
Overview
References
Online	Demo
Algorithm	(LCC	algorithm)
Implementation
Source	Code
Results
Other	results

	IPOL	Journal	·	Image	Processing	On	Line
HOME	·	ABOUT	·	ARTICLES	·	PREPRINTS	·	WORKSHOPS	·	NEWS	·	SEARCH	

Local	Color	Correction
Juan	Gabriel	Gomila	Salas,	Jose	Luis	Lisani

article 	 demo 	 archive

Communicated	by	Jean-Michel	Morel
Demo	edited	by	Jose-Luis	Lisani	Roca

Juan	Gabriel	Gomila	juan.gabriel@me.com	Universitat	de	les	Illes
Balears	(UIB)
José	Luis	Lisani	Roca	joseluis.lisani@uib.es	Universitat	de	les
Illes	Balears	(UIB)

Overview
In	the	context	of	this	paper,	by	 color	correction	techniques	we	refer	to
methods	that	increase	the	contrast	of	digital	images.

When	 images	 are	 either	 too	 dark	 or	 too	 bright	 a	 classical	 gamma
correction	is	enough	to	increase	their	dynamic	range	and	improve	their	contrast.

Figures	 1	 and	 2	 display	 two	 examples	 of	 contrast	 enhancement	 using	 gamma	 correction.	 In	 the	 first
case	a	dark	image	is	processed	with	γ=0.5,	while	in	Fig.	2	γ=2.5	is	used	to	process	a	bright	image.	The
histograms	of	 the	resulting	 images	show	a	clear	 increase	of	 the	dynamic	range.	 In	 these	examples	 is
also	shown	that	global	histogram	equalization	doesn't	perform	well,	since	 it	 increases	excessively	 the
dynamic	range	of	the	original	images.

Figure	1.	Effect	of	gamma	correction	with	γ=0.5	on	a	dark	image.

published
reference

2011-09-27
Juan	Gabriel	Gomila	Salas,	and	Jose	Luis	Lisani,	Local	Color	Correction,	Image
Processing	On	Line,	1	(2011).	http://dx.doi.org/10.5201/ipol.2011.gl_lcc

→ BibTeX

Content

Original

γ=0.5

Histogram
Equalization

Original

γ=2.5

Histogram
Equalization

image	 histogram	

image	 histogram	

http://www.ipol.im/
http://www.ipol.im/
http://www.ipol.im/meta/
http://www.ipol.im/pub/art/
http://www.ipol.im/pub/pre/
http://dev.ipol.im/ws/
http://www.ipol.im/news/
http://demo.ipol.im/demo/gl_localcolorcorrection/
http://demo.ipol.im/demo/gl_localcolorcorrection/archive/
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol.2011
http://dx.doi.org/10.5201/ipol.2011.gl_lcc
mailto:juan.gabriel@me.com
mailto:joseluis.lisani@]uib.es

Figure	2.	Effect	of	gamma	correction	with	γ=2.5	on	a	bright	image.

However,	 when	 images	 contain	 both	 dark	 and	 bright	 regions	 gamma	 correction	 techniques	 perform
poorly	 (see	 Fig.	 3).	 The	 reason	 is	 that	 gamma	 correction	 is	 a	 global	 technique.	All	 pixels	 having	 a
particular	input	intensity	level	are	assigned	the	same	output	intensity,	independent	of	the	local	context.

Figure	3.	Gamma	correction	of	an	image	with	dark	and	bright	regions	with	different	values	of	γ.

Results	in	Fig.	3	show	that	 it	 is	not	possible	to	simultaneously	improve	the	contrast	of	dark	and	bright
regions	using	gamma	correction.	A	compromise	solution	 for	choosing	γ	 is	 to	compute	 the	mean	grey
level	μ	of	the	image	and	then	use	γ	>	1	(implying	attenuation	of	values)	or	γ	<	1	(implying	amplification
of	 values)	 depending	 on	 whether	 μ	 is	 above	 127.5	or	 below	 127.5,	 respectively	 (we	 assume	 8-bits
images),	according	to	the	following	formula,	inspired	by	[1]:

	(*default*	γ)

Other	methods	to	automatically	set	the	value	of	γ	are	explored	in	 [3].

For	the	original	image	in	Fig.	3,	the	default	γ	is	0.74,	which	gives	almost	the	same	result	shown	in	Fig.	3
for	γ=0.75.

In	situations	when	shadows	and	highlights	are	present	in	the	image,	local	techniques	outperform	global
techniques.	 Local	 techniques	 can	 map	 one	 input	 value	 to	 many	 different	 possible	 output	 values,
depending	 on	 the	 values	 of	 the	 neighboring	 pixels.	 This	 allows	 simultaneous	 shadow	 and	 highlight
adjustment.

In	 this	 paper	 we	 present	 a	 local	 algorithm	 for	 contrast	 enhancement	 developed	 by	 N.	 Moroney	 at
Hewlett-Packard	Laboratories	and	presented	at	the	IS&T/SID	Eight	Color	Imaging	Conference,	in	2000
(US	Patent	6,822,762,	2004).	The	algorithm	uses	a	non-linear	masking,	is	fast	and	does	not	require	any
manual	parameter	adjustments.

References

Original

γ=0.5

γ=2.5

γ=0.75

γ=1.5

image	 histogram	

References
1.	 a.	 Moroney.	 Local	Color	Correction	Using	Non-Linear	Masking	IS&T/SID	Eight	Color

Imaging	Conference,	pp.	108-111,	2000.
2.	 a.	 Moroney	et	al.	"Local	Color	Correction"	US	Patent	6,822,762.	November	23,	2004.
3.	 	J.G.	Gomila,	J.L.	Lisani.	Gamma	correction	IPOL	workshop,	2011
4.	 	Pascal	Getreuer.	"colorspace"
5.	 	Wikipedia:	"HSI"
6.	 	Wikipedia:	"HSL	and	HSV"
7.	 	Wikipedia:	"YPbPr"

Online	Demo
Try	this	algorithm	on	your	own	images	with	the	online	demo.

Algorithm	(LCC	algorithm)
Assume	8-bits	RGB	color	images	(R,	G,	B	values	in	the	range	[0,	255]).	The	algorithm	is	computed	in
two	steps:

1.	 A	mask	image	is	computed	from	the	input	image.
2.	 The	input	and	mask	images	are	combined	to	get	the	result.

The	mask	image	is	computed	from	the	intensity	component	of	the	color	image,	defined	as	the	average
of	R,	G	and	B	values	i.e.	I=(R+G+B)/3.	The	use	of	intensity	information	avoids	distortions	of	the	chroma.
The	mask	image	is	obtained	by	inverting	and	then	blurring	the	intensity	component	of	the	input	image:

Blurring	is	performed	by	using	a	Gaussian	kernel	of	large	radius,	which	guarantees	that	image	contrast
will	not	be	excessively	reduced	along	the	edges	(see	discussion	below).	The	resulting	mask	 indicates
which	regions	of	the	image	will	be	lightened	or	darkened.	For	instance,	a	light	region	of	the	image	will
have	a	dark	mask	value,	so	it	will	be	darkened.

The	 combination	 operation	 consists	 of	 a	 power	 function,	 where	 the	 exponent	 is	 computed	 using	 the
mask	value	previously	found.	If	the	mask	value	is	greater	than	128,	it	will	result	in	an	exponent	less	than
1,	while	if	the	mask	value	is	lower	than	128,	it	will	result	in	an	exponent	greater	than	1.	Moreover,	if	the
mask	value	is	precisely	128,	the	exponent	will	be	1,	and	it	will	have	no	effect	on	the	input	image.	The
operation	is	equivalent	to	a	pixel-wise	gamma	correction	and	can	be	written	as	the	following	equation:

	(1)

where,	 if	(x,y)	 is	 a	 pixel	 coordinate	 of	 the	 image	 domain,	 Input(x,y)	 is	 the	 input	 image,	M(x,y)	 is	 the
computed	mask	and	Output(x,y)	is	the	output	image.

If	R,	G,	B	are	normalized	in	the	range	[0,	1],	then	the	formulas	can	be	simplified:

	

	(1b)

In	 the	 case	 of	 monochrome	 images	 Input(x,	 y)	 is	 the	 intensity	 component	 of	 the	 image.	 In	[1]	 only
results	for	monochrome	images	are	shown.

For	color	images	we	have	mainly	two	options:

Apply	the	algorithm	channel	by	channel:
1.	 compute	I	and	M'	as	in	the	formulas	above
2.	 for	(Input,	Output)	in	{(R,	new	R),	(G,	new	G),	(B,	new	B)} 	apply	formula	(1b)

In	the	Results	section	(figures	6	and	7)	it	is	shown	that	this	option	may	lead	to	changes	in	chrominance.

http://www.ivl.disco.unimib.it/Teaching/AIC-2010-specialistica/2000 Moroney Local contrast correction.pdf
https://edit.ipol.im/edit/algo/gl_gamma_correction/
http://www.math.ucla.edu/~getreuer/colorspace.html
http://en.wikipedia.org/wiki/HSI_color_space
http://en.wikipedia.org/wiki/HSL_and_HSV
http://en.wikipedia.org/wiki/YPbPr
http://www.ipol.im/pub/demo/gl_localcolorcorrection/

In	the	Results	section	(figures	6	and	7)	it	is	shown	that	this	option	may	lead	to	changes	in	chrominance.

Take	a	Luma+Chroma	approach:
1.	 convert	the	input	RGB	image	to	a	Luma+Chroma	color	representation,

2.	 apply	LCC	to	the	Luma	component:

(we	assume	Luma	values	in	[0,	1]).

3.	 convert	back	to	RGB	using	the	new	Luma	and	the	original	Chroma

In	the	second	case,	we	have	several	possibilities,	depending	on	the	model	for	color	representation	that
we	choose.	Since	a	discussion	on	which	color	model,	 if	any,	is	better	is	beyond	the	goal	of	this	paper
we	just	decided	to	display	the	results	of	using	three	different	models:

HSI.	That	is,	Luma=I=(R+G+B)/3,	Chroma=HS.	In	this	case,	preservation	of	chroma	implies
preservation	of	original	R/G/B	ratios.
HSL.	That	is,	Luma=L,	Chroma=HS.
YPbPr.	That	is,	Luma=Y,	Chroma=PbPr.

Refer	to	[4]	for	further	information	about	color	models	and	conversion	formulas.

Comparisons	of	the	various	implementations	of	the	algorithm	are	presented	in	the	Results	section.

Parameters	of	the	algorithm.

The	only	free	parameter	of	the	algorithm	is	the	radius	(r)	of	 the	blurring	filter	used	to	obtain	the	mask
image.	As	commented	above,	a	certain	amount	of	blurring	 is	needed	 in	order	 to	avoid	 low	contrasted
edges.	 In	 particular,	 the	 author	 in	[1]	 recommends	 to	 use	 a	 large	 radius,	 in	 such	 a	 way	 that	 image
features	can	no	 longer	be	 recognized.	However,	 if	 the	 radius	 is	 too	big	 the	mask	 image	will	 become
uniform	 and	 the	 algorithm	 will	 reduce	 to	 a	 classical	 gamma	 correction.	 In	 the	Results	 section	 we
investigate	the	effect	of	the	radius	magnitude	on	various	test	images.

Implementation
Four	 versions	 of	 the	 local	 color	 correction	 (LCC)	 algorithm	 have	 been	 implemented	 (see	 previous
section	for	details):

LCC-RGB:	LCC	algorithm	applied	channel	by	channel	on	the	RGB	input	image.
LCC-HSI:	Luma+Chroma	approach	using	HSI	color	model.
LCC-HSL:	Luma+Chroma	approach	using	HSL	color	model.
LCC-YPbPr:	Luma+Chroma	approach	using	YPbPr	color	model.

In	all	the	implementations,	we	have	programmed	the	masking	step	by	assuming	that	the	original	image
has	been	extended	by	even	symmetry.

Concerning	 the	 range	 of	 values	 for	 parameter	r,	 we	 have	 decided	 to	 allow	 values	 between	 0	 (no
blurring)	to	half	 the	minimum	dimension	of	 the	 image.	The	use	of	 larger	radius	 implies	almost	uniform
mask	images.	In	such	cases,	we	have	decided	to	compute	a	global	gamma	correction	with	default	γ:

	(2)

where	μ	is	defined	as	follows:

average	value	of	I=(R+G+B)/3,	in	LCC-RGB	and	LCC-HSI
average	value	of	L,	in	LCC-HSL
average	value	of	Y,	in	LCC-YPbPr

Source	Code
An	 ANSI	 C	 implementation	 of	 the	 algorithm	 is	 provided:	 source	 code,	 documentation,	 online

An	 ANSI	 C	 implementation	 of	 the	 algorithm	 is	 provided:	 source	 code,	 documentation,	 online
documentation

Basic	 compilation	 and	 usage	 instructions	 are	 included	 in	 the	README.txt	 file.	 This	 code	 requires	 the
libpng	library.

	Linux.	You	can	install	libpng	with	your	package	manager.
	Mac	OSX.	You	can	get	libpng	from	the	Fink	project.
	Windows.	Precompiled	DLLs	are	available	online	for	libpng.

Legal	warning

Some	of	the	files	use	algorithms	possibly	linked	to	the	cited	patent	 [2].	These	files	are	made	available
for	 the	 exclusive	 aim	 of	 serving	 as	 scientific	 tool	 to	 verify	 the	 soundness	 and	 completeness	 of	 the
algorithm	 description.	 Compilation,	 execution	 and	 redistribution	 of	 these	 files	 may	 violate	 exclusive
patents	 rights	 in	 certain	 countries.	 The	 situation	 being	 different	 for	 every	 country	 and	 changing	 over
time,	 it	 is	 your	 responsibility	 to	 determine	 which	 patent	 rights	 restrictions	 apply	 to	 you	 before	 you
compile,	use,	modify,	or	redistribute	these	files.

The	rest	of	files	are	distributed	under	GPL	license.

Results
First,	 we	 start	 (Fig.	 4)	 by	 testing	 the	 algorithm	 on	 the	 image	 displayed	 in	 Fig.	 3,	 in	 order	 to	 check
whether	the	algorithm	is	able	to	improve	simultaneously	the	contrast	of	dark	and	bright	regions.

The	algorithm	is	run	with	different	values	of	parameter	 r	and	the	results	are	compared	with	a	gamma
correction	with	default	γ	(as	defined	by	equation	2).

Figure	4.	Local	Color	Correction	of	a	monochrome	image,	with	different	values	of	the	parameter.	The
result	of	global	correction	(gamma	correction	with	*default*	γ)	is	also	displayed.

Results	in	Fig.	4	show	that	LCC	outperforms	classical	gamma	correction	when	shadows	and	highlights
are	 simultaneously	 present	 at	 the	 scene.	 Moreover,	 the	 effects	 of	 variations	 of	 parameter	 r	 are
appreciated	 when	 comparing	 different	 results:	 as	r	 increases	 objects	 become	 sharper,	 their	 contrast
with	 respect	 to	 surrounding	 objects	 increasing.	 Those	 effects	 are	 specially	 visible	 in	 the	 leafs	 of	 the
trees	(see	detail	in	Fig.	5).

Original

r=0

r=40

r=100

r=200

gamma	correction

Original

r=0

image	 histogram	

http://www.ipol.im/pub/art/2011/gl_lcc/LCC.tar.gz
http://www.ipol.im/pub/art/2011/gl_lcc/srcdoc.tar.gz
http://www.ipol.im/pub/art/2011/gl_lcc/srcdoc/index.html
http://www.libpng.org/pub/png/libpng.html
http://www.finkproject.org/
http://gnuwin32.sourceforge.net/packages/libpng.htm
http://www.gnu.org/licenses/gpl.html

Figure	5.	Detail	of	images	in	Fig.	4.	Observe	as	contrast	increases	with	*r*,	although	differences
between	*r=40*	and	*r=100*	or	*r=200*	are	small.

In	 the	next	Figures,	color	 information	 is	added	to	 the	 images	and	the	results	of	algorithms	LCC-RGB,
LCC-YPbPr,	LCC_HSI	and	LCC-HSL	are	compared.	We	can	also	compare	the	results	with	the	ones	in
Fig.	4,	since	a	color	version	of	the	same	original	image	is	used	in	this	test.	Fig.	6	shows	the	results	of
the	different	versions	of	the	algorithm	for	a	fixed	value	of	parameter	r	(r=40).	The	corresponding	R,	G,	B
and	 I	 histograms	 are	 also	 displayed.	A	 detail	 of	 the	 image	 is	 displayed	 in	 Fig.	 7,	 which	 permits	 to
appreciate	the	differences	between	the	results	of	the	algorithms:	LCC-HSI	and	LCC-HSL	preserve	the
original	 chrominances	 (observe	 the	 yellowish	colors	of	 the	 flowers),	while	LCC-RGB	and	LCC-YPbPr
alter	this	information	(flowers	are	nearly	white).

Figure	6.	Local	Color	Correction	of	a	color	image,	with	a	fixed	value	of	the	parameter	(*r*=40).	The
results	of	algorithms	LCC-RGB,	LCC-YPbPr,	LCC-HSI	and	LCC-HSL	are	displayed,	together	with	the

corresponding	R,	G,	B	and	I	histograms.

r=0

r=40

r=100

r=200

Original

LCC-RGB

LCC-YPbPr

LCC-HSI

LCC-HSL

Original

image	 histograms	

Figure	7.	Detail	of	images	in	Fig.	6.	Observe	that	LCC-HSI	and	LCC-HSL	preserve	the	original
yellowish	colors	of	the	flowers.

We	conclude	that,	as	expected,	LCC-RGB	does	not	preserve	the	chrominances	of	the	original	images.
The	same	 is	 true	 for	LCC-YPbPr,	even	 if	 it	 is	based	on	a	Luma+Chroma	model.	The	versions	of	 the
algorithm	based	HSL	and	HSI	do	preserve	these	chrominances.

It	must	be	remarked	however	 that	 the	HSI	and	HSL	models	perform	poorly	 in	dark	regions,	since	 the
chrominance	information	in	these	regions	is	highly	perturbed	by	noise.	This	can	be	appreciated	in	Fig.	8
where	a	false	greenish	color	appears	in	the	processed	image.

Figure	8.	These	images	illustrate	the	shortcomings	of	LCC-HSI	and	LCC-HSL	models	when	applied	on
dark	regions.	In	this	example,	a	false	greenish	color	appears	in	the	processed	image.	LCC-RGB	and

LCC-YPbPr	perform	correctly.	Results	were	obtained	using	*r*=40.

Figure	9	shows	another	example	of	the	poor	performance	of	LCC-HSI	and	LCC-HSL	in	dark	regions.	In
this	case	the	dark	portion	of	the	car	is	converted	to	very	saturated	red,	which	looks	unnatural.

LCC-RGB

LCC-YPbPr

LCC-HSI

LCC-HSL

Original

LCC-RGB

LCC-YPbPr

LCC-HSI

LCC-HSL

Original

Figure	9.	Using	LCC-HSI	and	LCC-HSL	dark	red	colors	in	the	car	become	excessively	saturated	and
they	look	unnatural.	In	this	example	LCC-YPbPr	preserves	correctly	the	original	chrominances.	Results

were	obtained	using	*r*=40.

The	 problem	 with	 HSI	 and	 HSL	 is	 that	 chrominance	 information	 is	 quite	 unreliable	 for	 almost-black
colors	(small	perturbations	of	R,	G	and	B	produce	very	different	values	of	H	and	S).

In	particular,	the	problem	with	HSI	is	related	to	the	R/G/B	ratios	having	a	singularity	at	black.	Let	 I	and	I’
denote	the	original	intensity	and	the	LCC-corrected	intensity,	then	the	output	colors	are

If	(R,	G,	B)	and	its	neighbors	are	almost	black,	then	relative	to	intensities	in	[0,	1],	the	LCC-RGB	output
is	approximately

while	the	LCC-HSI	output	is	approximately

So	the	LCC-HSI	output	color	(R',	G',	B')	is	more	sensitive	to	small	perturbations	in	an	almost-black	input
color	than	the	LCC-RGB	output.

On	 the	 other	 hand,	 for	 an	 almost-black	 color,	 the	 output	 with	 this	 LCC-YPbPr	 procedure	 is
approximately

where	(Y,Pr,Pb)	are	a	 linear	 transformation	of	 the	 input	colors	 (R,G,B).	So	LCC-YPbPr’s	sensitivity	 to
perturbations	is	similar	to	LCC-RGB,	so	it	works	better	than	LCC-HSI	for	dark	colors.

Other	results
The	 following	 images	 display	 other	 results	 of	 both	 versions	 of	 the	 algorithm,	 obtained	 with	 different
values	of	the	parameter.

LCC-RGB

LCC-YPbPr

LCC-HSI

LCC-HSL

Original

r=0

r=40

LCC	RGB	 LCC	HSI	

Figure	10

Figure	11

r=40

r=100

global	gamma

Original

r=0

r=20

r=40

global	gamma

Original

LCC	YPbPr	 LCC	HSL	

LCC	RGB	 LCC	HSI	

LCC	YPbPr	 LCC	HSL	

LCC	RGB	 LCC	HSI	

Figure	12

Original

r=0

r=40

r=100

global	gamma

Original

r=0

r=40

r=100

global	gamma

LCC	RGB	 LCC	HSI	

LCC	YPbPr	 LCC	HSL	

LCC	 Hist	

Figure	13

feeds	&	twitter	•	sitemap	•	contact	•	privacy	policy	•	ISSN:	2105-1232	•	DOI:	10.5201/ipol	
IPOL	and	its	contributors	acknowledge	support	from	September	2010	to	August	2015	by	the	European	Research	Council
(advanced	grant	Twelve	Labours	n°246961).	
IPOL	is	also	supported	by	ONR	grant	N00014-14-1-0023,	CNES	(MISS	project),	FUI	18	Plein	Phare	project,	and	ANR-
DGA	project	ANR-12-ASTR-0035.	
IPOL	is	maintained	by	CMLA,	ENS	Cachan	•	DMI,	Universitat	de	les	Illes	Balears	•	Fing,	Universidad	de	la	República	
©	2009-2016,	IPOL	Image	Processing	On	Line	&	the	authors	 	 	 	

http://www.ipol.im/meta/feeds/
http://www.ipol.im/meta/sitemap/
http://www.ipol.im/meta/contact/
http://www.ipol.im/meta/privacy/
http://www.worldcat.org/issn/2105-1232
http://dx.doi.org/10.5201/ipol
http://www.cmla.ens-cachan.fr/
http://www.ens-cachan.fr/
http://dmi.uib.es/
http://www.uib.es/
http://www.fing.edu.uy/
http://www.universidad.edu.uy/
http://www.ipol.im/meta/copyright/

	Overview
	References
	Online Demo
	Algorithm (LCC algorithm)
	Implementation
	Source Code
	Results
	Other results

