
Morph-M: Image Processing Library Specialized in

Mathematical Morphology

Serge Koudoro*, Matthieu Faessel*, and Michel Bilodeau*

*CMM-Centre de Morphologie Mathématique, MINES Paristech, France

The aim of Morph-M is to provide a rich environment to develop morphological algorithms for
image processing. The main component of Morph-M is an image processing library implemented
on C++ following the principles of generic programming. Morph-M focuses on Mathematical
Morphology so this library contains most of the operators offered by mathematical morphology,
from basic operations, such as dilations and erosions, up to the most powerful operators, such as
the hierarchical watershed.

Modular Architecture

The modular architecture of Morph-M allows
easy adaption of software to different levels of
user experience:

C++ template layer The lowest level with
direct access to the raw image data. It’s
offers very flexible tools for algorithm de-
sign, at the cost of complexity. Common
algorithms are well factored and can be
easily extended, exotic data types can be
used, etc.

C-style interface layer The aim of this layer
is to make the most commonly used
C++ template algorithms available to non
template-aware tools. In order to do this,
it instanciates templates for the most com-
mon types and uses

Interpreted language layer This is cur-
rently the uppermost layer of Morph-M.
At the moment, Python is the only sup-
ported language. The aim of this layer is
to provide a convenient environment for
developers to prototype algorithms and
for users to bind common algorithms to-
gether.

Features

The main features of Morph-M are :

Portability Morph-M can be used on differ-
ents plateforms (32bits or 64bits) : Win-
dows, Linux and Mac.

Genericity Morph-M offers a large choice of
processing regarding the image type and
the structuring element. Morph-M is not
designed to be a fast library. Morph-M is
designed to be a powerful library in which
developers can quickly develop algorithms
by encouraging code re-use and generic
components.However, there are some el-
egant ways in which some optimized func-
tions can be seamlessly provided.

Robustness Nightly regression tests assure the
correct functionning of each procedure.

Extensible Myriad of addons, provide
connections with several library
(vtk,opencv,numpy,....)

1

Licence Proprietary for exterior. Python in-
terface Free for Mines Paristech personnal.

Content

• Images Structure

– multi-dimensional image data for de-
sired dimensions

– templated image data structures for
pixel type abstraction.

– several image file formats avalaible:
PNG,TIFF,BMP,JPEG,VTK,...

• Structuring Element

– Myriad of predefined Structuring el-
ement

– Easy use and easy manipulation of
SE Iterator.

– Multi-dimentionnal structuring ele-
ment.

– Dynamic Structuring Element

– Image-based Structing Element

– Structuring Elements following mo-
tion

– Neighborhood based Generic opera-
tions

• Morphological Operation

– Criteria based morphology (Area-
Closing,...)

– Basic morphological opera-
tors(Erode,...)

– Distance functions and Geodesic op-
erators

– Lexicographical morphology

– Morphological filters and measures

– Labelling and Leveling

– Morphological Segmentation

• Image Processing

– Arithmetics and logics

– Color conversion and manipulations

– Geometrics transformations (Draw-
ing,rotation,...)

– Pixel-wise generic operatior

• Filters

– Convolution filters

– Diffusion filters

– Noisifying filters

• Statistics Tools

– Kriging

– Linear algebra

– Morphological Measures (Granulom-
etry,...)

– Usual statistics (mean, variance, ...)

– Histograms and Counting (theshold
inter variance class, ...

• Graphs and Addons

– Morphology based on graph and Tree

– Graphs Cuts and Graph Manipula-
tion

– FFT, Skeleton, ...

Example

C++

Some Basics example of different Morph-M’s element:

// Creat ing images
Image <INT16> im1 (x , y , z) ;
im1 . a l l o ca te Image () ;
// Simple i t e r a t o r
typename Image<T> : : i t e r a t o r i t , i end ;
for (i t=im . begin () , iend = im . end () ; i t != iend ; ++i t)

∗ i t=value ;
// Get Raw Pointer
const INT16 ∗ b u f f e r I n = im1 . rawPointer ()

2

// Cal l a s imple func t i on
ImErode(&im1 , morphee : : se lement : : neighborsCross2D ,&imout)

Algorithm Design Example

Python

This example show 3 different ways to make simple Erosion:

• The first way using generic :

def MyErode1 (imIn , nl , imOut) :
This gener i c f unc t i on c r ea t e neighborhood l i s t
send i t to opera tor and put the re turn
va lue on the centered p i x e l
lambda ver s i on :
morphee . ImNeighborhoodUnaryOperation (imIn , nl , lambda l : min (l) , imOut)
vers ion us ing ’min ’ f unc t i on :
morphee . ImNeighborhoodUnaryOperation (imIn , nl , min , imOut)

• The second way using image and neighborhood Iterator. In spite of slowness of this method,
it is a good way to quickly prototyting new algorithms. Once validated, it can be imple-
mented on c++ core.

def MyErode2 (imIn , nl , imOut) :
#Get image i t e r a t o r
i t I n = imIn . imageData ()
itOut = imOut . imageData ()

3

#Create a neighborhood wi th s p e c i f i c SE
neighb = createNeighborhood (imIn , n l)

while i t I n . i sNotF in i shed () and i tOut . i sNotF in i shed () :
neighb . se tCenter (i t I n)
neighb . imageData re turn a l i s t o f neighborhodd p i x e l
#then we compute the min
i tOut . s e t P i x e l (min (neighb . imageData ()))
i t I n . next ()
itOut . next ()

• Main function to check coherence between all developed version.

def main () :
im = f i l e R e a d (” . / Gray/ foreman . png”)
imEro = getSame (im)
imEroRef = getSame (im)
#Struc tu r ing Element
nl = NeighborList . neighborsSquare2D

MyErode1 (im , nl , imDil)
C++ func t i on
ImErode (im , nl , imDilRef)
a s s e r t (i sEqua l (imDil , imDilRef))
MyErode2 (im , nl , imDil)
a s s e r t (i sEqua l (imDil , imDilRef))

Evolution: Smil

The goal is to create new core with the following
features:

• Light and work only on 2d and 3d images

• Fast processing (optimized algorithms and
parellel programming)

• Real Time processing for industrial appli-
cation

More Information

• MorphM Website : http://cmm.ensmp.fr/Morph-
M

• Documentation : http://morphm.ensmp.fr

• Contact:

– serge.koudoro@mines-paritech.fr

– michel.bilodeau@mines-paristech.fr

– matthieu.faessel@mines-paristech.fr

4

