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Abstract

Denoising is the problem of removing noise from an image. The most commonly studied case
is with additive white Gaussian noise (AWGN), where the observed noisy image f is related to
the underlying true image u by

f = u+ η,

and η is at each point in space independently and identically distributed as a zero-mean Gaussian
random variable.

Total variation (TV) regularization is a technique that was originally developed for AWGN
image denoising by Rudin, Osher, and Fatemi [9]. The TV regularization technique has since
been applied to a multitude of other imaging problems, see for example Chan and Shen’s
book [20]. We focus here on the split Bregman algorithm of Goldstein and Osher [31] for
TV-regularized denoising.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the article web
page http://dx.doi.org/10.5201/ipol.2012.g-tvd. Future software releases and updates
will be posted at http://dev.ipol.im/~getreuer/code.

1 TV Regularization

Rudin, Osher, and Fatemi [9] proposed to estimate the denoised image u as the solution of a mini-
mization problem,

arg min
u∈BV (Ω)

‖u‖TV(Ω) +
λ

2

∫
Ω

(
f(x)− u(x)

)2
dx, (1)

where λ is a positive parameter. This problem is referred to as the Rudin-Osher-Fatemi or ROF
problem. Denoising is performed as an infinite-dimensional minimization problem, where the search
space is all bounded variation (BV) images. A function u is in BV (Ω) if it is integrable and there
exists a Radon measure Du such that∫

Ω

u(x) div~g(x) dx = −
∫

Ω

〈~g,Du(x)〉 for all ~g ∈ C1
c (Ω,R2)2. (2)

This measure Du is the distributional gradient of u. When u is smooth, Du(x) = ∇u(x)dx. The
total variation (TV) seminorm of u is

‖u‖TV(Ω) :=

∫
Ω

|Du| := sup
{∫

Ω

u div~g dx : ~g ∈ C1
c (Ω,R2)2,

√
g2

1 + g2
2 ≤ 1

}
. (3)
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When u is smooth, TV is equivalently the integral of its gradient magnitude,

‖u‖TV(Ω) =

∫
Ω

|∇u| dx. (4)

The TV term in the minimization discourages the solution from having oscillations, yet it does
allow the solution to have discontinuities. The second term encourages the solution to be close to
the observed image f . By this combination, the minimization finds a denoised image. If f ∈ L2, the
minimizer of the ROF problem exists and is unique and is stable in L2 with respect to perturbations
in f [24].

From a Bayesian point of view, this formulation is a maximum a posteriori estimate using a TV
prior. From the AWGN noise model, the conditional probability density p(f |u) is

p
(
f(x)|u

)
=

1√
2πσ2

exp
(
− 1

2σ2

∫
Ω

(
f(x)− u(x)

)2
dx
)

− log p
(
f |u
)

= const +
1

2σ2

∫
Ω

(f − u)2 dx, (5)

where σ is the noise variance. The maximum a posteriori estimate is

u = arg max
u

p(u|f)

= arg max
u

p(u)p(f |u)

= arg min
u
− log p(u)− log p(f |u)

= arg min
u
− log p(u) +

1

2σ2

∫
Ω

(f − u)2 dx. (6)

The − log p(u) term is the prior on u, an a priori assumption on the likelihood of a solution u. With
total variation regularization, the selected prior is

− log p(u) = µ‖u‖TV(Ω), (7)

where µ is a positive parameter controlling the regularization strength. A larger value of µ places
more emphasis on the prior, leading to a more regular solution. The ROF problem is equivalent to
the maximum a posteriori estimate with 1/λ = µσ2,

arg min
u

µ‖u‖TV(Ω) +
1

2σ2

∫
Ω

(
f(x)− u(x)

)2
dx. (8)

Through this connection with maximum a posteriori estimation, TV-regularized denoising can be
extended to other noise models. Alliney [12] and Chan and Esedoḡlu [19] developed TV denoising
for Laplace noise (L1 data fidelity),

arg min
u
‖u‖TV(Ω) + λ

∫
Ω

∣∣f(x)− u(x)
∣∣ dx, (9)

Le, Chartrand, and Asaki [25] developed TV denoising for Poisson noise,

arg min
u
‖u‖TV(Ω) + λ

∫
Ω

(
u(x)− f(x) log u(x)

)
dx. (10)

TV denoising has been similarly extended to multiplicative noise [17, 45] and Rician noise [42].
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Furthermore, these models can be extended to use a spatially varying λ (see for example [23]) to
impose a locally adapted regularization strength at different points of space,

arg min
u
‖u‖TV(Ω) +

1

2

∫
Ω

λ(x)
(
f(x)− u(x)

)2
dx. (11)

TV-based inpainting [20] is an interesting special case where λ is set to zero over some region of
space. For x where λ(x) = 0, the observed value f(x) is ignored and u(x) is only influenced by the
‖u‖TV term.

The choice of noise model can significantly affect the denoising results. For better results, the
noise model should agree with the actual noise distribution in the image.

2 Algorithms

For numerical solution of the minimization problem, several approaches for implementing the TV
seminorm have been proposed in the literature. TV is most often discretized by

‖u‖TV(Ω) ≈
∑
i,j

√
(∇xu)2

i,j + (∇yu)2
i,j, (12)

where ∇x and ∇y are discretizations of the horizontal and vertical derivatives. A difficulty with TV
is that it has a derivative singularity when u is locally constant. To avoid this, some algorithms
regularize TV by introducing a small parameter ε > 0 within the square root,∑

i,j

√
ε2 + (∇xu)2

i,j + (∇yu)2
i,j. (13)

Let ∇+
x , ∇−x , ∇+

y , ∇−y denote the forward (+) and backward (−) finite difference operators in the x
and y directions and let m(a, b) denote the minmod operator

m(a, b) =
(sign a+ sign b

2

)
min(|a|, |b|). (14)

Several ways to discretize the derivatives are

• One-sided difference (∇xu)2 = (∇+
x u)2

• Central difference (∇xu)2 =
(
(∇+

x u+∇−x u)/2
)2

• Geometric average (∇xu)2 =
(
(∇+

x u)2 + (∇−x u)2
)
/2

• Minmod (∇xu)2 = m(∇+
x u,∇−x u)2

• Upwind discretization [39] (∇xu)2 =
(
max(∇+

x u, 0)2 + max(∇−x u, 0)2
)
/2

Central differences are undesirable for TV discretization because they miss thin structures. The
central difference at (i, j) does not depend on ui,j:

∇+
x ui,j +∇−x ui,j

2
=

(ui+1,j − ui,j) + (ui,j − ui−1,j)

2
=
ui+1,j − ui−1,j

2
. (15)

Therefore, if u has a one-sample wide structure like u0,j = 1 and ui,j = 0 for all i 6= 0, the variation
at (0, j) estimated by central differences is zero. To avoid this problem, one-sided differences can
be used, however, they are not symmetric. The geometric average, minmod, and upwind estimates
listed above regain symmetry by combining the forward and backward one-sided differences, though
at the cost that then the derivatives are nonlinear. Another concern is whether a TV discretization is
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consistent, that is, whether the discrete TV converges to the true TV as the grid resolution becomes
infinitely fine, see for example Wang and Lucier [40].

Another twist is that some algorithms substitute TV with the anisotropic TV,∑
i,j

(
|(∇xu)i,j|+ |(∇yu)i,j|

)
. (16)

The usual TV is invariant to rotation of the domain, but anisotropic TV is not. However, it allows for
other approaches that do not apply with the usual TV, for example Hochbaum’s exact algorithm [16]
and graph-cuts [30].

0 1 · · · N

i

0

1

...

N

j
ui,j

h

h

The sampling grid.

As first proposed by Rudin, Osher, and Fatemi in [9], an alternative to discretizing the minimiza-
tion problem directly is to discretize its gradient descent PDE. Through calculus of variations, the
gradient descent PDE of the minimization is{

∂tu = div ∇u
|∇u| + λ(f − u),

ν · ∇u = 0 on ∂Ω.
(17)

Since the problem is convex, the steady state solution of the gradient descent is the minimizer of
the problem. Therefore, the minimizer can be obtained numerically by evolving a finite difference
approximation of this PDE. An explicit scheme for this was developed in [9]. Let ui,j denote samples
on a grid, ui,j := u(ih, jh), i, j = 0, 1, . . . N , Nh = 1. Gradient descent is performed by iterating1

un+1
i,j = uni,j + dt

[
∇−x
( ∇+

x u
n
i,j√

(∇+
x u

n
i,j)

2 + (m(∇+
y u

n
i,j,∇−y uni,j))2

)

+ ∇−y
( ∇+

y u
n
i,j√

(∇+
y u

n
i,j)

2 + (m(∇+
x u

n
i,j,∇−x uni,j))2

)]
+ dtλ(fi,j − uni,j), i, j = 1, . . . , N − 1,

un0,j = un1,j, unN,j = unN−1,j, uni,0 = uni,1, uni,N = uni,N−1, i, j = 0, . . . , N,

Algorithm 1

where dt is a small positive timestep parameter. The discretization is symmetric through a balance
of forward and backward differences. In the divisions, notice that the numerator is always smaller
in magnitude than the denominator. In the special case that the denominator is zero (where u is
locally constant), the quotient is evaluated as 0/0 = 0. The second line imposes the zero Neumann
boundary condition.

1Editor’s Note: In previous versions of this article, the second denominator was incorrectly√
(∇+

y uni,j)
2 + (m(∇+

x uni,j ,∇−
y uni,j))

2.
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Instead of evolving the gradient descent, another approach taken for example with the digital TV
filter [14] is to solve for the steady state directly:

0 = div ∇u
|∇u| + λ(f − u). (18)

Many other algorithms for TV denoising have been developed, especially for the Gaussian noise
model, and this continues to be an active area of research. Numerous algorithms have been pro-
posed to solve the TV denoising minimization, too many to list them all here. To name a few,
there are algorithms based on duality [18, 36, 44], Newton-based methods [27], graph cuts [30], and
frame shrinkage [38]. Most recent methods employ operator splitting [6, 26, 29, 31, 33, 34, 41, 43],
particularly the split Bregman algorithm discussed in the next few sections.

3 Bregman Iteration

Bregman iteration [1, 22, 28, 35] is a technique for solving constrained convex minimization problems
of the form

arg min
u

J(u) subject to H(u) = 0 (19)

where J and H are (possibly non-differentiable) convex functionals on defined on a Hilbert space.
We assume there exists u minimizing H for which H(u) = 0 and J(u) < ∞. The key idea is the
Bregman distance.

u

J(ũ)

J(v)

slope
p ∈ ∂J(v)Dp

J(ũ, v)

The Bregman distance Dp
J(ũ, v).

The Bregman distance is defined as

Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉, p ∈ ∂J(v). (20)

Bregman distance compares the value J(u) with the tangent plane J(v)+〈p, u−v〉. The figure above
illustrates the distance in one dimension. The horizontal axis denotes u, the blue curve denotes J(u),
and the black line is the tangent plane J(v) + 〈p, u − v〉. Here, ∂J is the subdifferential of J [10],
which is defined as

∂J(v) := {p : J(u) ≥ J(v) + 〈p, u− v〉 ∀u}. (21)

Bregman distance is not a distance in the usual sense because it is not symmetric. However, it does
satisfy other distance-like properties following from the definition of the distance and the convexity
of J [22]:

• Dp
J(v, v) = 0

• Dp
J(u, v) ≥ 0

• Dp
J(u, v) +Dp̃

J(v, ṽ)−Dp̃
J(u, ṽ) = 〈p− p̃, v − u〉.
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Given a starting point u0 and parameter γ > 0, the Bregman iteration algorithm is formally

uk+1 = arg minuD
pk

J (u, uk) + γH(u), pk ∈ ∂J(uk)

Algorithm 2

Existence of the solutions uk+1 is nontrivial if the search space is infinite dimensional. This is
studied in [22], with particular attention to the case where J is total variation.

Because uk+1 minimizes Dpk

J (u, uk) + γH(u),

Dpk

J (uk+1, uk) + γH(uk+1) ≤ Dpk

J (uk, uk) + γH(uk), (22)

so the iteration has the property

γH(uk+1) ≤ Dpk

J (uk+1, uk) + γH(uk+1) ≤ Dpk

J (uk, uk) + γH(uk) = γH(uk), (23)

so H(uk) decreases monotonically. Some stronger convergence results under additional assumptions
will be discussed shortly.

We will consider here the case when H is differentiable. In this case the sub-differential of H is
its gradient ∇H, and the sub-differential of the Lagrangian is given by

∂u
(
J(u)− J(uk)− 〈pk, u− uk〉+ γH(u)

)
= ∂J − pk + γ∇H. (24)

Since uk+1 minimizes Dpk

J (u, uk) + γH(u), the optimality condition is then

0 ∈ ∂J(uk+1)− pk + γ∇H(uk+1)

⇔ pk − γ∇H(uk+1) ∈ ∂J(uk+1).
(25)

Therefore, pk+1 ∈ ∂J(uk+1) can be selected as pk+1 = pk − γ∇H(uk+1). Bregman iteration with this
rule is

p0 ∈ ∂J(u0)
for k = 0, 1, . . . do

uk+1 = arg minuD
pk

J (u, uk) + γH(u)
pk+1 = pk − γ∇H(uk+1)

Algorithm 3

Suppose that H is differentiable and that the solutions uk+1 exist and are obtained by Algorithm 3,
then the following convergence results hold [22]: for any ũ such that H(ũ) = 0 and J(ũ) <∞,

Dpk+1

(ũ, uk+1) ≤ Dpk(ũ, uk) (26)

and

H(uk) ≤ J(ũ)

γk
. (27)

Particularly, (uk) is a minimizing sequence of H.
A remarkable feature of Bregman iteration is that the limiting solution satisfies the constraint

H(u) = 0 exactly for any positive value of the parameter γ. The value of γ does, however, affect the
convergence speed and numerical conditioning of the minimization problems, so γ should be selected
according to these considerations.

A case of practical importance, including our application to TV denoising, is where u is in Rn

with linear equality constraints. Let A be a matrix and set

H(u) = 1
2
‖Au− f‖2

2, (28)
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then Bregman iteration simplifies [28, 31] to Algorithm 4. Furthermore, when the constraints are
linear, Bregman iteration is equivalent [28] to the augmented Lagrangian method (also known as the
method of multipliers) introduced by Hestenes [2] and Powell [3].

u0 ∈ Rn, b0 = 0
for k = 0, 1, . . . do

uk+1 = arg minu J(u) + γ
2
‖Au− f + bk‖2

2

bk+1 = bk + Auk+1 − f
Algorithm 4

The sub-gradients pk are represented by the auxiliary variables bk, which are added within the
quadratic penalty term. Jia, Zhao, and Zhao [35] proved that the above iteration converges to
the solution of the constrained minimization problem for TV denoising for both the isotropic or
anisotropic TV discretization.

4 Discrete Derivatives

We describe here a methodology for discrete derivatives and boundary handling of uniformly sampled
functions. These discrete derivatives will be used in the denoising algorithm.

In one dimension, let (fn), n ∈ Z, denote uniformly-spaced samples of a bounded function f . We
define the discrete first derivative of f as the forward difference

∂fn := fn+1 − fn. (29)

In two dimensions, the discrete gradient of ui,j, (i, j) ∈ Z2, is defined as applying ∂ separately along
the x and y dimensions,

∇ui,j :=

(
∂xui,j
∂yui,j

)
=

(
ui+1,j − ui,j
ui,j+1 − ui,j

)
. (30)

In analogy to the standard notation for continuous partial derivatives, the subscript on ∂ denotes
along which dimension the difference is applied.

Note that the negative adjoint −∂∗ is the backward difference,∑
n∈Z

(∂∗fn)gn :=
∑
n∈Z

fn(∂gn)

=
∑
n∈Z

fn(gn+1 − gn)

=
∑
n∈Z

(fn−1 − fn)gn, ∀g ∈ `1,

⇒ −∂∗fn = fn − fn−1. (31)

We define discrete divergence through the relationship div := −∇∗. For a vector field ~vi,j =
(vxi,j, v

y
i,j)

T ,

div~vi,j := −∇∗vi,j
= −∂∗xvxi,j − ∂∗yvyi,j
= vxi,j − vxi−1,j + vyi,j − vyi,j−1. (32)

The discrete Laplacian follows from the relationship ∆ := div∇,

∆ui,j := div∇ui,j
= −∂∗x∂xui,j − ∂∗y∂yui,j
= −4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1. (33)

7



We now address the issue of boundary handling. Above, we defined discrete derivatives assuming
samples fn are available for all integer n. On a finite-length signal f0, f1, . . . , fN−1, the forward
differences can be computed directly for n in the interior,

∂fn = fn+1 − fn, n = 0, . . . , N − 2. (34)

However, the forward difference at the right endpoint n = N − 1 would require the unknown sample
fN . Special handling is needed on the boundaries.

Define the half-sample symmetric extension Ef ,

Efn =


fn if n = 0, . . . , N − 1,

Ef−1−n if n < 0,

EfN−1−n if n ≥ N .

Efn

n
−N 0 N 2N

(35)

The definition is recursive since multiple reflections may be needed to obtain an index between 0
and N − 1. We also consider the tensor product of this extension applied to an N × N image ui,j,
i = 0, . . . , N − 1, j = 0, . . . , N − 1. We define the discrete derivative of finite-length f as the forward
difference of Ef ,

∂fn := Efn+1 − Efn =

{
fn+1 − fn if n = 0, . . . , N − 2,

0 if n = −1 or N − 1.
(36)

This discrete derivative may be viewed as an N ×N matrix multiplication,
∂f0

∂f1
...

∂fN−2

∂fN−1

 =


−1 1

−1 1
. . . . . .

−1 1
0




f0

f1
...

fN−2

fN−1

 . (37)

Noting that Ef is 2N -periodic, the discrete gradient may also be viewed as a cyclic convolution of
the reflected signal (f0, . . . , fN−1, fN−1, . . . f0) with the filter h−1 = 1, h0 = −1, and h zero otherwise.

We define the discrete gradient of an N ×N image u as ∇u = (∂xu, ∂yu)T . Due to the symmetric
extension, ∂Ef is (whole-sample) anti-symmetric about the points n = N − 1 (modN):

∂Efn

n−N 0 N 2N

Let g be such an anti-symmetric signal. Then −∂∗g is
−∂∗g0

−∂∗g1
...

−∂∗gN−2

−∂∗gN−1

 =


1
−1 1

. . . . . .

−1 1
−1 0




g0

g1
...

gN−2

gN−1

 . (38)

This is the negative transpose of the matrix above for ∂. To explain the endpoints, note that g−1

and gN−1 are zero by the anti-symmetric property, which implies

−∂∗g0 = g0 − g−1 = g0,

−∂∗gN−1 = gN−1 − gN−2 = −gN−2.
(39)
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Similarly in two dimensions, we define the discrete divergence of an N ×Nvector field ~v = (vx, vy)T

as div~v = −∂∗xvx − ∂∗yvy.
Finally, second differences are obtained as

−∂∗∂fn := −∂∗∂Efn =


f1 − f0 if n = 0,

fn+1 − 2fn + fn−1 if n = 1, . . . , N − 2,

fN−2 − fN−1 if n = N − 1,
−∂∗∂f0

−∂∗∂f1
...

−∂∗∂fN−2

−∂∗∂fN−1

 =


−1 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1




f0

f1
...

fN−2

fN−1

 .

(40)

We define the discrete Laplacian of an N ×N image as ∆u = −∂∗x∂xu−∂∗y∂yu. In the image interior,
this is the 5-point Laplacian −4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1.

5 Split Bregman for Gaussian Noise

Here we focus on the split Bregman algorithm of Goldstein and Osher [31]. Split Bregman is a flexible
algorithm for solving non-differentiable convex minimization problems, and it is especially efficient for
problems with L1 or TV regularization. Goldstein and Osher [31] discuss in particular its application
to TV-regularized Gaussian denoising. It is easy to extend to other noise models (described in a
later section) and related problems like TV-regularized deblurring and inpainting [37, 46, 47].

Total variation is approximated by summing the vector magnitude |∇ui,j| over all pixels,

‖u‖TV(Ω) ≈
N−1∑
i=0

N−1∑
j=0

|∇ui,j|, (41)

where ∇u is the discrete gradient developed in the previous section. The split Bregman idea is to
apply operator splitting and use Bregman iteration to solve the resulting constrained minimization:

arg min
d,u

∑
i,j

|di,j|+
λ

2

∑
i,j

(fi,j − ui,j)2

subject to d = ∇u.
(42)

By introducing d, the first and second terms are not directly interacting. The split problem is solved
using Bregman iteration as in Algorithm 4. In each iteration of the Bregman method, following
problem is solved:

arg min
d,u

∑
i,j

|di,j|+
λ

2

∑
i,j

(fi,j − ui,j)2 +
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2 (43)

where b is a variable related to the Bregman iteration algorithm and the penalty parameter γ is a
positive constant. Goldstein and Osher proposed to solve this problem by an alternating direction
method [4, 5, 7], in each step minimizing either d or u while keeping the other variable fixed. Esser [32]
showed that for linear constraints, split Bregman with this alternating direction method is equivalent
to the alternating direction method of multipliers, which was introduced by Glowinski and Marocco [4]
and Gabay and Mercier [5].
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d subproblem With u fixed, the d subproblem is

arg min
d

∑
i,j

|di,j|+
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2. (44)

This problem decouples over space and has a closed-form solution as a vectorial shrinkage,

di,j =
∇ui,j + bi,j
|∇ui,j + bi,j|

max
{
|∇ui,j + bi,j| − 1/γ, 0

}
. (45)

u subproblem With d fixed, the u subproblem is

arg min
u

λ

2

∑
i,j

(ui,j − fi,j)2 +
γ

2

∑
i,j

|∇ui,j − di,j + bi,j|2. (46)

The optimal u satisfies a discrete screened Poisson equation,

λ(u− f) + γ∇∗(∇u− d+ b) = 0

λu− γ∆u = λf − γ div(d− b), (47)

where div := −∇∗ and ∆ := div∇ are the discrete divergence and discrete Laplacian developed in
the previous section.

The optimality equation may be solved for u in the Fourier or DCT domain or by iterative matrix
techniques. In this work, we follow Goldstein and Osher’s suggestion [31] to approximate the solution
to this equation with one sweep of Gauss–Seidel per Bregman iteration. The subproblem is solved
once for each Bregman iteration, so the combined effect of the sweeps over multiple iterations solves
the subproblem accurately.

Updating b We enforce the constraint d = ∇u by applying Algorithm 4 with H(u) = 1
2
‖∇u−d‖2.

The auxiliary variable b is initialized to zero and updated after each Bregman iteration as

bk+1 = bk +∇u− d. (48)

Selecting the penalty parameter γ As we discussed previously, Bregman iteration ensures that
the limiting solution satisfies the constraint H(u) = 0 exactly for any positive value γ. Therefore,
a good choice of γ is where both d and u subproblems converge quickly and are numerically well-
conditioned.

In the d subproblem, the solution d is equal to (∇u+ b) after shrinking its vector magnitude by
1/γ. This effect is more dramatic when γ is small.

The u subproblem behaves oppositely. The updated u is found by solving

λu− γ∆u = λf − γ div(d− b). (49)

The effect of the subproblem increases when γ is larger because the ∆u term creates stronger spatial
interaction and d has more influence on the solution. However, the conditioning also worsens as γ
increases and is ill-conditioned in the limit γ →∞.

Therefore, γ should be neither extremely larger nor small for good convergence. In the examples,
we fix γ = 5. We have found that the algorithm is fairly insensitive to the exact value of γ.

The overall algorithm is

Initialize u = 0, d = 0, b = 0
while ‖ucur − uprev‖2 > Tol do

Solve the d subproblem
Solve the u subproblem
b = b+∇u− d

Algorithm 5
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where the solutions of the subproblems are as developed above. In the xth subproblem (x = d or u),
the solution is computed using the current values of the other variables and overwrites the previous
value for x. Convergence is tested by the mean square difference between the current and previous
iterate of u. In the implementation, the default parameter values are Tol = ‖f‖2/1000 and γ = 5.

A similar algorithm to split Bregman is the FTVd algorithm by Wang, Yang, Yin, and Zhang [29].
In FTVd, operator splitting and alternating direction minimization is applied in the same way as in
split Bregman. But instead of using Bregman iteration, FTVd enforces the constraint by gradually
increasing the penalty parameter γ in a continuation scheme. The downside of continuation schemes
is that penalty parameter may need to become very large to satisfy the constraint accurately, which
degrades the numerical conditioning and convergence speed. Bregman iteration avoids these problems
because γ stays fixed. On the other hand, FTVd is advantageous in TV-regularized deconvolution,
where it requires one fewer FFT transform per iteration than split Bregman.

For color images, the vectorial TV (VTV) is used in place of TV,

‖u‖VTV(Ω) :=

∫
Ω

( ∑
i∈channels

|∇ui(x)|2
)1/2

dx. (50)

The grayscale algorithm extends directly to VTV-regularized denoising.

6 Tuning λ

The choice of the parameter λ affects the balance between removing the noise and preserving the
signal content. Parameter tuning can generally be approached as a meta-optimization where λ is
selected to optimize some criterion of the denoising result. A straightforward method for parameter
tuning is the discrepancy principle: λ is selected to match the noise variance σ2. For TV denoising,
the discrepancy principle suggests to solve a constrained form of the ROF problem

arg min
u
‖u‖TV(Ω) subject to

∫
Ω

(
f(x)− u(x)

)2
dx = σ2|Ω|. (51)

The discrepancy principle has an observed tendency to overestimate the mean squared error
optimal choice of λ and slightly over-smoothing the solution, see for example [8]. We nevertheless
follow it here as a simple automatic selection of the parameter.

Let 〈f〉 denote the mean value of f . We assume that the variance of f is at least as large as the
noise level ∫

Ω

(
f(x)− 〈f〉

)2
dx ≥ σ2|Ω|, (52)

which is likely to be true since f is supposed to have additive noise of variance σ2. Under this
condition, the problem is equivalent to the unconstrained minimization

arg min
u
‖u‖TV(Ω) +

λ

2

∫
Ω

(
f(x)− u(x)

)2
dx, (53)

with λ as the Lagrangian multiplier for the constraint. There exists a unique value of λ for which
the minimizers of the two problems are the same. Unfortunately, the relationship between σ and λ
is indirect; there is no closed-form formula to obtain the value of λ corresponding to a particular σ.

While there are some algorithms that can solve the constrained problem directly with σ, most
algorithms solve the unconstrained version with λ. To find a value of λ so that ‖f − u‖2

2 is approxi-
mately σ2, an effective algorithm proposed by Chambolle [18] is

11



Iterate
u = arg minu‖u‖TV + λ

2
‖f − u‖2

2

λ = λ‖f − u‖2/σ

Algorithm 6

The sequence of λ produced by this iteration is proven to converge monotonically to the unique
λ such that ‖f − u‖2

2 = σ2. We initialize the iteration with the following empirical estimate of λ,

λ0 =
0.7079

σ
+

0.6849

σ2

σ
0 10 20 30

λ

0

0.2

0.4

0.6

Dots: optimal λ values for three images. Line: empirical estimate.

where σ is the noise standard deviation relative to the intensity range [0, 255]. The iteration solves
the unconstrained problem with the current estimate of λ and then updates λ according to ‖f −u‖2.
To speed up the minimizations, note that the u computed in one iteration can be used as the initial
guess in the following iteration.

The iteration converges quickly for most images and noise levels. We perform five iterations to
tune λ, which is sufficiently accurate so that ‖f − u‖2 is usually within 10% of σ.

7 Split Bregman for Laplace and Poisson Noise

For a general noise model, TV-regularized denoising takes the form

arg min
u
‖u‖TV(Ω) + λ

∫
Ω

F
(
u(x), f(x)

)
dx, (54)

where F specifies the noise model,

F
(
u(x), f(x)

)
=

{
|u(x)− f(x)| Laplace noise,

u(x)− f(x) log u(x) Poisson noise.
(55)

The split Bregman algorithm may be applied if the problem is convex, which is the case with the
Laplace and Poisson noise models. As developed in [37], a splitting with two auxiliary variables can
be used to separate F from the derivative terms,

arg min
d,z,u

∑
i,j

|di,j|+ λ
∑
i,j

F (zi,j, fi,j)

subject to d = ∇u, z = u.

(56)

In each iteration of the Bregman method, following problem is solved:

arg min
d,z,u

∑
i,j

|di,j|+ λ
∑
i,j

F (zi,j, fi,j)

+
γ1

2

∑
i,j

|di,j −∇ui,j − b1
i,j|2 dx+

γ2

2

∑
i,j

(zi,j − ui,j − b2
i,j)

2
(57)

where b1 and b2 are variables related to the Bregman iteration. As in the Gaussian case, this problem
is solved by minimizing one variable at a time with the other two fixed.
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d subproblem With z and u fixed, the d subproblem is the same as before

di,j =
∇ui,j + b1

i,j

|∇ui,j + b1
i,j|

max
{
|∇ui,j + b1

i,j| − 1/γ1, 0
}
. (58)

z subproblem With d and u fixed, the z subproblem is

arg min
z

λ
∑
i,j

F (zi,j, fi,j) +
γ2

2

∑
i,j

(zi,j − ui,j − b2
i,j)

2. (59)

The solution decouples over i,j and the optimal z satisfies

λ∂zF (z, f) + γ2(z − u− b2) = 0. (60)

For the Laplace noise model with F (z, f) = |z − f |, the solution is

zi,j = fi,j + sign si,j max
{
|si,j| − λ

γ2
, 0
}
,

s = u− f + b2.
(61)

For the Poisson noise model with F (z, f) = z − f log z, the solution is

zi,j = si,j/2 +
√(

si,j/2
)2

+ λ
γ2
fi,j,

s = u− λ
γ2

+ b2.
(62)

u subproblem With d and z fixed, the u subproblem is

arg min
u

γ1

2

∑
i,j

|∇ui,j − di,j + b1
i,j|2 +

γ2

2

∑
i,j

(ui,j − zi,j + b2
i,j)

2. (63)

The optimal u satisfies
γ2u− γ1∆u = γ2(z − b2)− γ1 div(d− b1), (64)

which as before is approximated by one sweep of Gauss–Seidel iteration.
The overall algorithm is

Initialize u = 0, z = 0, b2 = 0, d = 0, b1 = 0
while ‖ucur − uprev‖2 > Tol do

Solve the d subproblem
Solve the u subproblem
Solve the z subproblem
b1 = b1 +∇u− d
b2 = b2 + u− z

Algorithm 7

In the implementation, the default parameter values are Tol = ‖f‖2/1000, γ1 = 5, γ2 = 8.
As with Gaussian denoising, λ can be selected according to the discrepancy principle to match

the noise standard deviation. While there is no theoretical guarantee of convergence in this case, we
find that iterations similar to Algorithm 6 also work with Laplace and Poisson noise.

λ tuning for Laplace noise

λ = (−270.5σ + 21572)/(σ3 − 52.07σ2 + 1063σ + 9677)
Iterate

u = arg minu‖u‖TV + λ‖f − u‖1

λ = λ
√
‖f − u‖2/σ

13



λ tuning for Poisson noise2

λ = 72.39/σ + 97.67/σ2

Iterate
u = arg minu‖u‖TV + λ

∫
(u− f log u)

λ = λ‖f − u‖2/σ

Empirical estimates are used to initialize λ. For Laplace noise, the sequence of λ tends to oscillate,
so a square root is included in the update formula to dampen the oscillations.

Laplace Poisson

σ
0 20 40 60

λ

0

0.5

1

1.5

2

2.5

σ
0 10 20 30

λ

0

20

40

60

Dots: optimal λ values for three images. Line: empirical estimates.

8 Examples

The first example demonstrates how for TV-regularized Gaussian denoising the value of λ influences
the result. A smaller value of λ implies stronger denoising. When λ is very small, the image becomes
cartoon-like with sharp jumps between nearly flat regions. The λ parameter needs to be balanced to
remove noise without losing too much signal content.

Input f (PSNR 20.15) λ = 5 (PSNR 26.00) λ = 10 (PSNR 27.87)

λ = 20 (PSNR 27.34) λ = 40 (PSNR 24.01)

2Editor’s Note: In previous versions of this article, the third line was incorrectly u = arg minu‖u‖TV + λ
∫ (

(u −
f) log u

)
.
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TV-regularized denoising with increasing values of λ.

The plot shows the PSNR vs. λ for the previous example. The optimal λ is about 13.4.

λ

0 10 20 30 40 50
P
S
N
R

22

24

26

28

30

PSNR vs. λ for the previous example.

To illustrate the importance of the noise model, the image in this example has been corrupted
with impulsive noise. The Gaussian noise model works poorly: λ must be very small to remove all
the noise, but this also removes much of the signal content. Better results are obtained with the
Laplace noise model, which better approximates the distribution of impulsive noise.

Input f Gaussian, λ = 4 Gaussian, λ = 8 Laplace, λ = 1.25

(PSNR 13.26) (PSNR 20.28) (PSNR 19.70) (PSNR 25.85)

The Laplace model is more effective for removing impulsive noise.

The next example demonstrates VTV-regularized Gaussian denoising on a color image.

Exact Input f (PSNR 18.57) Denoised u with λ = 7 (PSNR 28.24)

A problem with TV regularization is a loss of contrast. Suppose that f has value h within a disk
or radius r and is 0 outside,

f(x) =

{
h if |x| ≤ r,

0 otherwise.
(65)
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Then if Ω = R2, Meyer [15] showed that TV-regularized Gaussian denoising decreases the value
within the disk by 2/(λr),

u(x) =

{
max{0, h− 2

λr
} if |x| ≤ r,

0 otherwise.
(66)

Note that although the contrast is diminished, the edge of the circle is maintained exactly. Strong
and Chan [11] made a similar analytic investigation under the assumption that the edges do not
move, and showed that the behavior is similar when Ω is compact and for shapes other than disks.

The figure below verifies the diminishing contrast numerically. The image contains three disks of
radius 0.11 with different heights, one large disk of radius 0.2, and a small disk of radius 0.04. The
solution shows the decrease in value of each disk. For the three disks of radius 0.11, the decrease is
almost the same, despite their differing heights, and the decrease is smaller for the large disk and
larger for the small disk.

f u

1

0.75

0.5

0.25

0

f
(x
,y
)

1
0.75

0.5
0.25

0y 0
0.25

0.5
0.75

1

x

1

0.75

0.5

0.25

0

u
(x
,y
)

1
0.75

0.5
0.25

0y 0
0.25

0.5
0.75

1

x

0.23

0.24

0.24

0.13
0.68

Noted by Nikolova [13], another problem with TV regularization is the “staircase artifact,” a
tendency to produce small flat regions with artificial edges. This effect is demonstrated below. The
exact image has one jump along the center and is otherwise smooth. The plot shows a cross section
of the images to visualize the stair steps. Loss of contrast is also visible in the peak of the dome.

f u

x
128 192 256

0

0.5

1

f

Exact

u

Chan et al. [21] discuss solutions that have been developed to reduce the loss of contrast and
staircasing artifacts.
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