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Overview
The	binocular	stereo	pipeline	performs	the	following	task:	from	a	pair
of	images	of	a	scene	captured	by	two	cameras	(or	the	same	one)	at
different	positions,	compute	the	distance	map	to	one	camera.	Under
particular	conditions	 (called	 the	rectified	case)	 corresponding	 points
are	at	same	ordinate	in	both	images	and	the	distance	is	the	inverse
of	 an	 affine	 transform	 (whose	 coefficients	 depend	 on	 camera
parameters)	 of	 the	 abscissa	 difference,	 called	 the	disparity.	 In
general,	the	output	is	simply	the	disparity	map.

If	 the	 cameras	 satisfy	 the	pinhole	model	 assumption,	 an	adequately	 chosen	 combination	of	 rotations
and	 adjustment	 of	 cameras'	 internal	 parameters	 yield	 the	 rectified	 case.	 This	 amounts	 to	 applying
homographies	to	the	images.	Finding	and	applying	these	homographies	is	called	epipolar	 rectification.
The	input	is	a	discrete	set	of	corresponding	points	in	images.	Since	there	are	more	degrees	of	freedom
than	 constraints,	 several	 methods	 exist,	 each	 trying	 to	 minimize	 the	 change	 applied	 to	 images
according	 to	 its	own	measure.	One	method	 to	achieve	 this	and	more	discussion	can	be	 found	 in	this
book.

The	method	of	reference	2,	expanded	 in	reference	3,	assumes	both	cameras	are	the	same	(thus	they
must	 have	 the	 same	 size)	 but	 only	 partial	 knowledge	 of	 camera's	 internal	 parameters	 (uncalibrated
case):	 square	 pixels,	 unknown	 focal	 length	 and	 principal	 point	 at	 image	 center.	 It	 then	 simulates
appropriate	pure	rotations	of	each	view,	which	can	be	done	when	the	correct	focal	length	is	estimated.
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wi th	Xl	 and	Xr	 3-vectors	 of	 homogeneous	 coordinates	 of	 corresponding	 points	 and	F	 the	 3x3
fundamental	matrix.	In	the	rectified	case,	F	has	the	special	form	(up	to	a	scale	factor)

In	that	case,	epipoles	are	at	infinity	in	horizontal	direction	since	Fe1=FTe1=0,	and	corresponding	points
have	same	ordinate	since

Any	decomposition	of	a	fundamental	matrix	F	into

with	Hl	 and	Hr	 invertible	 3x3	matrices,	 yields	 left	 and	 right	 homographies	 rectifying	 the	 images	 since
then

Rotations

The	rotation	of	matrix	R	of	a	camera	around	its	focus	produces	a	homography	of	the	image	of	matrix

with	K	the	upper-triangular	matrix	built	from	camera	parameters,	which	is	reasonably	supposed	written
as:

with	(xC,yC)	the	principal	point,	assumed	to	be	the	image	center,	and	 f	the	unknown	focal	length.

The	Fusiello-Irsara	method	looks	for	rotation	matrices	Rl	and	Rr	and	focal	length	f	such	that

which	can	be	simplified	by	removing	innermost	two	instances	of	K	since

This	equality	also	 shows	 that	 in	 the	 rectified	 case,	we	can	always	change	 the	 internal	 parameters	of
both	cameras	to	Kn,	amounting	to	homography

and	remain	rectified.

Also	if	Rx	is	any	rotation	around	x-axis,	we	have

so	 we	 can	 ignore	 the	x-axis	 rotation	 in	Rl	 for	 example.	 Finally,	 the	 unknown	 matrices	 can	 be
parameterized	by



so	that	expected	value	of	g	is	in	the	interval	[-1,1],	the	same	order	of	magnitude	as	angles.

The	Sampson	error	associated	to	algebraic	error	E	is

with	J	the	1x4	matrix	of	partial	derivatives	of	E	wrt	the	4	variables:

leading	to

The	method	looks	for	the	set	of	parameters

minimizing	the	sum	of	Sampson	errors	over	matching	pairs	by	Levenberg-Marquardt	method.

Jacobian	computation

The	iterative	error	minimization	requires	computation	of	the	Jacobian	matrix.	Noting	any	variable	 p,	we
have

with

and	the	overline	operator	defined	as

The	partial	derivatives	wrt	any	of	the	5	angles	are	easy	to	compute,	as	each	one	is	involved	in	only	one
rotation	matrix:

with



with

being	its	derivative,	and	similarly	for	Ry	and	Rz.

Now,	the	derivative	wrt	g	is

with

Fixing	free	parameters

We	 take	 advantage	 of	 the	 invariance	 properties	 of	 the	 rectified	 configuration,	 wrt	 to	 rotation	 around
baseline	 (x-axis)	 and	 change	 of	 internal	 parameters,	 to	 fix	 the	 center	 point	 of	 each	 image	 through
application	of	rectifying	homography.

First,	 we	 apply	 an	x-rotation	 so	 as	 to	 keep	 ordinate	 of	 central	 pixel	 fixed,	 meaning	 replacing	 the
homographies	by:

with	the	angle

Finally,	we	adjust	independently	the	abscissa	of	left	and	right	camera	to	keep	the	center	point	at	center.
Noting

and	knowing	the	resulting	abscissa	x'	of	center	point	through	H'l,	based	on	matrix	K=Kn(w/2),	we	need
to	translate	by	w/2-x',	yielding	the	final	homographies:

Online	Demo
The	 online	 demo	 of	 the	 algorithm	 has	 additional	 steps	 to	 make	 it	 more	 widely	 testable,	 as	 the
demonstrated	algorithm	itself	takes	as	input	only	corresponding	points	between	images	and	the	size	of
images	and	outputs	homographies:

1.	 Extract	key	points	with	SIFT	algorithm	in	each	image;
2.	 Match	key	points	based	on	descriptors;



2.	 Match	key	points	based	on	descriptors;
3.	 Remove	outlier	correspondences	by	a	contrario	RANSAC	algorithm	(ORSA)	looking	for	a

consensus	on	fundamental	matrix;
4.	 Apply	Fusiello-Irsara	epipolar	rectification	algorithm	described	above;
5.	 Apply	homographies	to	both	images.

Remember	that	input	images	must	have	the	same	size.	A	common	failure	case	is	when	one	epipole	is	in
the	 image.	 Another	 problem	 is	 when	 geometrical	 distortion	 is	 noticeable	 in	 images	 (this	 happens
especially	with	wide-angle	lenses).	In	that	case,	it	is	preferable	to	correct	this	distortion	(use	for	example
this	IPOL	algorithm).

The	image	rectangle	can	be	mapped	to	a	large	quadrilateral	if	the	epipole	is	outside	but	close	to	image
boundary.	To	avoid	potentially	very	 long	 transfer	 time	over	 the	network,	we	do	not	show	 the	 rectified
image	containing	the	full	quadrilateral.	Instead,	we	show	only	the	portion	of	same	size	as	original	image
and	 with	 same	 center	 point,	 since	 this	 point	 has	 been	 fixed	 by	 adjustment	 of	 parameters	 of
homography.

Here	is	an	example	of	algorithm	output:

01	sift::	1st	image:	473	keypoints
02	sift::	2nd	image:	496	keypoints
03	sift::	matches:	146
04	seed:	1286188619
05	Remove	19/146	duplicate	matches
06	Optimized	stochastic	mode	(ORSA).
07			nfa=-130.795	size=111	(niter=1)
08			nfa=-147.135	size=102	(niter=6)
09			nfa=-156.207	size=106	(niter=10)
10			nfa=-190.564	size=103	(niter=16)
11			nfa=-207.249	size=107	(niter=32)
12			nfa=-207.436	size=105	(niter=424)
13			nfa=-211.225	size=106	(niter=475)
14	best	matching	found:		106	points		log(nfa)=-211.225		(500	iterations)
15	F=	[	-3.42803e-09	4.35331e-07	-0.000178794;	-5.00755e-07	-4.76413e-08	0.00
123017;	0.000225377	-0.00117995	-0.0373931	]
16	Geometric	error	threshold:	0.869643
17	LM	iterations:	8	f=760.855
18	Final	rectification	error:	0.206727	pix
19	Disparity:	-90	-26

Lines	01	and	02	show	the	number	of	SIFT	points	extracted	in	each	image.	Line	03	shows	the	number	of
SIFT	correspondences.	Lines	04	 to	16	are	output	 from	 the	ORSA	algorithm.	Line	04	shows	 the	seed
used	 for	 random	 number	 generation	 and	 is	 useful	 only	 for	 debugging	 purpose.	 Line	 05	 shows	 the
number	of	remaining	correspondences	when	duplicates	are	removed:	some	SIFT	points	may	be	found
to	 have	 several	main	 directions	 in	 their	 descriptor,	 which	 creates	 duplicates	 and	 can	 fool	 the	ORSA
match	 independence	 assumption.	 Lines	 07	 to	 13	 show	 each	 time	 a	 more	 meaningful	 group	 of
correspondences	is	found.	Line	14	sums	up	the	best	consensus.	Line	15	shows	the	fundamental	matrix.
Line	16	displays	the	geometric	threshold	that	was	selected	by	ORSA	to	discriminate	inliers	and	outliers.
Here,	every	SIFT	point	must	have	its	corresponding	SIFT	point	at	less	than	0.87	pixel	from	the	epipolar
line.	 Lines	 17	 and	 19	 show	 the	 result	 of	 the	 rectification	 itself.	 The	 number	 of	 Levenberg-Marquardt
iterations	is	here	8	and	the	found	focal	length	is	displayed.	Line	18	shows	the	resulting	mean	Sampson
error.	Finally,	line	19	gives	the	minimum	and	maximum	disparity	of	SIFT	points	in	the	rectified	images.

Algorithm
The	algorithm	is	a	Levenberg-Marquardt	iterative	minimization	of	the	Sampson	error,	starting	with	all	6
unknowns	at	0.	It	stops	when	one	of	the	following	conditions	is	satisfied:

1.	 the	RMSE	is	below	0.1	pixel.
2.	 the	relative	error	change	from	one	iteration	to	the	next	is	below	1E-3.
3.	 300	iterations	have	been	performed.

The	first	case	is	considered	a	success	and	the	last	one	a	failure.	The	second	case	may	be	either:	the
global	 minimum	 is	 reached	 but	 the	 data	 inaccuracy	 prevents	 the	 error	 from	 dropping	 below	 0.1
(success)	or	a	local	minimum	is	reached	(failure).

http://www.ipol.im/pub/algo/ags_algebraic_lens_distortion_estimation/


(success)	or	a	local	minimum	is	reached	(failure).

Implementation

Eliminating	null	equations

During	Levenberg-Marquardt	minimization	(see	reference	1),	one	has	to	solve	a	system	of	6	equations

with	J	 the	Jacobian	matrix	of	 the	error	 term,	of	size	Nx6	with	N	 the	number	of	correspondences.	The
solution	X	is	the	update	to	apply	to	the	current	set	of	parameters.	One	of	these	6	equations	may	happen
to	be	the	trivial	one

This	is	the	case	when	one	column	of	J	is	null.	This	happens	in	particular	at	the	first	iteration	for	the	 g-
derivative,	when	all	5	angles	are	0,	since

Notice	 that	 the	 diagonal	 elements	 of	JTJ	 are	 the	 square	 norms	 of	 column	 vectors	 of	J.	 So,	 to	 avoid
division	 by	 zero	 or	 by	 a	 negligible	 quantity,	 we	 find	 the	maximum	 diagonal	 entry	M	 of	H	 and	 put	 in
m_nullCols	 the	 indices	of	diagonal	elements	 lower	than	kM,	with	k=1E-9.	We	remove	these	lines	and
columns	from	the	linear	system	to	solve	in	the	method

void	MinLM::compress(matrix<flnum>&	JtJ,	vector<flnum>&	B).

The	solution	of	the	smaller	system	is	then	completed	with	0	at	removed	indices	in	the	method

void	MinLM::uncompress(vector<flnum>&	B),

since	these	elements	correspond	to	variables	with	null	derivative,	which	must	not	be	changed.

Homography	application	with	anti-aliasing	filter

Applying	directly	 the	computed	homographies	 to	 images	can	 result	 in	aliasing	artifacts.	Although	 less
severe	 than	 in	 the	 case	of	 a	 zoom	out	 for	 example,	 because	we	 simulate	 rotations	 in	 our	 case,	 it	 is
nonetheless	 important	 to	 attenuate	 the	 aliasing.	 This	 happens	 when	 there	 is	 a	 compression	 in	 one
direction:	at	each	point	of	the	original	image,	the	homography	can	be	approximated	by	its	2x2	Jacobian
matrix.	 When	 one	 of	 the	 singular	 values	 is	 below	 1,	 compression	 occurs	 and	 anti-aliasing	 filter	 is
recommended.	 For	 this,	 we	 have	 to	 know	 the	 maximum	 unidirectional	 compression	 factor	 over	 the
image.	Under	normal	conditions	(image	of	 line	at	 infinity	of	original	 image	does	not	meet	 the	frame	of
the	result	 image),	 the	maximum	compression	(lowest	singular	value	of	Jacobian)	 is	reached	at	one	of
the	four	corners	of	the	original	image.	The	procedure	is	the	following:

1.	 At	each	corner	of	the	original	image	frame,	compute	2x2	Jacobian	matrix	of	homography	H	and
its	minimum	singular	value.	Note	z	the	minimum	of	these	over	all	4	corners.

2.	 If	z<1,	compose	to	the	left	H	with	a	zoom	in	of	factor	s=1/z;	apply	the	resulting	homography	to
the	image,	yielding	an	image	of	size	sw_sh_;	convolve	with	a	Gaussian	filter	of	standard	deviation
0.8(s*s-1)^(1/2);	downsample	the	smoothed	image	by	a	factor	s.

3.	 If	z>=1,	regular	transform	is	applied	without	any	anti-aliasing	filter.

The	discrete	Gaussian	kernel	is	cut	at	4	times	its	standard	deviation.	Interpolation	is	done	with	splines
of	order	5.

Differences	with	authors'	implementation

Fusiello	 and	 Irsara's	 Matlab	 implementation	 of	 their	 algorithm,	 available	here	 does	 not	 correspond
exactly	to	the	text	in	their	paper.	we	underline	here	the	differences,	both	with	the	paper	version	and	their
implementation.

1.	 They	write	the	epipolar	constraint	XrFXl=0,	whereas	we	write	it	XlFXr=0.	In	other	words,	the

http://profs.sci.univr.it/~fusiello/demo/rect/


1.	 They	write	the	epipolar	constraint	XrFXl=0,	whereas	we	write	it	XlFXr=0.	In	other	words,	the
fundamental	matrices	are	transpose	of	each	other.	We	find	our	convention	more	logical	as
subscript	l	(left)	corresponds	to	the	term	on	the	left	of	the	fundamental	matrix.

2.	 The	Matlab	code	contains	fully	developed	formulas	for	the	Jacobian	matrix,	probably	gotten	from
some	symbolic	computation	program.	We	use	matrix	calculus	to	compute	it.	Moreover,	the	Matlab
code	has	the	wrong	Jacobian:	it	corresponds	to	the	Jacobian	matrix	of	the	square	errors.	This	is
harmless	in	their	implementation	as	they	specify	to	use	finite	differences	for	the	computation,	not
the	closed	formulas.

3.	 They	decompose	a	rotation	matrix	with	Euler	angles	in	this	order:	RxRzRy,	we	prefer	the	more
natural	RzRyRx.

4.	 They	cancel	the	x-rotation	in	the	right	term	of	F,	we	do	it	in	the	left	term.
5.	 The	paper	claims	using	Levenberg-Marquardt	(LM)	minimization	with	 lsqnonlin	Matlab	function.

The	way	this	function	is	called	in	their	code	uses	the	default	"trust	region	reflective"	algorithm.	On
some	examples,	we	found	this	minimization	to	be	less	susceptible	to	get	caught	in	a	local
minimimum	of	the	energy.	However,	we	implemented	it	with	the	better	known	LM	algorithm,	as
claimed	in	the	paper.	Modifying	their	Matlab	code	to	use	LM	in	lsqnonlin,	we	get	results	very
similar	to	ours.

6.	 The	Matlab	code	tries	the	minimization	up	to	20	times	with	random	initialization	of	the	focal	length
while	the	results	are	not	satisfactory.	We	try	only	once	with	g=0.

7.	 The	Matlab	code	has	the	option	of	keeping	the	center	image	point	fixed.	This	is	done	by
translating	the	principal	point.	We	prefer	using	only	an	x-translation	(to	fix	abscissa)	of	the
principal	point	and	an	x-rotation	(to	fix	ordinate).

Examples
We	show	some	examples	of	successful	rectification	by	the	above	algorithm.	In	most	cases,	10	or	fewer
iterations	of	 the	Levenberg-Marquardt	 algorithm	are	necessary.	To	 check	 visually	 the	 result,	 you	 can
make	your	browser	window	large	enough	to	get	the	rectified	images	side	by	side,	then	change	its	height
so	as	to	cut	the	images	at	some	level;	check	that	discernible	features	(blobs,	corners)	move	along	that
line.

In	each	case,	the	first	two	images	are	the	original	ones	and	the	last	two	the	rectified	ones.

Notice	 that	 different	 runs	of	 the	 full	 pipeline	with	 same	data	 do	not	 necessarily	 yield	 the	 exact	 same
results	as	there	is	a	random	component	in	ORSA.
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107	correspondences	are	found	and	the	final	RMSE	is	0.25	pixels	after	6	iterations.
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964	correspondences	are	found	and	the	final	RMSE	is	0.13	pixels	after	5	iterations.
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110	correspondences	are	found	and	the	final	RMSE	is	0.27	pixels	after	35	iterations.
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503	correspondences	are	found	and	the	final	RMSE	is	0.19	pixels	after	55	iterations.
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146	correspondences	are	found	and	the	final	RMSE	is	0.69	pixels	after	11	iterations.	The	final	error	is
higher	than	in	previous	examples,	due	to	some	geometric	distortion	of	the	camera.

Source	code
C++	source	code	of	the	pipeline	(containing	SIFT	point	detection	and	matching,	ORSA,	rectification)	is
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C++	source	code	of	the	pipeline	(containing	SIFT	point	detection	and	matching,	ORSA,	rectification)	is
provided	in	a	compressed	tar	archive:	 MissStereo.tar.gz.	Tested	under	linux	Ubuntu	10.04	with	GNU
g++	4.4.3.
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