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Abstract

Automatic Color Enhancement “ACE” is an effective method for color image enhancement
introduced by Gatta, Rizzi, and Marini based on modeling several low level mechanisms of
the human visual system. The direct computation of ACE on an N × N image costs O(N4)
operations. This article describes two fast approximations of ACE. First, the algorithm of
Bertalmı́o, Caselles, Provenzi, and Rizzi uses a polynomial approximation of the slope function
to decomposes the main computation into convolutions, reducing the cost to O(N2 logN).
Second, an algorithm based on interpolating intensity levels also reduces the main computation
to convolutions. The use of ACE for image enhancement and color correction is demonstrated.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the article web
page http://dx.doi.org/10.5201/ipol.2012.g-ace.

1 Introduction

The Automatic Color Enhancement “ACE” method of Gatta, Rizzi, and Marini [9] and further
developed by Rizzi, Gatta, and Marini [10, 11] and Bertalmı́o, Caselles, Provenzi, and Rizzi [13] is
an effective color correction and enhancement method based on a simple model of the human visual
system. The method is inspired by the following low level mechanisms:

• “gray world,” the average perceived color is gray [5]

• “white patch,” normalization toward a white reference [3]

• lateral inhibition [2]

• local-global adaptation [6]

By modeling these mechanisms, an image enhancement method can simulate the process of per-
ception. The enhanced image appears natural because the input image is adjusted in a manner
consistent with perception. This motivation is similar to the Retinex color perception model of Land
and McCann [4]. ACE and Retinex are compared in detail in other works [11, 15, 16].
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2 Histogram Equalization

Bertalmı́o et al. [13] proved that ACE has a connection with histogram equalization, which we briefly
review here. Uniform histogram equalization is a method to modify an image so that it has a uniform
histogram.

Let I : Ω → [0, 1] denote the input grayscale image with domain Ω and intensities scaled in
[0, 1]. For a color image, the following is performed independently on the red, green, and blue (RGB)
channels. Define the normalized cumulative histogram F ,

F (λ) = 1
|Ω|
∣∣{x ∈ Ω : I(x) ≤ λ}

∣∣, λ ∈ [0, 1], (1)

here |Ω| is the total number of pixels in the image. Considering image intensity I as a random
variable, the histogram computes its cumulative distribution F (λ) = P(I ≤ λ). The histogram
equalized image is obtained as F

(
I(x)

)
. Provided F is invertible, the equalized image F

(
I(x)

)
has

uniformly distributed intensity because

P
(
F (I) ≤ λ

)
= P

(
I ≤ F−1(λ)

)
= F

(
F−1(λ)

)
= λ. (2)

In practice, F is often not invertible due to quantization, however, the resulting image still has an
approximately uniform histogram.

3 ACE

Let I denote the input grayscale image or a given chromatic channel in a color image with domain
Ω and intensity values scaled in [0, 1]. For a color image, the following operation is performed
independently on the RGB channels:

R(x) =
∑

y∈Ω\x

sα
(
I(x)− I(y)

)

‖x− y‖ , x ∈ Ω, (3)

where Ω\x denotes {y ∈ Ω : y 6= x}, ‖x− y‖ denotes Euclidean distance, and sα : [−1, 1]→ R is the
slope function sα(t) = min

{
max{αt,−1}, 1

}
for some α ≥ 1.

−1 − 1
α

1
α 1

−1

1

sα(t)

t

In the limit α → ∞, it is the signum function s∞(t) = sign(t). In the second stage, the enhanced
channel is computed by stretching R to [0, 1] as

L(x) =
R(x)−minR

maxR−minR
. (4)

The first stage of the method (3) adapts local image contrast. Lateral inhibition is simulated
by neighbor differences I(x) − I(y) and weighting according to distance ‖x − y‖. The function
sα amplifies small differences and saturates large differences, which has the effect of expanding or
compressing the dynamic range according to the local image content. The second stage (4) adapts
the image to obtain a global white balance. By implementing these mechanisms, ACE is a simplified
model of the human visual system: the enhancement process is consistent with perception [10, 11].
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Bertalmı́o et al. [13] developed a variational interpretation of ACE. It is shown that ACE is
equivalent to solving the minimization problem

arg min
I

1

2

∑

x

(
I(x)− 1

2

)2 − 1

4M

∑

x

∑

y 6=x
ω(x, y)Sα

(
I(x)− I(y)

)
, (5)

where S ′α = sα, ω(x, y) = 1/‖x − y‖, and M = maxxR(x). Furthermore, it is shown that uniform
histogram equalization is a minimizer when α = ∞ and ω(x, y) = 1. Thus ACE may be seen as a
smoothed and localized modification of uniform histogram equalization

Variations of the ACE algorithm have also been considered [9, 10, 11]:

• other slope functions sα

• weight functions other than 1/‖x− y‖
• y can be restricted to a window around x in the summation

• other normalizations for L (4)

While ACE produces high-quality enhancement, a significant obstacle is that direct computation of
(3) is impractically expensive, costing O(N4) operations for an N ×N image. The following sections
describe two fast approximations of ACE that reduce the cost to O(N2 logN).

3.1 Boundary Handling and Convolutions

Both algorithms presented here rely ultimately on performing fast convolutions, and for this rea-
son, we change ACE’s boundary handling to the more convolution friendly half-sample symmetric
extension. Define the half-sample symmetric extension Ef of an N -sample sequence f ,

Published in Image Processing On Line on 2012–11–06.
ISSN 2105–1232 c© 2012 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2012.g-ace

Automatic Color Enhancement (ACE)

and its Fast Implementation

Pascal Getreuer

CMLA, ENS Cachan, France (getreuer@cmla.ens-cachan.fr)

Efn =





fn if n = 0, . . . , N − 1,

Ef−1−n if n < 0,

Ef2N−1−n if n ≥ N .

Efn

n
−N 0 N 2N

The definition is recursive since multiple reflections may be needed to obtain an index between 0
and N − 1. We also consider the tensor product of this extension applied to an N × N image ui,j,
i = 0, . . . , N − 1, j = 0, . . . , N − 1. Noting that Ef is 2N -periodic, it can also be defined as the
periodization of the reflected sequence f0, . . . , fN−1, fN−1, . . . , f0. The domain can be interpreted to
be a circle of 2N samples. In two dimensions, the domain is the 2N × 2N -periodic torus T2.

For any x, y ∈ T2, distance is defined on the torus as

d(x, y) := min
x̄,ȳ

{
|x̄− ȳ| : x̄ ≡ x, ȳ ≡ y

}
, (6)

where |v| :=
√
v2

1 + v2
2 and ≡ denotes equivalence on the torus. It can be shown that d(x, y) is an

even 2N × 2N -periodic function of (x− y), which allows us to write d(x, y) = d(x− y) = d(y − x).
The summation R(x) (3) is redefined as a summation over the torus T2\x, and Euclidean distance

‖x− y‖ is replaced by torus distance d(x− y):

R(x) =
∑

y∈T2\x

sα
(
I(x)− I(y)

)

d(x− y)
, x ∈ Ω. (7)

Notice that by defining

ω(x− y) =

{
0 if x = y,

1/d(x− y) if x 6= y,
(8)
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Figure 1: Distance on T2 (6).

the domain of summation can be extended to the whole torus T2. Henceforth we compute R as

R(x) =
∑

y∈T2

ω(x− y)sα
(
I(x)− I(y)

)
. (9)

Both algorithms will approximate R in terms of convolutions with ω on T2. Fast Fourier trans-
forms (FFT) may be used to evaluate these convolutions in O(N2 logN) operations. However, since
ω is even in both coordinates, the discrete cosine transform (DCT) may be used instead for even
greater computational efficiency. The data does not need to be padded in this case because symmetric
boundaries are implied by the transforms, which reduces the cost compared to FFTs. Martucci [7]
showed that convolution with half-sample symmetric boundaries can be performed through DCT
transforms as

ω ∗ I = C−1
2e

(
C1e(ω) · C2e(I)

)
,

where C1e and C2e are the unnormalized DCT-I and DCT-II transforms of the same period lengths.
In one dimension, these transforms are

C1e(h) = h0 + (−1)khN + 2
N−1∑

n=1

hn cos(πnk/N) k = 0, . . . , N, (10)

C2e(x) = 2
N−1∑

n=0

xn cos
(
π(n+ 1

2
)k/N

)
k = 0, . . . , N − 1. (11)

The transforms in higher dimensions are obtained by tensor product. Note that the DCT-I transform
is one sample longer (k = 0, . . . , N) than the other two transforms (k = 0, . . . , N−1). In the pointwise
multiplication (·), the first N coefficients are multiplied. See Martucci [7] and Getreuer [17] for further
details.

4 Polynomial Slope Function

Bertalmı́o, Caselles, Provenzi, and Rizzi [13] showed that by replacing sα with a polynomial, the
summation in R can be decomposed into convolutions, reducing the complexity to O(N2 logN).
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4.1 Fast Computation with Convolutions

The key change to the ACE method is to approximate min
{

max{αt,−1}, 1
}

with an odd polynomial
approximation,

sα(t) ≈
M∑

m=1

cmt
m. (12)

The exact choice for the approximating polynomial will be discussed in the next section. It is then
possible to decompose R into a sum of convolutions:

R(x) =
∑

y∈T2

ω(x− y)
M∑

m=1

cm
(
I(x)− I(y)

)m

= −
∑

y∈T2

ω(x− y)
M∑

m=1

cm
(
I(y)− I(x)

)m

= −
∑

y∈T2

ω(x− y)
M∑

m=1

cm

m∑

n=0

(
m

n

)
I(y)n

(
−I(x)

)m−n

=
M∑

n=0

( M∑

m=n

cn

(
m

n

)
(−1)m−n+1I(x)m−n

︸ ︷︷ ︸
an(x)

)∑

y∈T2

ω(y − x)I(y)n

=
M∑

n=0

an(x)(ω ∗ In)(x), (13)

where ∗ is cyclic convolution over T2. For each x, the evaluation of an(x) costs O(1) operations. The
convolutions can be efficient computed with DCT transforms in O(N2 logN) operations. Note that
for the term n = 0, explicit computation of the convolution is not needed since I0 ≡ 1. For an RGB
color image, 3M convolutions need to be computed.

The summation over n can be parallelized since the evaluation of an(x)(ω ∗ In)(x) is indepen-
dent for each n. OpenMP is used in the implementation included with this article to evaluate the
summands concurrently.

4.2 Polynomial Approximation

The slope function sα(t) = min
{

max{αt,−1}, 1
}

is approximated with an odd polynomial,

sα(t) ≈
M∑

m=1

cmt
m.

The input image is assumed to have intensities scaled in [0, 1], so the argument t is guaranteed to
be between −1 and 1. By the Stone–Weierstrass theorem, the continuous function sα(t) can be
uniformly approximated on [−1, 1] by a polynomial with any desired precision. However, the degree
of the polynomial affects the computational cost (3M convolutions must be evaluated for an Mth
degree polynomial), so a compromise is necessary between accuracy and speed.

For a fixed polynomial degree M , we select the coefficients cm to minimize the maximum absolute
error over [−1, 1],

min
c

max
t∈[−1,1]

∣∣∣∣∣sα(t)−
M∑

m=1

cmt
m

∣∣∣∣∣ . (14)

5



α Polynomial Max error

1 t 0.000
2 1.85623249t+ 3.82397125t3 − 19.70879455t5 + 26.15510902t7 − 11.15375327t9 0.028
3 3.51036396t− 6.31644952t3 + 0.92439798t5 + 9.32834829t7 − 6.50264005t9 0.057
4 4.76270090t− 18.23743983t3 + 36.10529118t5 − 31.35677926t7 + 9.66532431t9 0.061
5 5.64305564t− 28.94026159t3 + 74.52401661t5 − 83.54012582t7 + 33.39343065t9 0.081
6 6.19837979t− 35.18789052t3 + 95.28157108t5 − 109.95601312t7 + 44.78177264t9 0.118
7 6.69888108t− 41.02503190t3 + 115.02784036t5 − 135.35603880t7 + 55.81014424t9 0.156
8 7.15179080t− 46.43557440t3 + 133.54648929t5 − 159.34156394t7 + 66.27157886t9 0.193

Table 1: Optimal 9th degree approximation of sα for different α. Computed using CVX [12].
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Figure 2: Top row: sα and its 9th degree approximation. Bottom row: approximation error.

The optimal c can be found using the Remez algorithm [1]. Table 1 lists the optimal 9th degree
coefficients for integer values of α from 1 to 8. These approximations are used by the implementation
included with this article. For fixed polynomial degree, the approximation error increases with α
(Figure 2).

5 Interpolation

Here we describe another algorithm, which was generously suggested by an anonymous reviewer,
that decomposes the computation of R (3) into convolutions by using interpolation. We again use
the boundary handling developed in §3.1 and DCT-based convolutions. Define the sum

R(x;L) =
∑

y∈T2

ω(x− y)sα
(
L− I(y)

)
, (15)

where I(x) in (9) has been replaced by a constant L. Since the argument of sα now depends only on
y, the sum is a convolution and can be computed in O(N2 logN) operations. This allows for a fast
algorithm to approximate ACE.

Let (Lj) be a sequence such that min I = L1 < L2 < · · · < LJ = max I, and compute R(x;Lj),
j = 1, . . . , J . Then approximate R(x) = R(x; I(x)) by piecewise linear interpolation,

R(x) ≈ R(x;Lj) +
R(x;Lj+1)−R(x;Lj)

Lj+1 − Lj
(I(x)− Lj), j such that Lj ≤ I(x) ≤ Lj+1. (16)
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For an RGB color image, this algorithm costs 3J convolutions, which can be computed in parallel.
The interpolations (16) can also be computed in parallel by dividing the task as thread j interpolating
the half-closed interval [Lj, Lj+1) (or [LJ−1, LJ ] for the rightmost interval).

A direct implementation strategy would begin by computing and storing all 3J convolutions, but
this is a demanding amount of memory. To reduce the memory cost, the included implementation
computes (concurrently) and stores convolutions for just a few consecutive levels Li, . . . , Li+K at a
time, interpolates over [Lj, Lj+1), j = i, . . . , i+K−1, and then the process is repeated with i← i+K
until all intervals have been covered.

In the examples, (Lj) is uniformly spaced, Lj = min I + (max I −min I) j−1
J−1

. We find that using
J = 8 levels provides an accurate approximation for typical images.

6 Examples

This section shows the effects of the parameters and compares the two approximate algorithms.
Computation times are reported using the implementation included with this article running on a
laptop with two cores.1 For reference, some examples include the result with uniform histogram
equalization (HE). Unless otherwise specified, ACE is performed with α = 5, ω(x, y) = 1/

√
x2 + y2

using the level interpolation algorithm with J = 8 levels.

6.1 Effect of Varying α

The α parameter specifies the slope at t = 0 of the function sα(t) = min
{

max{αt,−1}, 1
}

. The larger
this parameter, the stronger the enhancement. Ignoring the spatial weighting, uniform histogram
equalization corresponds to α =∞.

Input (352× 480) ACE, α = 2 ACE, α = 4 ACE, α = 8 HE

6.2 Effect of Varying ω

The following experiments show the enhancement results for α = 8 when ω is a Gaussian with
standard deviation 5, 25, or 100, the default ω(x, y) = 1/

√
x2 + y2, or uniform weighting ω ≡ 1.

The leftmost image shows that ACE acts like an edge detector when ω is finely localized.

12.40GHz Intel R© CoreTM 2 Duo T7700 with 2GB RAM
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G5 G25 G100 1/
√
x2 + y2 1

6.3 Approximation

The following experiment investigates the cost/quality tradeoff of the two fast ACE approximations,
polynomial slope approximation (§4) and level interpolation (§5). Polynomial slope approximation
is tested with degrees 3, 5, 7, 9, 11 and level interpolation is tested with number of levels 4, 5, . . . , 12.
For the test images, we use the Kodak Image Suite,2 a set of 24 natural color images. The method
parameters are α = 5 and ω(x, y) = 1/

√
x2 + y2.

The scatter plot below shows runtime vs. root-mean-square error (RMSE)3 for every combination
of image and method order. This allows to assess cost/quality tradeoff as well as to visualize how
RMSE varies across different images. Polynomial slope approximations are labeled p3, p5, etc., and
for each degree, the markers indicate the median RMSE over the 24 images. Level interpolations
are labeled i4, i6, etc., and • markers indicate the median RMSE for each number of levels.

Computation time (ms)

0 200 400 600

RMSE

0

5

10

15

20

25

p3

p5

p7
p9 p11

i4

i6
i8 i10 i12

The scatter plot suggests that the two algorithms have similar cost/quality tradeoff with level
interpolation being slightly more efficient. We observe that level interpolation is faster for the same
number of convolutions (i.e., polynomial degree = number of levels) since the linear interval interpo-
lations are simpler than evaluating the an(x) polynomials. Several results for image #21 are shown
below. All results appear very similar, even for low degree or number of levels.

2Available online at http://www.cipr.rpi.edu/resource/stills/kodak.html
3RMSE values are relative to the intensity range [0, 255]. The exact solution was computed using the interpolation

algorithm with 256 levels.
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Input (768× 512) Polynomial degree 5 Polynomial degree 9

Exact Interpolation with 4 levels Interpolation with 8 levels

6.4 Enhancement

ACE and histogram equalization are applied here to improve image contrast. Enhancement can also
be used to correct images with poor exposure.

Input (331× 248) ACE, α = 5 (291 ms) HE (1 ms)

Input (480× 480) ACE, α = 5 (230 ms) HE (3 ms)

Histogram equalization is effective but sometimes too harsh, producing artificial colors in the
dark foreground. ACE is more moderate and avoids these artifacts.
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6.5 Color Correction

ACE can also be used to correct film that has discolored and faded from aging [8, 14]. The examples
in this section demonstrate restoration of images scanned from old Kodachrome and Ektachrome
film. These images, originally created by the photographer Erwin Blumenfeld, are provided courtesy
of his estate.

“Untitled, circa 1950” ACE, α = 5 HE

“Self-portrait, NY, circa 1960” ACE, α = 5 HE

“New-York Venus, 1952” ACE, α = 5 HE
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“The Red Cross, 1945” ACE, α = 5 HE
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