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Abstract

This paper focuses on the implementation of the pansharpened image fusion technique proposed
in the companion paper [A Nonlocal Variational Model for Pansharpening Image Fusion, SIAM
Journal on Imaging Sciences, 2014, to appear]. Pansharpening refers to the process of inferring
a high resolution multispectral image from a high resolution panchromatic image and low res-
olution multispectral one. Although quite successful in terms of relative error, state-of-the-art
pansharpening methods still introduce relevant color artifacts. The variational pansharpening
model proposed by Duran et al. incorporates a nonlocal regularization term that takes ad-
vantage of image self-similarity, leading to significant reduction of the above-mentioned color
artifacts.

Source Code

ANSI C source code to produce the same results as the demo is accessible at the IPOL web
page of this article1.

Keywords: image fusion; pansharpening; multispectral imagery; neighborhood filter; nonlocal
operators; energy functional
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1 Introduction

Many Earth observation satellites, such as SPOT, Landsat, IKONOS or QuickBird, provide contin-
uously growing quantities of remote sensing images useful for a wide range of tasks. For example,
satellite images are used in feature detection, land cover classification, water depth estimation, soil
moisture content, vegetation mapping or many military tasks such as mission planning, navigation
and targeting.

Digital color images are usually represented by three color values at each pixel. However, most
common cameras use a CCD sensor device measuring a single color per pixel (either red, green or
blue). The other two color values of each pixel must be interpolated from the neighboring pixels
in the so-called demosaicking process. The selected configuration of the CCD sensor usually follows
the CFA Bayer where, out of a group of four pixels, two are green, one is red and one is blue. Most
satellites use a different acquisition system that decouples the acquisition of a panchromatic image at
high spatial resolution from the acquisition of a multispectral image at lower spatial resolution. The
design of multispectral sensors with better resolution is limited by technical constraints of on-board
storage and by bandwidth transmission of the images from the satellite to the Earth.

High spatial resolution is necessary to correctly detect shapes, edges and structures. On the
contrary, different types of land are better classified using images with multiple spectral bands.
Accordingly, the goal of pansharpening image fusion is to integrate the geometric detail of the
panchromatic image and the precise spectral information of the multispectral image to produce a
high resolution multispectral image. Figure 1 illustrates the pansharpening problem.

Panchromatic image Multispectral image Pansharpened image

Figure 1: Description of the pansharpening problem. Most satellites provide a high-resolution
grayscale image that contains information about shapes, features and structures, and a multispectral
image at lower spatial resolution. The goal of pansharpening is to infer a high resolution multispectral
image from the previous data.

The pansharpening has been an intensive field of research during the last decades. Initial methods
imposed the final color image to match the luminance of the panchromatic image while maintain-
ing the low frequencies of the initial chromatic components. This is the case of the component-
substitution techniques, for instance the Intensity-Hue-Saturation (IHS) [12, 5, 17, 21] and the Prin-
cipal Component Analysis transforms (PCA) [6, 9, 19], or of relative spectral contribution methods,
such as intensity modulation [7] and Brovey’s method [23]. Several models using discrete wavelet
transforms [26, 10, 27, 16, 25] or Laplacian pyramid algorithms [24, 1] have also been proposed. Some
recently proposed variational models determine the pansharpened image through the minimization
of specific energy functionals [2, 15]. Pansharpening techniques have been extensively reviewed in
the literature [22, 20, 8].
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Duran et al. [3] proposed a variational pansharpening formulation inspired on the NL-means
denoising algorithm [4]. The functional consists of two fidelity terms, which force the pansharpened
image to be consistent with panchromatic and multispectral data, and a nonlocal regularization term
which acts as a neighborhood filter. The panchromatic image is used to derive nonlocal relationships
among patches describing the geometry of the desired pansharpened image. This geometry being
available through the panchromatic image, the problem reduces to a linear quadratic system as
proposed in [11].

In this paper, we first introduce the nonlocal functional form of the NL-means after which we
present the pansharpening model proposed by Duran et al. [3]. Then we focus on the description
and implementation of the derived algorithm. Lastly, a detailed performance comparison with some
of state-of-the-art methods for pansharpening is presented.

2 Nonlocal Regularization

The NL-means algorithm [4] denoises a pixel x ∈ Ω by averaging the values of all pixels whose
Gaussian neighborhood looks like the neighborhood of x:

NL[u](x) =
1

C(x)

∫

Ω

e−
dρ(u(x),u(y))

h2 u(y)dy, ∀x ∈ Ω,

where

C(x) =

∫

Ω

e−
dρ(u(x),u(y))

h2 dy

is a normalizing factor and the distance dρ is given by

dρ (u(x), u(y)) =

∫

Ω

Gρ(t)|u(x+ t)− u(y + t)|2dt.

In this framework, Gρ is a Gaussian kernel and h acts as a filtering parameter. The parameter h

controls the decay of the exponential function and, therefore, the decay of the weights as a function
of the Euclidean distances.

Kindermann et al. [13] were the first to formulate the NL-means algorithm as a variational method.
They interpreted the NL-means, and the neighborhood filters in general, as regularizations based on
nonlocal functionals in the general form

∫

Ω

∫

Ω

g

(

|u(x)− u(y)|2

h2

)

w(|x− y|)dxdy,

where w(|x−y|) is a spatial weight function. Similar approaches have been introduced for many image
processing applications where classical TV minimization [18] is replaced by nonlocal regularization
terms. Gilboa and Osher [11] considered the general quadratic nonlocal functional

J(u) =

∫

Ω

∫

Ω

(u(x)− u(y))2wu0(x, y)dxdy, (1)

where wu0(x, y) now depends on the initial image u0. The weight function wu0 is always assumed
nonnegative and symmetric. Gilboa and Osher [11] minimized J(u) with a gradient descent method
derived from the associated Euler-Lagrange equation, that is,

un+1(x) =
1

C(x)

∫

Ω

un(y)wu0(x, y)dy,

where C(x) =
∫

Ω
wu0(x, y)dy is a normalizing factor and u0 is given as an initial condition of the pro-

cess. This formulation is a linear and powerful tool for image processing since the weight distribution
is independent of u and there is no restriction on the way the initial condition is computed.
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3 The Pansharpening Model

The pansharpening model proposed by Duran et al. [3] is based on a variational formulation and it
is related to the works of Ballester et al. [2] and of Gilboa and Osher [11].

Let us denote by ~u = (u1, . . . , uM) the true multispectral image defined on an open bounded
domain Ω ⊂ R

N , where M is the number of spectral channels. Each coordinate um : Ω → R,
1 ≤ m ≤ M , represents the intensity corresponding to the m-th spectral band. For color images,
M = 3 and the usual red, green and blue channels are considered. The available data is composed
by the panchromatic image P defined in the same domain Ω and the observed spectral components,
~uS = (uS

1 , . . . , u
S
M), defined on a sampled grid S ⊆ Ω, uS

m : S → R, whose points will be called the
low-resolution pixels.

We propose to minimize a functional consisting of a nonlocal regularization term and two fidelity
terms, which force the pansharpened image to be consistent with panchromatic and low-resolution
multispectral data.

Regularization term. The panchromatic image is used to derive nonlocal relationships among
patches. Accordingly, we introduce a quadratic regularization term as in (1) with the weight distri-
bution given by

ω(x, y) =
1

C(x)
e−

dρ(P (x),P (y))

h2 , (2)

where

C(x) =

∫

Ω

e−
dρ(P (x),P (y))

h2 dy. (3)

Note that ω(x, y) satisfies the usual conditions 0 ≤ ω(x, y) ≤ 1 and
∫

Ω
ω(x, y)dy = 1, but the

normalization using (3) breaks down the symmetry of the weights between two given pixels in the
image. By using (2)-(3), the geometry of the panchromatic is transported to the pansharpened
image.

Panchromatic constraint. We assume that the panchromatic image and the spectral bands
are geometrically aligned. Thus P should be a linear combination of the different channels of the
multispectral image, that is,

P (x) =
M
∑

m=1

αmum(x), ∀x ∈ Ω,

where αm ≥ 0, 1 ≤ m ≤M , and
∑

m αm = 1.
Spectral constraint. The low-resolution image is assumed to be related to the high-resolution

one by a low-pass filtering followed by subsampling, which writes as

km ∗ um(p) = uS
m(p), ∀p ∈ S, ∀1 ≤ m ≤M,

where km is the impulse response for the spectral channel um. In order to preserve the frequency
information from the original low-resolution multispectral image ~uS, the following term is considered
in the energy functional

∫

Ω

ΠS ·
(

km ∗ um(x)− uΩ
m(x)

)2
dx, ∀1 ≤ m ≤M, (4)

where ΠS =
∑

p∈S δp is a Dirac’s comb defined by the sampling grid S, and each uΩ
m denotes an

arbitrary extension of uS
m as a continuous function from S to Ω. This integral of a sum of Dirac’s is

unambiguous as we assume that no point of S belongs to the boundary of Ω. Furthermore, since the
integrand term is multiplied by ΠS, the integral expression (4) does not depend on the particular
extension uΩ

m.
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By taking into account the regularization term and the constraints imposed by the data generation
model, Duran et al. [3] propose to minimize the following energy functional

J(~u) =
1

2

M
∑

m=1

∫

Ω

∫

Ω

(um(x)− um(y))
2
ω(x, y)dxdy

+
λ

2

∫

Ω

(

M
∑

m=1

αmum(x)− P (x)

)2

dx (5)

+
µ

2

M
∑

m=1

∫

Ω

ΠS ·
(

km ∗ um(x)− uΩ
m(x)

)2
dx,

where λ, µ > 0 are weighting parameters. The same authors [3] show that there exists an unique
minimizer for (5) in a specific class of functions linked to a weighted L2 space. The associated
Euler-Lagrange equation to be solved for each channel um, 1 ≤ m ≤M , is given by

−Lum(x) + λαm

(

M
∑

k=1

αkuk(x)− P (x)

)

+ µ
(

k⊺

m ∗
(

ΠS ·
(

km ∗ um − uΩ
m

)))

(x) = 0, ∀x ∈ Ω, (6)

where k⊺

m is the kernel adjoint defined as k⊺

m(x) = km(−x) and the integral operator L is given by

Lum(x) =

∫

Ω

(um(y)− um(x))(ω(x, y) + ω(y, x))dy, ∀1 ≤ m ≤M.

4 Discrete Algorithm

Let the panchromatic image P be defined on a discrete grid I = {0, 1, . . . , N − 1}×{0, 1, . . . , N − 1}
and p = (pi, pj) ∈ I denote an image pixel. Let the spectral components uS

1 , . . . , u
S
M be defined on a

lower resolution grid S of size N
s
× N

s
, where s is the sampling factor.

Applying the gradient descent method to minimize (5) computes the solution of (6) iterating the
equation

u(n+1)
m (p) = u(n)

m (p)−∆t
∑

q∈I

(

u(n)
m (p)− u(n)

m (q)
)(

ω(p, q) + ω(q, p)
)

(7)

− ∆tλαm

(

M
∑

k=1

αku
(n)
m (p)− P (p)

)

−∆tµ
(

kt
m ∗

(

ΠS ·
(

km ∗ u
(n)
m − uΩ

m

)))

(p), ∀p ∈ I,

for each band um, 1 ≤ m ≤ M . In this setting, n ≥ 0 is the iteration number, ∆t > 0 stands for
the artificial time step in the descent direction and uΩ

m is an arbitrary extension of the low-resolution
band uS

m to the whole grid I by means of, for instance, a simple replication by s factor. Recall
that ΠS indicates which of the pixels in the high resolution image we actually know from the low
resolution image. Accordingly, the discrete version of ΠS is considered here as a N ×N matrix such
that ΠS(pi, pj) = 1 if (pi, pj) ∈ S and ΠS(pi, pj) = 0 otherwise. Note that this formulation requires
an initialization of each um.

For computational purposes, the regularity term is restricted to pixels at a certain distance from
the current pixel (support zone). That is, the weight distribution ω(p, q) will be zero for pixels such
that ‖p − q‖∞ > K, for a certain positive parameter K. Therefore, the similarity between pixels p
and q is measured as

ω(p, q) =







1

C(p)
e
− 1

h2

∑
t∈N0

‖P (p+t)−P (q+t)‖2 if ‖p− q‖∞ ≤ K,

0 otherwise,
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with the normalizing factor C(p) defined by

C(p) =
∑

{q:‖q−p‖∞≤K}

e
− 1

h2

∑
t∈N0

‖P (p+t)−P (q+t)‖2
,

where N0 is an l× l discrete window centered at (0, 0) (comparison window). Note that the Gaussian
kernel Gρ introduced in the mathematical formulation is not considered here as it is only necessary
when the size of the window increases considerably. Furthermore, the weight of the reference pixel,
ω(p, p), is set to the maximum of the weights ω(p, q) for q 6= p. This setting avoids the excessive
weighting of the reference point. Due to the fast decay of the exponential kernel, large Euclidean
distances yield nearly zero weights, acting as an automatic threshold. The decay of the exponential
functions, and thus the decay of the weights, is controlled by the parameter h.

In (7) note that, since the weights are computed on the panchromatic image, they are not modified
during the evolution procedure, so they are computed only once. The complexity associated to
the precomputation of the weights puts this algorithm at a computational cost higher than basic
pansharpening methods. Multiresolution and preselection strategies can be used to further accelerate
the patch comparisons [4, 14].

The whole algorithm is described by the pseudo-code in algorithm 1, which takes as input images
the high-resolution panchromatic, the extension of the multispectral data to the whole grid and an
arbitrary initialization. The first step of the proposed algorithm consists in computing the weight
distribution on the panchromatic image. After that, the solution of the pansharpening problem is
obtained by iterating equation (7) for a certain number of iterations.

5 Experimental Results

In this section we present experimental results illustrating the behavior of algorithm 1 for pansharp-
ening image fusion. Experiments were performed on natural images and on full color aerial images
furnished to us by CNES, Centre National d’Études Spatiales. In both cases we simulated panchro-
matic and subsampled spectral components from the “ground truth” reference images in the following
terms. The panchromatic image was obtained by the average of the available channels, that is, the
mixing coefficients were set to αm = 1

M
, 1 ≤ m ≤ M . The low-resolution multispectral image was

simulated by Gaussian convolution followed by subsampling. We used a sampling factor s = 4 with
a corresponding Gaussian convolution of standard deviation σ = 2.2.

First, we present a detailed comparison of the proposed algorithm with some relevant state-of-
the-art techniques applied to natural images. We shall compare with IHS [12], Brovey [23], Wavelets-
based [26] and P+XS [2]. The initialization used for the IHS method is a simple interpolation by
splines, whereas all other algorithms are initialized with the pansharpened image provided by IHS.
The parameters of our algorithm were selected as follows: λ = 100, µ = 100 · s2 (the parameter is
normalized depending on the sampling factor s), K = 3 (the size of the support zones is 7×7 pixels),
l = 3 (the size of the comparison window is 3 × 3 pixels) and ∆t = 0.01. The filtering parameter
controlling the decay of the weights was selected depending on the sampling factor, namely h = 6
if s = 4 and h = 1.25 if s = 2. As stopping criterion, we used a tolerance value of ε = 10−3

for the relative error between two consecutive iterations. Anyway, we stopped the algorithm after
Niter = 100 iterations even if the tolerance was not reached. The extended image ~uΩ required in the
scheme (7) was constructed by means of a simple replication by a factor s.

Figures 2 and 3 illustrate how the colors from the original low resolution multispectral images are
not necessarily preserved. The pansharpened image provided by the wavelet-based technique presents
several color artifacts which mainly appear at edges. IHS and Brovey give results with high spatial
resolution, however, a loss of spectral information occurs. For instance, the color of the balloon basket

6
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Algorithm 1 Nonlocal pansharpening algorithm
Input:

- P ← panchromatic image given on the high-resolution grid I

- ~uΩ = (uΩ
1 , . . . , u

Ω
M) ← arbitrary extension of the multispectral data to the whole grid

- ~u0 ← arbitrary initialization

- α1, . . . , αM ∈ [0, 1] ← mixing coefficients

- k1, . . . , kM ← impulse responses as two-dimensional matrices

- ΠS ← Dirac’s comb as a N ×N binary matrix

- λ, µ ≥ 0 ← trade-off parameters

- h > 0 ← filtering parameter for the weight distribution

- K ∈ Z
+ ← spatial support for searching similarities (support zone)

- l ∈ Z
+ ← size of N0 for computing distances on P (comparison window)

- ∆t > 0 ← time-step parameter

- Niter ∈ Z
+ ← number of iterations of the algorithm

Output: pansharpened image ~u = (u1, . . . uM)

for all pixel p ∈ I do ⊲ Pre-computation of the weights on the panchromatic image
C(p) ← 0
for all pixel q ∈ I, q 6= p do

if ‖p− q‖ ≤ K then

ω(p, q) ← e
− 1

h2

∑
t∈N0

‖P (p+t)−P (q+t)‖2

C(p) ← C(p) + ω(p, q)
else

ω(p, q) ← 0
end if

end for

ω(p, p) ← max{w(p, q) : q ∈ I, q 6= p}
for all pixel q ∈ I such that ‖p− q‖ ≤ K do

ω(p, q) ←
ω(p, q)

C(p)
end for

end for

~u← ~u0

n← 1
while n ≤ Niter do ⊲ Iteration of the explicit scheme (7)

for all spectral channel 1 ≤ m ≤M do

for all pixel p ∈ I do

um(p) ← um(p) − ∆t
∑

q∈I

(

um(p)− um(q)
)(

ω(p, q) + ω(q, p)
)

− ∆tλαm

(

∑M

k=1 αkum(p)− P (p)
)

− ∆tµ
(

k⊺

m ∗
(

ΠS ·
(

km ∗ um − uΩ
m

)))

(p)
end for

end for

n← n+ 1
end while

return ~u = (u1, . . . uM).
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in figure 2 has clearly changed from brownish to grayish. A similar spectral distortion is also apparent
in the result provided by P+XS. On the other hand, the proposed algorithm meaningfully reduces
color artifacts outperforming all the compared techniques. This visual comparison is supported by
the Root-Mean-Squared Error (RMSE) computed in RGB coordinates between the reference image
and each of the results obtained after applying the above-mentioned pansharpening techniques. If
we denote by ~uR = (uR

1 , u
R
2 , u

R
3 ) the reference image, then the formula for RMSE is given by

RMSE =
1

3

3
∑

m=1

√

∑

p∈I(um(p)− uR
m(p))

2

N2
.

Brovey, P+XS and IHS have a similar performance in terms of RMSE, their error being larger than
the proposed one.

Figure 4 illustrates the preservation of the spatial information contained in the panchromatic
image. For that purpose, the grayscale versions of the fused images were computed. All results
displayed in figure 4 compare favorably to the original panchromatic image, so that edges, textures
and other geometric details are highly preserved. We want to emphasize that algorithm 1 also
performs a slight denoising since it reduces the inherent noise that appears, for instance, at the bow
hull of the boat.

We test now all pansharpening techniques under comparison on a multispectral aerial image using
three bands (red, green and blue). The goal is to check if the self-similarity underlying the model
proposed by Duran et al. [3] holds for aerial images as natural images do. Figure 5 illustrates a
comparative visual quality assessment of fused images. For a better visual analysis, we display the
difference images between the reference one and the pansharpened results. Once again, IHS, Brovey,
Wavelet-based and P+XS techniques suffer from spectral distortion. Indeed, color saturation is
significantly reduced on the results provided by these methods, see for instance the red cars or the
thin wall appearing in the images. The algorithm discussed in this paper outperforms all other
techniques since the difference image displayed in figure 5 contains less amount of information. Note
that the proposed algorithm is also the best one in terms of root-mean-squared error.

Finally, we tested algorithm 1 on an aerial hyperspectral image furnished by the CNES. The
low-resolution hyperspectral image has four channels (red, green, blue and near-infrared) with a
resolution corresponding to one quarter of the panchromatic one. Furthermore, the algorithm was
now initialized by a simple replication of each spectral component. Figure 6 shows the reference, the
low-resolution and the pansharpened color images involving red, green and blue channels. It also
displays false color images using the near-infrared, red and green spectral bands (in this order) in
place of the usual RGB. At a glance, the results give good spatial resolution since the images look
clear. Furthermore, the spectral information is highly preserved and no artifacts are perceptible.

6 On Line Demo

An online demo of the nonlocal variational model is available at the web page of this article2. The
purpose is to simulate the pansharpening problem and to solve it by means of the proposed algorithm.
The ANSI C source code (documented) used in this on line demo is also available at the web page.

The program inputs are the RGB image and the sampling factor (s = 2 or s = 4). The other
parameters are fixed as indicated previously, but the users can download the source code and try
by themselves. Furthermore, one can upload its own input image or use any of the images available
on the demo page. The proposed images have almost no noise. They were obtained by taking good
quality photographs in full daylight and then zooming them out by an 8-factor.

2https://doi.org/10.5201/ipol.2014.98
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The implementation simulates the panchromatic and low-resolution multispectral images from
the input. The initialization is then computed by IHS transform and the extended image is given by
a simple replication of the low-resolution image by a factor s. The algorithm finally computes the
high resolution multispectral image.

The outputs are the reference RGB image, the panchromatic image, the low-resolution image,
the initialization provided by IHS, the pansharpened image, the residual images corresponding to
the initialization and the solution (difference between the corresponding image and the reference
one with stretched dynamic on [0, 255] by an affine contrast change), and the RMSE of both the
initialization and the pansharpened images.

Original
IHS

RMSE = 2.75
Brovey

RMSE = 2.76

Wavelets
RMSE = 4.04

P+XS
RMSE = 2.73

Duran et al.
RMSE = 1.31

Figure 2: Original color image and the pansharpened images provided by each technique, with
sampling factor s = 4. We also exhibit the RMSE values between the reference image and each
pansharpened result. All techniques perform similarly in terms of spatial quality or geometry except
for the wavelet-based one which presents artifacts at the edges of the balloon. In terms of spectral
quality, the model proposed by Duran et al. [3] outperforms all other methods. Indeed, the color
of the balloon basket has changed from brownish to grayish in the results provided by IHS, Brovey,
Wavelet-based and P+XS techniques. Similar effects can also be observed on the balloon stripes
where red and yellow are mixed resulting on a browner stripe. All these color artifacts are reduced
with the proposed algorithm which is able to better preserve the original colors.
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Original IHS Brovey

Wavelets P+XS Duran et al.

Figure 3: Difference images between the original and the pansharpened images from figure 2. Pixel
values have been rearranged from [−25, 25] to [0, 250] for better visibility. We observe that IHS,
Brovey, Wavelet-based and P+XS techniques lead to the loss of spectral information. Although a
slight color distortion remains, the proposed algorithm is able to better preserve the chromacity of
the original image.

Original IHS Brovey

Wavelets P+XS Duran et al.

Figure 4: Original panchromatic image and the grayscale versions of the pansharpened images pro-
vided by each technique, with sampling factor s = 4. Pixel values have been rearranged to [0, 50] for
better visibility. All results compare favorably to the original panchromatic, so that edges, textures
and other geometric details are highly preserved. Note that the proposed algorithm also performs
denoising since it reduces the inherent noise that appears, for instance, at the bow hull of the boat.
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Original
IHS

RMSE = 3.84
Brovey

RMSE = 3.90

Wavelets
RMSE = 4.51

P+XS
RMSE = 3.72

Duran et al.
RMSE = 3.03

Figure 5: Experiment with an RGB aerial image using s = 4 as sampling factor. We exhibit the
difference images between the reference one and the pansharpened results provided by each method
under comparison. Pixel values have been rearranged from [−25, 25] to [0, 255] for better visibility.
Furthermore, the RMSE values between the original image and the pansharpened ones are displayed.
To a greater or lesser extent, we observe that IHS, Brovey, Wavelet-based and P+XS techniques lead
to the loss of spectral information. For instance, the color saturation of reddish objects as cars have
been significantly reduced on the results provided by these methods. On the contrary, the model
proposed by Duran et al. [3] is able to better preserve the chromacity and, thus, the difference image
contains less amount of information.
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Original color image Low-resolution color image Pansharpened color image

Original false color image Low-resolution false color image Pansharpened false color image

Figure 6: Test of algorithm 1 on a four band aerial image using s = 4 as sampling factor. The first
row displays the original, the low-resolution and the pansharpened color images involving red, green
and blue channels. On the other hand, the second row exhibits the original, the low-resolution and
the pansharpened false color images involving near-infrared, red and green spectral bands (in this
order) in place of the usual RGB. The size of low-resolution images is 64 × 64 pixels, whereas the
size of original and pansharpened images is 256× 256 pixels.
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Image Credits

by KODAK.

by CNES, Centre National d’Études Spatiales.
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