
Overview
References
Algorithm
Implementation
Color	images
Online	Demo
Source	Code
Examples

	IPOL	Journal	·	Image	Processing	On	Line
HOME	·	ABOUT	·	ARTICLES	·	PREPRINTS	·	WORKSHOPS	·	NEWS	·	SEARCH	

Simplest	Color	Balance
Nicolas	Limare,	Jose-Luis	Lisani,	Jean-Michel	Morel,	Ana	Belén	Petro,	Catalina	Sbert

article 	 demo 	 archive

Communicated	by	Yann	Gousseau
Demo	edited	by	Jose-Luis	Lisani

Nicolas	Limare	nicolas.limare@cmla.ens-cachan.fr,	CMLA,	ENS	Cachan
Jose-Luis	Lisani	joseluis.lisani@uib.es,	TAMI,	Universitat	de	les	Illes
Balears
Jean-Michel	Morel	morel@cmla.ens-cachan.fr,	CMLA,	ENS	Cachan
Ana	Belén	Petro	anabelen.petro@uib.es,	TAMI,	Universitat	de	les	Illes
Balears
Catalina	Sbert	catalina.sbert@uib.es,	TAMI,	Universitat	de	les	Illes	Balears

Overview
Color	 balance	 algorithms	 attempt	 to	 correct	 underexposed	 images,	 or	 images
taken	in	artificial	lights	or	special	natural	lights,	such	as	sunset.

There	 are	 many	 sophisticated	 algorithms	 in	 the	 literature	 performing	 color	 balance	 or	 other	 color
contrast	adjustments.	The	performance	of	these	many	color	correction	algorithms	can	be	evaluated	by
comparing	their	result	to	the	simplest	possible	color	balance	algorithm	proposed	here.	The	assumption
underlying	this	algorithm	is	that	the	highest	values	of	R,	G,	B	observed	in	the	image	must	correspond	to
white,	and	the	lowest	values	to	obscurity.	If	the	photograph	is	taken	in	darkness,	the	highest	values	can
be	significantly	smaller	 than	255.	By	stretching	 the	color	scales,	 the	 image	becomes	brighter.	 If	 there
was	a	colored	ambient	light,	for	example	electric	light	where	R	and	G	dominate,	the	color	balance	will
enhance	 the	 B	 channel.	Thus	 the	 ambient	 light	 will	 lose	 its	 yellowish	 hue.	 Although	 it	 does	 not
necessarily	improve	the	image,	the	simplest	color	balance	always	increases	its	readability.

The	algorithm	simply	stretches,	as	much	as	it	can,	the	values	of	the	three	channels	Red,	Green,	Blue
(R,	G,	B),	 so	 that	 they	occupy	 the	maximal	 possible	 range	 [0,	 255].	The	 simplest	way	 to	do	 so	 is	 to
apply	 an	 affine	 transform	ax+b	 to	each	channel,	 computing	a	 and	b	so	 that	 the	maximal	value	 in	 the
channel	becomes	255	and	the	minimal	value	0.

However,	many	images	contain	a	few	aberrant	pixels	that	already	occupy	the	0	and	255	values.	Thus,
an	often	spectacular	image	color	improvement	is	obtained	by	"clipping"	a	small	percentage	of	the	pixels
with	the	highest	values	to	255	and	a	small	percentage	of	the	pixels	with	the	lowest	values	to	0,	before
applying	 the	 affine	 transform.	 Notice	 that	 this	 saturation	 can	 create	 flat	 white	regions	 or	 flat	 black
regions	that	may	look	unnatural.	Thus,	the	percentage	of	saturated	pixels	must	be	as	small	as	possible.

The	 proposed	 algorithm	 therefore	 provides	 both	 a	 white	 balance	 and	 a	 contrast	 enhancement.
However,	 note	 that	 this	 algorithm	 is	 not	 a	 real	 physical	white	 balance:	 It	 won't	 correct	 the	 color
distortions	 of	 the	 capture	 device	 or	 restore	 the	 colors	 or	 the	 real-world	 scene	 captured	 as	 a
photography.	Such	corrections	would	require	a	captured	sample	of	known	real-world	colors	or	a	model
of	the	lighting	conditions.

References
1.	 Wikipedia	contributors,	"Color	balance",	Wikipedia,	The	Free	Encyclopedia	(accessed	January

14,	2010).
2.	 Marc	Ebner,	"Color	Constancy",	John	Wiley	&	Sons,	2007,	p.	104.

published
reference

2011-10-24
Nicolas	Limare,	Jose-Luis	Lisani,	Jean-Michel	Morel,	Ana	Belén	Petro,	and	Catalina
Sbert,	Simplest	Color	Balance,	Image	Processing	On	Line,	1	(2011).
http://dx.doi.org/10.5201/ipol.2011.llmps-scb

→ BibTeX

Content

http://www.ipol.im/
http://www.ipol.im/
http://www.ipol.im/meta/
http://www.ipol.im/pub/art/
http://www.ipol.im/pub/pre/
http://dev.ipol.im/ws/
http://www.ipol.im/news/
http://demo.ipol.im/demo/lmps_simplest_color_balance/
http://demo.ipol.im/demo/lmps_simplest_color_balance/archive/
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol.2011
http://dx.doi.org/10.5201/ipol.2011.llmps-scb
http://www.cmla.ens-cachan.fr/~limare/
mailto:nicolas.limare@cmla.ens-cachan.fr
http://dmi.uib.es/~lisani/
mailto:joseluis.lisani@uib.es
http://www.cmla.ens-cachan.fr/~morel/
mailto:morel@cmla.ens-cachan.fr
mailto:anabelen.petro@uib.es
http://dmi.uib.es/~catalina/
mailto:catalina.sbert@uib.es
http://en.wikipedia.org/w/index.php?title=Color_balance&oldid=336334367
http://dx.doi.org/10.1002/9780470510490

2.	 Marc	Ebner,	"Color	Constancy",	John	Wiley	&	Sons,	2007,	p.	104.

Algorithm
The	 naive	 color	 balance	 is	 a	 simple	 pixel-wise	 affine	 transform	 mapping	 the	 input	 minimum	 and
maximum	measured	 pixel	 values	 to	 the	 output	 space	 extrema.	As	 we	 explained	 before,	 a	 potential
problem	 with	 this	 approach	 is	 that	 two	 aberrant	 pixel	 colors	 reaching	 the	color	 interval	 extrema	 are
enough	to	inhibit	any	image	transform	by	this	naive	color	balance.

A	more	robust	approach	consists	 in	mapping	two	values	Vmin	 and	Vmax	 to	 the	output	space	extrema,
Vmin	and	Vmax	being	defined	so	that	a	small	user-defined	proportion	of	the	pixels	get	values	out	of	the
[Vmin,	Vmax]	interval.

Implementation
Our	 input	 image	 is	an	array	of	N	numeric	values	 in	 the	 [min,	max]	 interval.	The	output	 is	 a	 corrected
array	of	the	N	updated	numeric	values.	Multiple	channel	images	are	processed	independently	on	each
channel	with	the	same	method.

We	will	perform	a	color	balance	on	this	data	where	we	have	saturated	a	percentage	s1%	of	the	pixels
on	the	left	side	of	the	histogram,	and	a	percentage	s2%	of	pixels	on	 the	right	side;	 for	example,	s1=0
and	s2=3	means	 that	 this	 balance	 will	 saturate	 no	pixels	 at	 the	 beginning	 and	 will	 saturate	 at	most
N×3/100	at	the	end	of	the	histogram.	We	can't	ensure	that	exactly	N×(s1+s2)/100	pixels	are	saturated
because	the	pixel	value	distribution	is	discrete.

Sorting	Method

Vmin	and	Vmax,	the	saturation	extrema,	can	be	seen	as	quantiles	of	the	pixel	values	distribution,	e.g.	first
and	99th	centiles	for	a	2%	saturation.

Thus,	an	easy	way	to	compute	Vmin	and	Vmax	is	to	sort	the	pixel	values,	and	pick	the	quantiles	from	the
sorted	array.	This	algorithm	would	be	described	as	follow:

1.	 sort	the	pixel	values	The	original	values	must	be	kept	for	further	transformation	by	the	bounded
affine	function,	so	the	N	pixels	must	first	be	copied	before	sorting.

2.	 pick	the	quantiles	from	the	sorted	pixels	With	a	saturation	level	s=s1+s2	in	[0,	100[,	we	want
to	saturate	N	×	s/100	pixels,	so	Vmin	and	Vmax	are	taken	from	the	sorted	array	at	positions	N	x	s1
/	100	and	N	x	(1	-	s2	/	100)	-	1 .

3.	 saturate	the	pixels	According	to	the	previous	definitions	of	Vmin	and	Vmax,	the	number	of	pixels
with	values	lower	than	Vmin	or	higher	than	Vmax	is	at	most	N	×	s/100.	The	pixels	(in	the	original
unsorted	array)	are	updated	to	Vmin	(resp.	Vmax)	if	their	value	is	lower	than	Vmin	(resp.	higher
than	Vmax).

4.	 affine	transform	The	image	is	scaled	to	[min,	max]	with	a	transformation	of	the	pixel	values	by
the	function	f	such	that	f(x)	=	(x	-	Vmin)	×	(max	-	min)	/	(Vmax	-	Vmin)	+	min.

Histogram	Method

Sorting	 the	N	pixel	values	requires	O(N	log(N))	operations	and	a	 temporary	copy	of	 these	N	pixels.	A
more	efficient	implementation	is	achieved	by	an	histogram-based	variant,	faster	(O(N)	complexity)	and
requiring	less	memory	(O(max	-	min)	vs.	O(N)).

1.	 build	a	cumulative	histogram	of	the	pixel	values 	The	cumulative	histogram	bucket	labeled	i
contains	the	number	of	pixels	with	value	lower	or	equal	to	i.

2.	 pick	the	quantiles	from	the	histogram	Vmin	is	the	lowest	histogram	label	with	a	value	higher
than	N	×	s1	/	100,	and	the	number	of	pixels	with	values	lower	than	Vmin	is	at	most	N	×	s1	/	100.	If
s1	=	0	then	Vmin	is	the	lowest	histogram	label,	i.e.	the	minimum	pixel	value	of	the	input	image.
Vmax	is	the	label	immediately	following	the	highest	histogram	label	with	a	value	lower	than	or
equal	to	N	×	(1	-	s2	/	100) ,	and	the	number	of	pixels	with	values	higher	than	Vmax	is	at	most	N	×
s2	/	100.	If	s2	=	0	then	Vmax	is	the	highest	histogram	label,	i.e.	the	maximum	pixel	value	of	the
input	image.

3.	 saturate	the	pixels
4.	 affine	transform	Same	as	for	the	sorting	method.

4.	 affine	transform	Same	as	for	the	sorting	method.

Pseudo-code

The	following	steps	presented	for	 images	with	pixel	values	 in	the	8	bit	 integer	space	(min	=	0,	max	=
255)	with	one	color	channel	only.	See	the	following	remarks	for	higher-precision	image.	Hereafter	is	the
basic	implementation,	refinements	are	available	in	the	proposed	source	code.

image[i]	 are	 the	 pixel	 values,	N	 is	 the	number	of	 pixels,	histo	 is	an	array	of	256	unsigned	 integers,
with	a	data	type	large	enough	to	store	N,	initially	filled	with	zeros.	The	arrays	indexes	start	at	0.

//	build	the	cumulative	histogram
for	i	from	0	to	N-1
				histo[image[i]]	:=	histo[image[i]]	+	1
for	i	from	1	to	255
				histo[i]	:=	histo[i]	+	histo[i	-	1]
//	search	vmin	and	vmax
vmin	:=	0
while	histo[vmin	+	1]	<=	N	*	s1	/	100
				vmin	:=	vmin	+	1
vmax	:=	255	-	1
while	histo[vmax	-	1]	>	N	*	(1	-	s2	/	100)
				vmax	:=	vmax	-	1
if	vmax	<	255	-	1
				vmax	:=	vmax	+	1
//	saturate	the	pixels
for	i	from	0	to	N	-	1
				if	image[i]	<	vmin
								image[i]	:=	vmin
				if	image[i]	>	vmax
								image[i]	:=	vmax
//	rescale	the	pixels
for	i	from	0	to	N-1
				image[i]	:=	(image[i]	-	vmin)	*	255	/	(vmax	-	vmin)

Higher	Precision

For	 16	bit	 integer	 pixel	 values,	 the	 histogram	array	method	 can	be	used,	 and	needs	65.536	buckets
(256	Kb	on	a	32	bit	system,	512	Kb	on	a	64	bit	system,	 to	be	compared	with	 the	128	Kb	used	 for	a
256×256	image).	But	the	determination	of	vmin	 and	vmax	would	benefit	of	a	faster	search	method,	like
bisection.

For	 32	 bit	 integer	 pixel	 values,	 the	 histogram	 size	 (4.294.967.296	 buckets)	 becomes	 a	 problem	 and
can't	be	properly	handled	in	memory.	We	can	switch	to	a	multi-step	process:

build	an	histogram	with	buckets	containing	more	than	one	single	pixel	value,	such	that	the	histogram
size	is	limited	(256	buckets	for	example,	each	for	a	pixel	value	interval);
search	for	the	buckets	containing	vmin	and	vmax;
restart	the	histogram	construction	and	search	on	a	subdivision	of	these	buckets.

If	an	exact	precision	isn't	required,	the	latest	refinements	can	be	skipped.

For	floating-point	data,	the	pixel	value	can	no	more	be	used	as	an	array	index,	and	we	must	use	either	a
sorting	 method,	 or	 a	 multi-step	 method	 with	 an	 histogram	 containing	 intervals	 (not	 values),	 then	 a
sorting	method	on	the	buckets	containing	vmin	and	vmax.

Note	that	the	proposed	pseudo-code	can	also	be	used	for	images	with	integer	pixel	values	(as	produced
by	common	image	capture	devices	and	found	in	common	image	formats)	stored	as	floating-point	data
(often	 desired	 for	 image	 processing),	 by	 converting	 the	 pixel	 value	image[i]	 to	 its	 integer	 equivalent
while	filling	the	histogram.

Special	Cases

If	 the	 image	 is	 constant	 (all	 pixels	 have	 the	 same	 value	v),	 then,	 according	 to	 the	 described
implementation	and	pseudo-code,	the	histogram	values	are	0	 for	 labels	 lower	 than	v,	 and	N	 for	 labels
higher	or	equal	to	v,	and	then	for	any	value	of	s1	and	s2	,	Vmin	=	v,	Vmax	=	v.

This	(Vmin	=	Vmax)	can	also	happen	for	non-constant	 image,	the	general	case	being	images	with	 less
than	N	×	s1	/	100	pixels	with	values	below	or	with	more	than	N	×	s2	/	100	above	a	median	value	v.	This

than	N	×	s1	/	100	pixels	with	values	below	or	with	more	than	N	×	s2	/	100	above	a	median	value	v.	This
case	can	be	handled	by	setting	all	the	pixels	to	the	value	v.

Color	images

RGB	Color	Balance

For	 RGB	 color	 images	 we	 can	 apply	 the	 algorithm	 independently	 on	 each	 channel.	 We	 call	 this
algorithm	RGB	color	 balance.	 The	 color	 of	 the	 pixels	 is	modified	 in	 the	 process	 because	 each	RGB
channel	is	transformed	by	an	affine	function	with	different	parameters	and	the	saturation	does	not	occur
on	the	three	RGB	channels	together.	This	can	be	desirable	do	correct	the	color	of	a	light	source	or	filter,
but	in	some	applications	we	may	want	to	maintain	the	colors	of	the	input	image.

In	 that	 case,	many	 solutions	 are	 possible,	 depending	on	how	we	define	 the	 "color"	 to	 be	maintained
(hue,	 chroma,	 R/G/B	 ratio)	 and	 what	 we	 want	 to	 correct	 with	 this	 algorithm	 (lightness,	 brightness,
intensity,	luma,	...).	A	discussion	about	these	color	correction	variants	will	be	published	in	a	later	article,
and	we	present	hereafter	the	simplest	version.

IRGB	Intensity	Balance

The	 goal	 of	IRGB	 intensity	 balance	 is	 to	 correct	 the	 intensity	 of	 a	 color	 image	without	modifying	 the
R/G/B	ratio	of	the	pixels.	We	first	compute	the	gray	level	intensity	(I	=	(R+G+B)/3),	then	this	intensity	is
balanced	and	transformed	into	I'	by	the	affine	transformation	with	saturation.	Finally,	for	each	pixel,	the
three	color	channels	are	multiplied	by	I'/I.

But	 the	RGB	color	cube	 is	not	stable	by	 this	 transformation.	Multiplied	by	I'/I,	 some	RGB	components
will	be	larger	than	the	maximum	value.	This	is	corrected	in	a	post-processing	step	by	a	projection	on	the
RGB	cube	while	maintaining	the	R/G/B	ratio,	ie	replacing	pixels	out	of	the	RGB	cube	by	the	intersection
of	the	RGB	cube	surface	and	the	segment	connecting	the	(0,0,0)	point	and	the	pixels	to	be	corrected.
This	projection	has	three	consequences	:

commutativity	:	computing	the	intensity	I	of	an	image	after	correction	by	this	algorithm	doesn't	give
the	same	result	as	computing	the	intensity	of	an	image	and	correcting	this	intensity	by	the	affine
balance	algorithm	with	saturation	described	at	the	beginning	of	this	article;
monotonicity	:	some	pixels	with	intensities	I1	<	I2	can	be	be	transformed	into	pixels	with	intensities	 I'1
>	I'2	if	the	second	pixels	has	to	be	corrected	by	projection;
precision	:	because	the	projection	step	is	darkening	the	projected	pixels,	less	than	s2%	of	the	pixels
will	have	their	final	intensity	saturated	to	the	maximum	value.

Moreover,	adjusting	the	saturation	on	the	average	I	of	the	three	RGB	channels	means	that,	unless	the
three	channels	are	equal	(gray	image),	before	the	projection	less	than	s2%	of	 the	pixels	are	saturated
to	the	maximum	value	on	the	three	RGB	channels	while	more	than	s2%	of	the	pixels	are	saturated	to
the	maximum	value	on	at	least	one	of	the	RGB	channels.

Better	solutions	to	achieve	a	balance	of	a	color	image	without	these	problems	require	the	use	of	other
color	spaces	and	are	beyond	the	scope	of	this	article.

Online	Demo
With	 the	online	 demonstration,	 you	 can	 try	 this	 algorithm	 on	 your	 own	 images	 and	 set	 the	 desired
percentage	of	saturated	pixels.	This	demo	presents	the	algorithm	applied	independently	to	the	R,	G	and
B	channels	(RGB	color	balance),	and	to	the	intensity	channel	while	maintaining	the	R/G/B	ratio	(IRGB
intensity	balance).

For	 gray-scale	 images,	 these	 two	 versions	 are	 identical	 to	 applying	 the	 simple	 algorithm	 to	 the	 gray
level.

Source	Code
An	 ANSI	 C	 implementation	 is	 provided	 and	 distributed	 under	 the	 GPL	 license:	 source	 code,

documentation	(online)

Basic	 compilation	 and	 usage	 instructions	 are	 included	 in	 the	README.txt	 file.	 This	 code	 requires	 the
libpng	library.

http://www.ipol.im/pub/demo/lmps_simplest_color_balance/
http://www.gnu.org/licenses/gpl.html
http://www.ipol.im/pub/art/2011/llmps-scb/simplest_color_balance.tar.gz
http://www.ipol.im/pub/art/2011/llmps-scb/srcdoc.tar.gz
http://www.ipol.im/pub/art/2011/llmps-scb/srcdoc/
http://www.libpng.org/pub/png/libpng.html

libpng	library.

	Linux.	You	can	install	libpng	with	your	package	manager.
	Mac	OSX.	You	can	get	libpng	from	the	Fink	project.
	Windows.	Precompiled	DLLs	are	available	online	for	libpng.

This	 source	 code	 includes	 two	 implementations	 of	 the	 color	 balance:	 a	 8bit	 integer	 implementation
based	on	 the	histogram	algorithm	with	O(N)	complexity	and	a	 lookup	 table	 for	 fast	affine	 transform	 is
used	 for	 the	RGB	color	 balance,	 and	a	 generic	 floating-point	 implementation	based	on	qsort(),	with
O(N	log(N))	algorithmic	complexity	is	used	for	the	IRGB	intensity	balance.

The	 histogram	 code	 is	 used	 for	the	 online	 demo.	 The	 source	 code	 history	 and	 future	 releases	 are
available	on	an	external	page

Examples
We	show	from	left	to	right	the	original	image,	and	its	result	by	RGB	color	balance	with	0%,	1%,	2%	and
3%	of	the	pixels	saturated,	half	at	the	beginning	of	the	histogram	and	half	at	the	end	of	the	histogram.	In
this	example,	the	algorithm	has	been	applied	independently	on	each	color	channel.	It	is	quite	apparent
that	some	saturation	is	almost	always	necessary,	but	that	the	needed	percentage	is	variable.

original	image balanced	0% balanced	1% balanced	2%

Here,	the	0%	saturation	already	gives	a	result,	and	1%	is	optimal.	Notice	how	the	orange	ambient	light
has	been	corrected	to	more	daylight	image.

original	image balanced	0% balanced	1% balanced	2%

histograms

In	fact,	a	white	thin	rim	surrounds	this	image!	This	rim	occupies	more	than	2%	of	the	image.	Hence,	the
3%	threshold	is	the	right	one.

original	image balanced	0% balanced	1% balanced	2%

http://www.finkproject.org/
http://gnuwin32.sourceforge.net/packages/libpng.htm
http://www.ipol.im/pub/demo/lmps_simplest_color_balance/
http://dev.ipol.im/git/?p=nil/simplest_color_balance.git
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles.png
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_3.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles.histo.png
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_0.histo.png
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_1.histo.png
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_2.histo.png
http://www.ipol.im/pub/art/2011/llmps-scb/Museo_Caselles_3.histo.png
http://www.ipol.im/pub/art/2011/llmps-scb/face_g.png
http://www.ipol.im/pub/art/2011/llmps-scb/face_g_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/face_g_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/face_g_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/face_g_3.jpeg

original	image balanced	0% balanced	1% balanced	2%

histograms

Like	 the	preceding	ones,	 this	 image	 in	completely	unnatural	blue	 light	 is	often	used	 to	 illustrate	color
balance,	 or	 color	 contrast	 adjustment	 algorithms.	A	 trivial	 affine	 transform	 corrects	 it	 adequately	 by
removing	the	bluish	effect.	A	still	more	contrasted	result	is	obtained	by	saturating	only	1%.

original	image balanced	0% balanced	1% balanced	2%

histograms

The	same	remarks	as	for	the	preceding	one	apply	to	this	image.

original	image balanced	0% balanced	1% balanced	2%

histograms

Even	a	good	quality	 image	can	benefit	 from	a	moderate	1%	color	balance.	A	contrast	 improvement	 is
noticeable	when	switching	between	the	0%	and	1%	versions.

original	image balanced	0% balanced	1% balanced	2%

histograms

There	is	no	real	good	solution	for	this	sunset	image.	The	colors	are	strongly	blue/orange	and	will	stay
so.	By	pushing	too	far	the	saturation	(3%),	the	orange	pixels	diminish	and	a	completely	unnatural	blue
color	is	created.

http://www.ipol.im/pub/art/2011/llmps-scb/Flores_Original.jpg
http://www.ipol.im/pub/art/2011/llmps-scb/Flores_Original_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Flores_Original_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Flores_Original_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Flores_Original_3.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Pelota_Original.jpg
http://www.ipol.im/pub/art/2011/llmps-scb/Pelota_Original_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Pelota_Original_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Pelota_Original_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Pelota_Original_3.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal_3.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Staten_Island_Ferry_terminal_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Canal_Caselles_Original.png
http://www.ipol.im/pub/art/2011/llmps-scb/Canal_Caselles_Original_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Canal_Caselles_Original_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Canal_Caselles_Original_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Canal_Caselles_Original_3.jpeg

color	is	created.

original	image balanced	0% balanced	1% balanced	2%

histograms

This	image	and	the	following	two	have	been	used	in	recent	papers	on	color	perception	theory	(Retinex).

original	image balanced	0% balanced	1% balanced	2%

histograms

Examples	on	Gray-scale	Images

Examples	with	Little	or	no	Improvement

image	credits

feeds	&	twitter	•	sitemap	•	contact	•	privacy	policy	•	ISSN:	2105-1232	•	DOI:	10.5201/ipol	
IPOL	and	its	contributors	acknowledge	support	from	September	2010	to	August	2015	by	the	European	Research	Council
(advanced	grant	Twelve	Labours	n°246961).	
IPOL	is	also	supported	by	ONR	grant	N00014-14-1-0023,	CNES	(MISS	project),	FUI	18	Plein	Phare	project,	and	ANR-
DGA	project	ANR-12-ASTR-0035.	
IPOL	is	maintained	by	CMLA,	ENS	Cachan	•	DMI,	Universitat	de	les	Illes	Balears	•	Fing,	Universidad	de	la	República	
©	2009-2016,	IPOL	Image	Processing	On	Line	&	the	authors	 	 	 	

http://www.ipol.im/pub/art/2011/llmps-scb/Chien_Caselles_Original.png
http://www.ipol.im/pub/art/2011/llmps-scb/Chien_Caselles_Original_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Chien_Caselles_Original_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Chien_Caselles_Original_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Chien_Caselles_Original_3.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/IMG0016.png
http://www.ipol.im/pub/art/2011/llmps-scb/IMG0016_00.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/IMG0016_01.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/IMG0016_02.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/IMG0016_03.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Livres_Caselles_Original.png
http://www.ipol.im/pub/art/2011/llmps-scb/Livres_Caselles_Original_0.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Livres_Caselles_Original_1.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Livres_Caselles_Original_2.jpeg
http://www.ipol.im/pub/art/2011/llmps-scb/Livres_Caselles_Original_3.jpeg
http://www.ipol.im/meta/feeds/
http://www.ipol.im/meta/sitemap/
http://www.ipol.im/meta/contact/
http://www.ipol.im/meta/privacy/
http://www.worldcat.org/issn/2105-1232
http://dx.doi.org/10.5201/ipol
http://www.cmla.ens-cachan.fr/
http://www.ens-cachan.fr/
http://dmi.uib.es/
http://www.uib.es/
http://www.fing.edu.uy/
http://www.universidad.edu.uy/
http://www.ipol.im/meta/copyright/

	Overview
	References
	Algorithm
	Implementation
	Sorting Method
	Histogram Method
	Pseudo-code
	Higher Precision
	Special Cases

	Color images
	RGB Color Balance
	IRGB Intensity Balance

	Online Demo
	Source Code
	Examples
	Examples on Gray-scale Images
	Examples with Little or no Improvement

