if v ∈ KF ,
+∞ otherwise,

(8)

where KF is defined by

KF =
{
v ∈ L2(Ω,R) : 〈v, u〉L2(Ω,R) ≤ F (u) ∀u ∈ L2(Ω,R)

}
.

On the other hand, since any closed convex proper function3 satisfies F ∗∗ = F , we recover

F (u) = X ∗KF (u) = sup
v

{
〈u, v〉L2(Ω,R) −X (v)

}
= sup

v∈KF
〈u, v〉L2(Ω,R). (9)

Therefore, one readily sees from (5) that KF is the closure of the set{
divξ : ξ ∈ C1

c

(
Ω,R2

)
, ‖ξ‖∞ ≤ 1

}
.

Finally, since ω is the minimizer of (7) and F ∗ is given by (8), then ω is necessarily the orthogonal
projection of λf on KF . If πKF denotes the projection operator onto the set KF , then the solution
of (4) is simply given by

u = f − π 1
λ
KF

(f). (10)

2.2 Computing the Discrete Minimizer

To simplify, we assume that the image is given by a two-dimensional matrix of size N ×N , although
it would be easy to adapt all arguments for a more general M ×N matrix. By Chambolle’s notation,
X = RN2

and Y = X ×X. For any u ∈ X, we introduce the discrete gradient operator Du ∈ Y via
forward differences, i.e.

Du(i, j) = (∂xu(i, j), ∂yu(i, j)) , ∀ 1 ≤ i, j ≤ N, (11)

with

∂xu(i, j) =

{
u(i+ 1, j)− u(i, j) if i < N,
0 if i = N,

(12)

and

∂yu(i, j) =

{
u(i, j + 1)− u(i, j) if j < N,
0 if j = N.

(13)

Then, the discretization of the standard total variation defined in (5) is

F (u) :=
∑

1≤i,j≤N

|Du(i, j)|Y , (14)

2F (λu) = λF (u), ∀λ > 0, ∀u ∈ L2(Ω,R).
3A proper convex function (F 6=∞) is closed if and only if it is lower semi-continuous.
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where the standard Euclidean scalar product on Y reads

〈p, q〉Y =
∑

1≤i,j≤N

p1(i, j)q1(i, j) + p2(i, j)q2(i, j),

for each p, q ∈ Y , p = (p1, p2) and q = (q1, q2). Then, we can rewrite (14) as

F (u) = sup {〈p,Du〉Y : p ∈ Y, |p(i, j)| ≤ 1 ∀i, j} (15)

for every u ∈ X. We introduce a discrete divergence operator, div : Y → X, such that

〈−div p, u〉X = 〈p,Du〉Y , ∀p ∈ Y, ∀u ∈ X,

where 〈u, v〉X =
∑

i,j u(i, j)v(i, j). It is easy to check that, for every p = (p1, p2) ∈ Y , div is given by

(div p) (i, j) =


p1(i, j) if i = 1,
−p1(i− 1, j) if i = N,
p1(i, j)− p1(i− 1, j) otherwise,

+


p2(i, j) if j = 1,
−p2(i, j − 1) if j = N,
p2(i, j)− p2(i, j − 1) otherwise.

(16)

From (15) and the definition of the divergence operator, we deduce that

F (u) = sup
v∈KF

〈u, v〉X ,

with KF given by
{div p : p ∈ Y, |p(i, j)| ≤ 1, ∀i, j} .

Computing the nonlinear projection π 1
λ
KF

(f) amounts to solving the following constrained min-
imization problem

min

{∥∥∥∥1

λ
div p− f

∥∥∥∥2

X

: p ∈ Y, |p(i, j)|2 − 1 ≤ 0, ∀i, j

}
.

The classical Karush–Kuhn–Tucker optimality conditions [25, 26] imply that

−D
(

1

λ
div p− f

)
(i, j) + α(i, j)p(i, j) = 0,

where α(i, j) ≥ 0 is the Lagrange multiplier associated with the constraint |p(i, j)|2 − 1 ≤ 0. This
new parameter can be eliminated as follows. If |p(i, j)| < 1, then the Lagrange multiplier is not
active, i.e. α(i, j) = 0 and D

(
1
λ
div p− f

)
(i, j) = 0. On the other hand, if |p(i, j)| = 1, then the

Lagrange multiplier becomes active and α(i, j) = |D
(

1
λ
div p− f

)
(i, j)| > 0. In any case, we deduce

that α(i, j) = |D
(

1
λ
div p− f

)
(i, j)| for each 1 ≤ i, j ≤ N . Finally, we get:

−D
(

1

λ
div p− f

)
(i, j) +

∣∣∣∣D(1

λ
div p− f

)
(i, j)

∣∣∣∣ p(i, j) = 0.

Chambolle thus proposed the semi-implicit gradient descent scheme described in algorithm 1 for
computing the discrete minimizer of (4). The criterion for stopping the iteration just consists in
checking that the maximum variation between the dual variables pni,j and pn+1

i,j is less than some
given tolerance. Furthermore, Chambolle proved [2, Theorem 3.1] the convergence of the algorithm
for δt < 1/8. However, Aujol showed [27] that Chambolle’s algorithm is a particular case of a previous
one proposed by Bermúdez and Moreno [28] that guarantees convergence using a twice larger time-
step parameter. Accordingly, the convergence of algorithm 1 is guaranteed for any δt < 1/4. Finally,
we want to remark that the dual problem with a fixed λ can also be solved using a Nesterov accelerated
method in an usually faster way, see for instance the paper by Beck et al. [17].
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Algorithm 1 Chambolle’s projection algorithm for gray-scale TV-denoising

Input: A noisy image f(i, j) as a N × N matrix, a trade-off parameter λ > 0, a time-step
parameter δt > 0 and an algorithm tolerance tol > 0.
Output: The denoised image u(i, j) as a N ×N matrix.

p← 0
while max

1≤i,j≤N

{
|pn+1(i, j)− pn(i, j)|

}
> tol do

for all pixel (i, j) in the image do

p(i, j)← p(i, j) + δtD (div p− λf) (i, j)

1 + δt|D (div p− λf) (i, j)|
end for

end while
return u = f − 1

λ
div p.

2.3 Chambolle’s Projection Algorithm for Color Images

For color images, the standard dual definition of the vectorial total variation introduced by Blomgren
and Chan [3] is used in place of the TV:

VTV(u) =

∫
Ω

(
M∑
m=1

|∇um|2
) 1

2

dx, (17)

where u = (u1, . . . , uM) and M is the number of channels. From the Euler-Lagrange equation of
(17), one can observe that there is a coupling between components in such a way that each channel
uses information coming from the others to improve the denoising model.

The so-called Vectorial Rudin–Osher–Fatemi model (VROF) for color image denoising is

min
u∈BV (Ω,RM )

∫
Ω

|∇u| dx+
λ

2
‖u− f‖2

L2(Ω,RM ), (18)

where
∫

Ω
|∇u| is an alternative notation for the VTV defined by (17), f = (f1, . . . , fM) is the given

noisy vector-valued image and the L2(Ω,RM)-norm is naturally defined as

‖u− f‖2
L2(Ω,RM ) =

∫
Ω

M∑
m=1

|um − fm|2 dx.

Existence of minimizer for the variational VROF model can be proved by standard arguments [29].
Chambolle’s projection algorithm can be easily extended to the vectorial case so that, for any

observed color image f ∈ L2(Ω,RM), the minimizer of (18) is computed as

u = f − π 1
λ
KV TV

(f), (19)

whereKV TV =
{
v ∈ L2(Ω,RM) : 〈v,u〉L2(Ω,RM ) ≤ VTV(u) ∀u ∈ L2(Ω,RM)

}
. Therefore, algorithm 1

can be easily adapted for computing π 1
λ
KV TV

(f) in the discrete setting:

pn+1
m (i, j) =

pnm(i, j) + δtD(div pnm − λfm)(i, j)

1 + δt

√∑M
m=1 |D(div pnm − λfm)(i, j)|2

, ∀1 ≤ m ≤M.
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3 Estimation of λ for Gaussian Noise

The choice of the trade-off parameter λ affects the balance between removing noise and preserving
sharp signal content. A straightforward method for parameter tuning is the discrepancy principle,
according to which λ is selected to match the noise variance σ2. This method has an observed
tendency to overestimate the mean squared error optimal choice of λ to slightly oversmooth the
solution [30]. We nevertheless follow it here as a simple automatic selection of the parameter.

For TV-denoising, the discrepancy principle suggests to solve the constrained form of the ROF
problem (2)-(3). Note that the first constraint in (3) can be dropped because it is automatically
enforced by the evolution procedure (see the paper by Chambolle et al. [7, section §2.1] for more
details). Consequently, tuning λ can be approached by solving the following constrained minimization
problem:

min
u∈BV (Ω)

∫
Ω

|∇u(x)|dx subject to

∫
Ω

|u(x)− f(x)|2dx = σ2|Ω|. (20)

Let 〈f〉 denote the mean value of f . Provided that the variance of the observed image is at least as
large as the noise level4, ∫

Ω

|f(x)− 〈f〉|2dx ≥ σ2|Ω|,

then it can be shown [7] that there exists a Lagrange multiplier λ > 0 such that problem (20) has
a unique solution that is given by the equivalent unconstrained problem (4). Therefore, there exists
a unique value of λ for which the minimizers of the two problems are the same. Unfortunately, the
relationship between σ and λ is indirect, there is no closed-form formula to obtain the value of λ
corresponding to a particular σ.

In general, σ is less difficult to estimate than λ. To find a good estimate of λ, Chambolle
proposed [2] solving (4) through algorithm 2. The algorithm generates a sequence of values that is
proved to converge monotonically to the unique λ such that ‖u− f‖2

2 = σ2.

Algorithm 2 Tuning λ for Gaussian noise

Input: The noise standard deviation σ and an arbitrary starting value λ0 > 0.
Output: The limit value of the trade-off parameter λ.

λ← λ0

while not convergence do
u← f − 1

λ
div p from algorithm 1

λ← ‖u− f‖X
Nσ

λ

end while
return λ.

We initialize the iteration process with the following empirical estimate of λ:

λ0 =
2.1237

Mσ
+

2.0547

Mσ2
, (21)

where M is the number of channels of the image and σ is the noise standard deviation relative to
the intensity range [0, 255]. To speed up computations, note that the current u can be used as the
initial guess in the following iteration. The algorithm converges quickly for most images and noise
levels. We perform five iterations to tune λ, which is sufficiently accurate so that ‖u− f‖2

2 ' σ2.

4This assumption is likely to be true since f is supposed to have additive noise of variance σ2.
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4 Experimental Results

In this section, we present experimental results illustrating the behavior of Chambolle’s projection
algorithm for (vectorial) total variation denoising and we display a comparative performance with
some state-of-the-art methods.

4.1 Examples of Gaussian Denoising

We use algorithm 1 for Gaussian denoising with λ provided by algorithm 2. The step size used is
0.248, and the criterion for stopping the process just consists in checking that the maximum variation
between two consecutive iterations of the dual variable is less than 10−2.

The first example demonstrates how for VTV-regularized Gaussian denoising Chambolle’s pro-
jection algorithm behaves. Figure 1 displays a color image which has been corrupted with additive
white Gaussian noise of standard deviation σ = 20. The denoised image reveals that the root-mean-
square error (RMSE) has been significantly reduced, whereas the so-called peak signal-to-noise ratio5

(PSNR) has been improved. We observe that while sharp edges have been preserved, some details
have been blurred or have disappeared as is highlighted in figure 2. As the noise level increases, sin-
gularities on the image and distortions produced by the random noise become indistinguishable from
the gradient point of view. Consequently, the VTV-regularization drives to a smoothing process.

Reference image
Noisy image

RMSE = 18.63
PSNR = 22.73

Denoised image
RMSE = 8.84
PSNR = 29.20

Figure 1: From left to right, reference image, noisy image corrupted with Gaussian noise of standard
deviation σ = 20 and denoised image provided by Chambolle’s projection algorithm. We observe
that much of the noise has been removed while preserving, more or less, the signal content.

To illustrate how the value of the trade-off parameter λ influences the result for TV-regularized
Gaussian denoising, Chambolle’s projection algorithm is applied to a grayscale image corrupted with
Gaussian noise of standard deviation σ = 20. Figure 3 displays the results for several values of λ. On
the one hand, when λ is very small, the image becomes blurred due to an over-smoothing process.
This effect can be observed for λ = 0.01. On the other hand, if λ ≥ 0.1 then the algorithm is not
able to remove all noise from the input image. Algorithm 2 gets a compromise between removing
noise and preserving signal content. The optimal choice of λ for the noisy image in figure 3 is 0.052,
which provides the best result both visually and in terms of RMSE and PSNR.

5The peak signal-to-noise ratio (PSNR) is the ratio between the reference signal and the distortion signal in an
image, given in decibels. The higher the PSNR, the closer the distorted image is to the original. Its value is defined as

PSNR = 10 log10

(
MAX2

MSE

)
, where MSE is the mean-square error between the original and the distortion image, and

MAX is the maximum possible pixel value of the image. In our case, since the pixels are represented using 8 bits per
sample, MAX = 255.
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Reference image Noisy image Denoised image

Figure 2: Zoom in on the bar code located in the lower right-hand side of the images displayed in
figure 1. Note that some details have been blurred during the denoising process.

Reference image
Noisy image

RMSE = 19.94
PSNR = 22.14

Denoised image λ = 0.1
RMSE = 8.48
PSNR = 29.56

Denoised image λ = 0.075
RMSE = 7.35
PSNR = 30.81

Denoised image λ = 0.052
RMSE = 7.24
PSNR = 30.94

Denoised image λ = 0.01
RMSE = 11.99
PSNR = 26.55

Figure 3: From left to right and from top to bottom, reference image, noisy image corrupted with
Gaussian noise of standard deviation σ = 20 and denoised images provided by Chambolle’s algorithm
for several λ values. Notice that the noise is not completely removed for λ = 0.1, whereas the result
for λ = 0.01 becomes blurred. The optimal choice of λ is 0.052, which provides the best result.
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The criterion for stopping the algorithm consists in checking that the maximum variation between
two consecutive iterations is less than 10−2, as suggested in Chambolle’s paper [2]. Nevertheless, we
can impose the tolerance to be smaller, even at the expense of increasing the CPU time. The results
obtained in figure 4 reveal that not only the denoised image is visually much better (see how the
artifacts in the sky have been reduced), but also the PSNR gain is not at all negligible. Consequently,
to decrease the tolerance is worthwhile, but at a serious computational cost.

Reference image
Noisy image

RMSE = 18.92, PSNR = 22.59

Denoised image
tolerance = 10−2

RMSE = 9.94, PSNR = 28.19
CPU time = 0.18 seconds

Denoised image
tolerance = 10−3

RMSE = 9.88, PSNR = 28.24
CPU time = 18.94 seconds

Figure 4: From left to right and from top to bottom, reference image, noisy image corrupted with
Gaussian noise of standard deviation σ = 20 and denoised images provided by Chambolle’s algorithm
using tolerances 10−2 and 10−3, respectively. The algorithm was run on a laptop with one core
Processor Intel R© CoreTM i5 CPU M 430 @ 2.27 GHz × 4, with 3.8 GB RAM. We observe that the
result provided by the lowest tolerance is noticeably better since, for instance, artifacts in the sky
have been reduced.

As noted and modeled by Nikolova [31], a drawback of the TV-regularization is the staircase
effect, a tendency to produce flat regions separated by artificial edges. In order to illustrate this
phenomenon, we have generated a grayscale dégradé image corrupted with Gaussian noise of standard
deviation σ = 20. Figure 5 displays a cross section of the image to visualize the stair steps.
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Figure 5: Staircase effect in a grayscale dégradé image. The plot displays the intensity values versus
pixel position of the exact (solid line), noisy (dashed line) and denoised (thick line) images.

4.2 Examples of Laplacian and Poisson Denoising

The way the trade-off parameter λ is computed in algorithm 2 for Gaussian noise can be easily
adapted to Laplace noise, which fidelity term is

∫
Ω
|u(x)− f(x)| dx. In this case, λ has to be updated

at each step of the algorithm as

λk+1 =

√
‖u− f‖X

Nσ
λk.

On the other hand, if the observed image presents inherent Poisson noise, then the fidelity term of
the ROF model (4) becomes

∫
Ω

(u(x)− f(x) log u(x)) dx. However, Poisson noise can be approxi-
mately reduced to additive white quasi-Gaussian noise through the Anscombe transform [32] and
thus algorithm 2 can be used.

Figures 6 and 7 display the denoised images provided by Chambolle’s projection algorithm when
applied to noisy images corrupted with Laplace and Poisson noise, respectively. The results show
that algorithm 1 behaves well in both cases whenever λ is selected appropriately.

Reference image
Noisy image

RMSE = 19.77
PSNR = 22.21

Denoised image
RMSE = 7.43
PSNR = 30.71

Figure 6: From left to right, reference image, noisy image corrupted with Laplace noise of standard
deviation σ = 20 and denoised image provided by Chambolle’s algorithm with λ fixed to 0.055.
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Reference image
Noisy image

RMSE = 19.93
PSNR = 22.14

Denoised image
RMSE = 7.30
PSNR = 30.87

Figure 7: From left to right, reference image, noisy image corrupted with Poisson noise of standard
deviation σ = 20 and denoised image provided by Chambolle’s algorithm with λ fixed to 0.06.

4.3 Comparison with other Denoising Algorithms

The image denoising problem has been intensively studied during the last two decades and numerous
algorithms have been proposed and lead to brilliant success. Roughly speaking, the state-of-the-art
algorithms can be arranged in three classes: the variational methods, especially those based on the
ROF model; methods which try to recover the main structures of the images by using a dictionary;
and methods that take advantage of the non-local similarity of patches.

Chambolle’s projection approach is a simple, robust and fast algorithm which leads to image
results in the same ballpark as, for instance, the split Bregman method [19]. Due to its simplicity
and excellent performance, this contribution can be considered in addition as a baseline for compar-
ison and lower bound of performance for newly developed TV-denoising techniques. Nevertheless,
other algorithms like split Bregman, which is equivalent to the augmented Lagrangian method in-
troduced by Hestenes [33] and Powel [34] and which convergence was established by Bertsekas [35]
and Eckstein [36], are more flexible and can solve more problems than Chambolle’s algorithm.

On the other hand, both the dictionary learning and the so-called patch-based methods have much
greater computational complexity and are much more slower than most TV-denoising algorithms.
To name a few, there are K-SVD [37], NL-Means [38], BM3D [39] and DCT [40]. All of them have
public and commented implementations at Image Processing On Line6.

4.3.1 Comparison with the Split Bregman Method

In order to evaluate the real capacity of Chambolle’s approach among TV-denoising algorithms, a
precise performance comparison with split Bregman is done. Reliable software on this approach can
be found at IPOL webpage [19]. We use the source code provided there and all parameters are
selected as given in the corresponding paper. The study has been led on the noise-free color images
(the real standard deviation of the noise is σ � 1) displayed in figure 8. Both algorithms have been
processed on the noisy images obtained from the original ones after adding white Gaussian noise of
several standard deviations σ ∈ (0, 50]. All results have been saved in integer values on [0, 255].

Tables 1-2 display the RMSE and the PSNR of the noisy images as well as those corresponding
to the denoised images obtained after applying both algorithms for VTV-denoising. By and large,

6http://dx.doi.org/10.5201/ipol

322

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol


Chambolle’s Projection Algorithm for Total Variation Denoising

Book 774× 518 Building 704× 469 Computer 704× 469

Dice 704× 469 Flowers 704× 469 Garden 774× 518

Hall 704× 469 Leaves 704× 469 Traffic 704× 469

Trees 774× 518 Valldemossa 774× 518 Yard 704× 469

Figure 8: Set of noise-free color images used for the comparison between Chambolle’s projection
algorithm and the split Bregman method.
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we realize that Chambolle’s approach provides better results than split Bregman, which is more than
evident as the noise level increases. We want to emphasize that the performance of both algorithms
on images with outstanding vegetation, such as Trees or Garden, is not as good as on others. This
can be easily justified by taking into account that total variation can not distinguish between huge
gradients due to noise and huge gradients due to singularities on the image such as vegetation texture.

Image
Noisy image Chambolle Split Bregman

RMSE PSNR RMSE PSNR RMSE PSNR
Book 23.74 22.38 5.24 34.18 5.50 33.63

Building 22.40 22.83 9.29 29.37 11.24 27.99
Computer 22.03 22.95 9.12 29.57 11.72 27.77

Dice 22.70 22.75 3.29 38.39 5.08 35.23
Flowers 20.57 23.48 10.29 28.46 14.19 26.18
Garden 21.79 23.02 13.95 26.00 16.23 25.00

Hall 22.06 22.91 5.11 34.46 7.28 31.91
Leaves 20.46 23.57 5.30 34.19 10.75 28.89
Traffic 22.53 22.79 10.16 28.60 12.03 27.41
Trees 22.77 22.67 15.28 25.23 16.38 24.82

Valldemossa 23.04 22.64 10.03 28.64 11.45 27.68
Yard 21.34 23.15 8.09 30.51 11.11 28.25
Avg. 22.12 22.93 8.76 30.63 11.08 28.73

Table 1: For each image in figure 8, the averages of both the RMSE and the PSNR over all standard
deviations σ ∈ {5, 15, 20, 25, 30, 40, 50} are displayed.

σ
Noisy image Chambolle Split Bregman

RMSE PSNR RMSE PSNR RMSE PSNR
5 4.89 34.35 3.60 37.48 3.96 36.47
10 9.59 28.50 5.69 33.70 6.15 32.86
15 14.18 25.10 7.25 31.69 8.05 30.60
20 18.66 22.72 8.51 30.34 9.82 28.88
25 23.05 20.89 9.55 29.35 11.51 27.51
30 27.35 19.40 10.44 28.58 13.14 26.34
40 35.68 17.09 11.93 27.39 16.39 24.40
50 43.56 15.36 13.13 26.52 19.63 22.79

Avg. 22.12 22.93 8.76 30.63 11.08 28.73

Table 2: For each value of σ, the averages of both the RMSE and the PSNR over all color images in
figure 8 are displayed.

In addition to RMSE and PSNR values, it is really interesting to compare visually both methods,
especially to remark and regret the inherent and characteristic artifacts of each one. For this purpose,
we have run both algorithms for the same fixed time and we compare the results at this point. Figure 9
reveals that the result obtained with split Bregman becomes cartoon-like due to an over-smoothing
process, which does not happen so much when using Chambolle’s projection algorithm.

Finally, we test the speed of both algorithms for VTV-denoising. Computation times are reported
using the implementation included with this paper and the codes provided by Pascal Getreuer for the
split Bregman method at the IPOL webpage [19]. Both algorithms have been run on a laptop with
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Reference image
Noisy image

RMSE = 17.18, PSNR = 23.43

Denoised image by Chambolle
RMSE = 5.05, PSNR = 34.06

Denoised image by split Bregman
RMSE = 8.72, PSNR = 29.32

Figure 9: From left to right and from top to bottom, reference image, noisy image corrupted with
Gaussian noise of standard deviation σ = 20 and denoised images provided by Chambolle’s algorithm
and split Bregman, respectively. Both methods have been run for the same fixed time and the results
are compared at this point. Notice that the split Bregman result becomes cartoon-like, which does
not happen so much with Chambolle’s approach.

one core7. The noisy images have been generated by adding Gaussian noise of standard deviation
σ = 20 to noise-free images of different sizes. The trade-off parameter λ has been taken as the
optimal value provided by algorithm 2. We have run both algorithms during the same fixed time
and we report the RMSE and the PSNR values of the corresponding denoised images at this point.
Table 3 displays the results obtained for several running times. Notice that Chambolle’s projection
algorithm is significantly more efficient than split Bregman since it can restore corrupted images
better than split Bregman for identical stop criterion.

4.3.2 Comparison with the DCT Denoising Method

The Discrete Cosine Transform (DCT) image denoising algorithm is a robust and fast patch-based
method, arguably the simplest among all the counterparts but surprisingly effective. Reliable software
on this approach is accessible at Image Processing On Line [40]. The comparison has been led on
some of the noise-free color images of figure 8, after adding white Gaussian noise of several standard

7Processor Intel R© CoreTM i5 CPU M 430 @ 2.27 GHz × 4, with 3.8 GB RAM.
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Image size
Noisy image

CPU time
Chambolle Split Bregman

RMSE PSNR RMSE PSNR RMSE PSNR

256× 256 18.55 22.76

0.050 7.27 30.90 8.35 29.70
0.100 7.17 31.02 8.19 29.87
0.250 7.17 31.03 8.21 29.85
0.500 7.17 31.02 8.21 29.85

704× 469 17.18 23.43

0.1 9.16 28.90 8.71 29.33
0.3 7.14 31.06 7.25 30.92
0.5 6.75 31.54 7.25 30.92
1.0 6.62 31.71 7.26 30.91

1024× 1024 19.59 22.29

0.5 9.38 28.68 9.49 28.58
1.0 8.89 29.15 9.30 28.76
2.5 8.68 29.35 9.29 28.77
5.0 8.68 29.36 9.25 28.80

Table 3: For fixed running times, the RMSE and the PSNR of the denoised images provided by
Chambolle’s projection algorithm and the split Bregman method are displayed. Both algorithms
were run on a laptop with one core Processor Intel R© CoreTM i5 CPU M 430 @ 2.27 GHz × 4, with
3.8 GB RAM. By and large, notice that Chambolle’s approach is more efficient than split Bregman.

deviations σ ∈ (0, 50]. All results have been saved in integer values on [0, 255]. Computation times
are reported using the implementation included with this paper on a laptop with one core7, and the
online demo of the DCT algorithm provided at the IPOL webpage.

Table 4 displays the averages of the RMSE, the PSNR and the running times of both algorithms
over several noise standard deviations. By and large, DCT provides the best results in terms of
both RMSE and PSNR, whereas Chambolle’s approach is pretty more efficient. Only in smooth
textureless images without significant edges, as Dice, Chambolle’s projection algorithm performs
better than DCT. Consequently, to use a patch-based method seems to be worthwhile, but at a
serious computational cost.

Image
Noisy image Chambolle DCT

RMSE PSNR RMSE PSNR CPU time RMSE PSNR CPU time
Dice 22.69 22.76 3.29 38.38 0.25 3.33 38.30 33.29

Leaves 20.44 23.58 5.29 35.44 0.62 4.91 35.09 32.10
Traffic 22.53 22.79 10.16 28.61 0.25 8.69 30.08 32.06
Avg. 21.89 23.04 6.25 34.14 0.53 5.64 34.49 32.15

Table 4: For each image, the averages of the RMSE, the PSNR and of the running times of Cham-
bolle’s projection algorithm and DCT method over standard deviations σ ∈ {5, 15, 20, 25, 30, 40, 50}
are displayed. Chambolle’s algorithm was run on a laptop with one core Processor Intel R© CoreTM i5
CPU M 430 @ 2.27 GHz ×4 with 3.8 GB RAM, whereas the online demo provided at IPOL webpage
was used for DCT method. Notice that DCT has the best results in terms of RMSE and PSNR,
except for textureless images as Dice. On the contrary, Chambolle’s algorithm is more efficient from
the computational point of view.

Figure 10 shows the results obtained with both DCT and Chambolle’s algorithm on the Traffic
image after adding white Gaussian noise of standard deviation σ = 20. We have zoomed in on the
white van that appears on the right-hand side of the corresponding images. On the one hand, having
shape adaptive patches in the DCT algorithm definitively improves the performance on regions with
singularities. Indeed, edges appear more straight with DCT and some detail has been blurred or has
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disappeared in Chambolle’s result (see, for instance, the wheel of the van). Furthermore, the result
obtained with Chambolle’s method becomes cartoon-like due to an over-smoothing process, which
does not happen in such considerable way with DCT. On the contrary, one realizes that in quasi-
constant areas the DCT denoising algorithm introduces some artifacts that lead to less convincing
results.

Reference image
Noisy image

RMSE = 18.92, PSNR = 22.59

Denoised image by Chambolle
RMSE = 9.92, PSNR = 28.20

Denoised image by DCT
RMSE = 8.35, PSNR = 29.70

Figure 10: From left to right and from top to bottom, reference image, noisy image corrupted with
Gaussian noise of standard deviation σ = 20 and denoised images provided by Chambolle’s algorithm
and DCT method, respectively. Notice that edges and other singularities are better preserved on the
DCT result than on the Chambolle’s one, which is more blurred. On the contrary, we observe that
the DCT algorithm introduces some artifacts in homogeneous areas.
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5 On Line Demo

An online demo of Chambolle’s projection approach is available at the Image Processing On Line
webpage8. The purpose is to apply VTV-denoising to an input image by means of algorithm 1. The
ANSI C source code (documented) used in this on line demo is available from the article web page.

Inputs are a grayscale or color image, a standard deviation σ > 0 for the Gaussian noise and a
value of λ > 0 if one wants to fix it during the denoising process. One can upload its own image or,
otherwise, one can use any of the images available on the demo page as the algorithm input. These
proposed images have almost no noise, having been obtained by first taking a good quality snapshot
in full daylight, and then zooming out by a 8-factor.

The algorithm can be used in different ways:

• Upload a noise-free image, add Gaussian noise and then denoise it with dynamic λ computed
by algorithm 2. The outputs are the reference image, the noisy image, the denoised image,
the difference image (difference between the denoised and the reference images with stretched
dynamic range on [0, 255] by an affine contrast change), the RMSE and the PSNR ratio of both
noisy and denoised images, and the values of λ tuning.

• Upload a noise-free image, add Gaussian noise and then denoise it with fixed λ. The outputs
are the reference image, the noisy image, the denoised image, the difference image, the RMSE
and the PSNR of both noisy and denoised images.

• Upload a noisy image, indicate the standard deviation σ and then denoise it with dynamic λ
computed by algorithm 2. The outputs are the input noisy image, the denoised image, the
residual noise image (difference between the denoised and the noisy images with stretched
dynamic range on [0, 255] by an affine contrast change) and the values of λ tuning.

• Upload a noisy image, indicate the standard deviation σ and then denoise it with fixed λ. The
outputs are the input noisy image, the denoised image and the residual noise image.

We recall that there exist methods that allow one to estimate the variance of a signal indepen-
dent additive white Gaussian noise. We propose Ponomarenko’s algorithm [41] available at IPOL
webpage [42] to estimate the noise level. Finally, the algorithm tolerance is fixed to 10−3 for the
online demo.
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