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Abstract

Deblurring is the inverse problem of restoring an image that has been blurred and possibly
corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear
and shift-invariant so it may be expressed as a convolution of the image with a point spread
function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution
is essentially Fourier division. The challenge is that since the multipliers are often small for
high frequencies, direct division is unstable and plagued by noise present in the input image.
Effective deconvolution requires a balance between frequency recovery and noise suppression.
Total variation (TV) regularization is a successful technique for achieving this balance in de-
blurring problems. It was introduced to image denoising by Rudin, Osher, and Fatemi [4] and
then applied to deconvolution by Rudin and Osher [5]. In this article, we discuss TV-regularized
deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm
of Goldstein and Osher [16]. We show a straightforward extension for Laplace or Poisson noise
and develop empirical estimates for the optimal value of the regularization parameter λ.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the article web
page http://dx.doi.org/10.5201/ipol.2012.g-tvdc. Future software releases and updates
will be posted at http://dev.ipol.im/~getreuer/code.
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1 Background

Suppose that an underlying image u is blurred by convolution with ϕ and corrupted with Gaussian
noise η,

f = ϕ ∗ u+ η. (1)

The deconvolution problem is, given f and ϕ, to estimate u. If the same imaging system that
observed f is available to capture additional images, the blur kernel ϕ may be obtained by point
spread estimation techniques, see for example the method by Delbracio, Musé, and Almansa [21].

If both the blur kernel ϕ and the underlying image u are unknown, the problem is called blind
deconvolution. See for example Chan and Wong’s TV-regularized blind deconvolution method [10]
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Total Variation Deconvolution using Split Bregman

or the survey by Levin et al. [17]. Linear deblurring is the problem where the observed image f is
related to the desired image u by

f(x) = (Ku)(x) + η(x) (2)

where K is a linear operator. For example, K can describe blur which is spatially varying. Nonlinear
deblurring refers to the case when K is a nonlinear operator. In this work, we restrict to the special
case of deconvolution, where K is linear and shift-invariant.

1.1 Convolution with Boundary Handling

Before discussing the method itself, we address boundary handling. As deconvolution is the problem
of inverting convolution, it is of central importance that convolution on a finite domain is clearly
defined. In the continuous setting, convolution is defined as an integral over R2,

(ϕ ∗ u)(x) :=

∫
R2

ϕ(x− t)u(t) dt, x ∈ R2, (3)

and we assume that ϕ is specified on the whole domain R2. The image u, however, is in practice
usually only available on a bounded rectangle. To deal with this problem, u can be extrapolated to
R2 by a boundary extension operator E. Given u defined on an open set Ω, Eu is a function defined
on R2 such that Eu|Ω = u. Convolution over Ω is then defined as ϕ ∗ Eu.

Remark 1.1. Finite-domain convolution is often defined with periodic extension (“convolution over
the torus T2”), however, it is undesirable here since images are usually not periodic.

Remark 1.2. Another way to deal with the boundary handling problem is to normalize the convolu-
tion near the boundary

(Ku)(x) :=

∫
Ω

k(x, t)u(t) dt, k(x, t) =
ϕ(x− t)∫

Ω
ϕ(x− s) ds, x ∈ Ω. (4)

This blur operator no longer describes a convolution. The denominator is always nonzero provided
ϕ is nonnegative and if the integral of ϕ over any neighborhood of (0, 0) is positive.

For numerical implementation, convolution must be discretized. Let Z be a linear interpolation
operator,

Z(u)(x) =
∑
m,n∈Z

um,nk(x1 −m,x2 − n), x ∈ R2, (5)

where k(x) is the interpolation kernel, and define

ϕi,j := (ϕ ∗ k)(i, j) =

∫
R2

ϕ(i− x1, j − x2)k(x) dx. (6)

Interpreting u as an impulse train, Z(u) can be written as k ∗ u. By associativity of convolution,

(ϕ ∗ u)i,j :=
(
ϕ ∗ Z(u)

)
(i, j)

=
(
ϕ ∗ (k ∗ u)

)
(i, j)

=
(
(ϕ ∗ k) ∗ u

)
(i, j)

=
∑
m,n∈Z

ϕi−m,j−num,n. (7)
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The last line is the usual discrete convolution of ϕi,j and ui,j. For simplicity, we use nearest-neighbor
interpolation for Z, where ϕi,j is

ϕi,j =

∫ i+1/2

i−1/2

∫ j+1/2

j−1/2

ϕ(x1, x2) dx2 dx1. (8)

We focus on the practical case where u is specified on a rectangle ui,j, i = 0, . . . , N − 1, j =
0, . . . , N − 1, which may be viewed continuously as having a square domain Ω = [−1

2
, N − 1

2
] ×

[−1
2
, N − 1

2
]. We define E as the (half-sample) symmetric extension operator

Eu(x) :=



u(x) if x ∈ Ω,

Eu(−1− x1, x2) if x1 ≤ −1
2
,

Eu(2N − 1− x1, x2) if x1 ≥ N − 1
2
,

Eu(x1,−1− x2) if x2 ≤ −1
2
,

Eu(x1, 2N − 1− x2) if x2 ≥ N − 1
2
.

(9)

The definition is recursive to account for the possibility that more than one reflection is needed, for
example Eu(2N, x2) = Eu(−1, x2) = u(0, x2). The extended image is periodic with period 2N ×2N .

Due to the 2N×2N periodicity of Eu, this definition of discrete convolution can be stated in terms
of the discrete Fourier transform (DFT), which is useful for computation. To eliminate wrap-around
artifacts, we require that the kernel ϕ is compactly supported (or decays rapidly) within a rectangle
no larger than 2N × 2N . Let Λ denote the 2N × 2N grid {−N, . . . , N − 1} × {−N, . . . , N − 1} and
let F denote the DFT on Λ. Then discrete convolution with symmetric boundaries is implemented
through DFT transforms as

ϕ ∗ u = F−1
(
F(ϕ) · F(Eu)

)
, (10)

where · denotes pointwise multiplication. In other words, the procedure for DFT-based convolution
is to construct Eu on Λ, compute its DFT, multiply with F(ϕ), and compute the inverse DFT. Since
the spatial data is real, a real-to-complex FFT algorithm may be used to reduce the computational
and memory costs by about a factor 2 compared to complex-to-complex FFTs.

Remark 1.3. If Z is selected to be Fourier interpolation, then the DFT-based convolution is

ϕ ∗ u = F−1
(
ϕ̂ · F(Eu)

)
, (11)

where ϕ̂ is the continuous-domain Fourier transform of ϕ.

1.2 DCT-based Convolution

If ϕ is even in both coordinates, ϕ(x1, x2) = ϕ(±x1,±x2), then the discrete cosine transform (DCT)
domain may be used instead of the DFT for greater computational efficiency. The data does not
need to be padded in this case because symmetric boundaries are implied by the transforms, reduc-
ing the computational and memory costs by about a factor 4 compared to real-to-complex FFTs.
Martucci [7] showed that convolution with (half-sample) symmetric boundary handling can be im-
plemented through DCT transforms as

ϕ ∗ u = C−1
2e

(
C1e(ϕ) · C2e(u)

)
, (12)

where C1e and C2e are the DCT-I and DCT-II transforms of the same period lengths.
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We describe DCT-based convolution in detail in one dimension. Convolution in higher dimen-
sions is similar by tensor product. Let x0, . . . , xN−1 be an input sequence with half-sample sym-
metric boundaries and let hN , . . . , h1, h0, h1, . . . , hN be a whole-sample symmetric filter. The con-
volution of x and h is defined as the length-2N cyclic convolution of x0, . . . , xN−1, xN−1, . . . , x0 and
h0, . . . , hN , hN−1, . . . , h1,

ym = (h
sym∗ x)m =

2N−1∑
n=0

hn xm−n, (13)

where indices are modulo 2N . This convolution is performed equivalently with DCT transforms as

y = C−1
2e

(
C1e(h) · C2e(x)

)
. (14)

This formula can be implemented by the following steps:

1. Compute the DCT-I transform C1e(h)

Hk = h0 + (−1)khN + 2
N−1∑
n=1

hn cos(πnk/N), k = 0, . . . , N

2. Compute the DCT-II transform C2e(x)

Xk = 2
N−1∑
n=0

xn cos
(
π(n+ 1

2
)k/N

)
, k = 0, . . . , N − 1

3. Multiply the first N coefficients pointwise
Yk = Hk ·Xk, k = 0, . . . , N − 1

4. Obtain the convolution in the spatial domain with C−1
2e (Y )

ym = C−1
2e (Y ) =

1

2N

(
Y0 + 2

N−1∑
k=1

Yk cos
(
πk(n+ 1

2
)/N

))
, m = 0, . . . , N − 1

Note that although the period lengths are the same, the DCT-I transform is one sample longer
(k = 0, . . . , N) than the other two transforms (k = 0, . . . , N − 1) due to its whole-sample boundary
symmetry. The transform definitions above are not orthogonal. Some authors define the DCT
transforms with additional factors on certain coefficients to make them orthogonal.

These transforms can be performed efficiently with the FFTW library [13] using the real-to-real
(r2r) interface. The codes REDFT00 and REDFT01 correspond respectively to the nonorthogonal DCT-I
and DCT-II transforms as defined above. The inverse DCT-II transform is obtained using REDFT10

and then dividing every element by 2N .

2 Wiener Deconvolution

Wiener deconvolution [1] is a classical linear technique for deconvolution in the presence of noise.
We review Wiener deconvolution in the discrete setting on a finite grid.

The observed image f is related to the desired N ×N image u by

f = ϕ ∗ u+ η, (15)

where ϕ is a known point spread function, η is additive noise, and ∗ denotes discrete convolution.
It is assumed that u and η are uncorrelated. For boundary handling, u and η are symmetrically
extended to size 2N × 2N and periodized as described in the previous sections. The convolution
becomes pointwise multiplication in the DFT domain of size 2N × 2N ,

F(Ef) = F(ϕ) · F(Eu) + F(Eη). (16)
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We denote these quantities with ˆ as
f̂ = ϕ̂ · û+ η̂. (17)

The Wiener strategy is to find a (noncausal and real-valued) linear filter w such that w ∗ f is an
optimal estimate of u. The filter is selected to minimize the expected mean square error,

arg min
w

E‖w ∗ f − u‖2
2, (18)

where E denotes expectation. Parseval’s identity allows the objective function to be expressed in
the DFT domain, where it decouples over frequency. So we may equivalently minimize in the DFT
domain over ŵ := F(w),

arg min
ŵ

E‖ŵ · f̂ − û‖2
2. (19)

Differentiating by ŵ and setting to zero yields the optimal filter,

2E
[
(ŵ · f̂ − û) · f̂ ∗

]
= 0

⇒ ŵ =
E[û · f̂ ∗]
E
[
|f̂ |2
] , (20)

where (·)∗ denotes complex conjugation and the division is pointwise. The denominator E
[
|f̂ |2
]

is the
expected spectral density of f . The Wiener estimate of u is then obtained by pointwise multiplication,

û ≈ ŵ · f̂ . (21)

To write the filter in terms of ϕ, u, and η, we now substitute the degradation model f = ϕ ∗ u+ η:

ŵ =
E
[
û · (ϕ̂ · û+ η̂)∗

]
E
[
|ϕ̂ · û+ η̂|2

]
=

ϕ̂∗ · E
[
|û|2
]

+ E[û · η̂∗]
|ϕ̂|2 · E

[
|û|2
]

+ 2Re{ϕ̂} · E[û · η̂∗] + E
[
|η̂|2
]

=
ϕ̂∗ · E

[
|û|2
]

|ϕ̂|2 · E
[
|û|2
]

+ E
[
|η̂|2
] . (22)

The E[û · η̂∗] terms are zero by the assumption that u and η are uncorrelated. The optimal filter can
be expressed in terms of ϕ and the noise-to-signal ratio (NSR),

ŵ =
ϕ̂∗

|ϕ̂|2 + NSR
, NSR :=

E
[
|η̂|2
]

E
[
|û|2
] . (23)

Since ϕ, u, and η are real-valued, the above expression is conjugate symmetric and thus w is real-
valued. For Gaussian noise of standard deviation σ, the numerator of the NSR is σ2 for all frequencies.
Ideally, u’s expected spectral density E

[
|û|2
]

in the denominator of the NSR is available as well; we
apply Wiener deconvolution this way in the examples to show the best possible linear result.

More realistically, E
[
|û|2
]

must be estimated. A simple estimate is

E
[
|f̂ |2
]

= |φ̂|2 · E
[
|û|2
]

+ |η̂|2

⇒ E
[
|û|2
]
≈ |f̂ |2 − σ2. (24)

A more sophisticated approach is the iterative Wiener filter : Wiener deconvolution produces an esti-
mate of u, from which an updated expected spectral density is computed, and Wiener deconvolution
is repeated. Hillery and Chin [11] analyze the iterative Wiener filter and propose a modification that
ensures convergence.
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3 TV Deconvolution

Given a blurred image with additive Gaussian noise, f = Ku+ η, Rudin and Osher [5] proposed the
following minimization problem to estimate the deblurred image u,

arg min
u∈BV (Ω)

‖u‖TV(Ω) +
λ

2

∫
Ω

(
f(x)−Ku(x)

)2
dx, (25)

where λ is a positive parameter and K is a linear operator representing the blur, for example the
convolution with boundary extension Ku = ϕ∗Eu or the spatially varying blur Ku =

∫
k(x, t)u(t) dt

operators described in the section on Convolution with Boundary Handling. The minimization
problem is identical to the Rudin, Osher, and Fatemi denoising problem [4] except that here the
second term penalizes (f − Ku)2, while in the denoising case the second term penalizes (f − u)2.
TV-regularized denoising may be seen as a special case where K is the identity operator.

The solution u is found as the best function in the space of bounded variation (BV) images. A
function u is in BV (Ω) if there exists a Radon measure Du such that∫

Ω

u(x) div~g(x) dx = −
∫

Ω

〈~g,Du(x)〉 for all ~g ∈ C1
c (Ω,R2), (26)

and the total variation seminorm of u is

‖u‖TV(Ω) :=

∫
Ω

|Du| := sup
{∫

Ω

u div~g dx : ~g ∈ C1
c (Ω,R2),

√
g2

1 + g2
2 ≤ 1

}
. (27)

When u is smooth, TV is equivalently the integral of its gradient magnitude,

‖u‖TV(Ω) =

∫
Ω

|∇u| dx. (28)

Existence and uniqueness of the minimizer can be established under some conditions:

1. Ω is a bounded Lipschitz domain in R2.

2. The true image u is in BV (Ω).

3. The noisy image f is in L2(Ω).

4. The blurring is a linear operator K : L1(Ω) → L2(Ω) that is bounded and injective, and K
applied to a constant function reproduces the same constant, K1 = 1.

Provided that all of the above hold, the minimizer u of the TV-regularized deblurring problem exists
and is unique [6, 8, 12]. A corollary of this result is that the mean of Ku must equal the mean of f .

There are many algorithms for solving the TV-regularized deconvolution minimization problem.
Most recent algorithms use operator splitting [14, 15, 16, 18, 20]. In the next section, we discuss
TV-regularized deconvolution with the split Bregman algorithm.

4 Split Bregman

We focus on the split Bregman algorithm of Goldstein and Osher [16] applied to deconvolution as
developed in tvreg [19]. Due to the similarity between the TV denoising and deconvolution problems,
the split Bregman algorithm for denoising [22] is readily adapted to deconvolution.
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Our approach to discrete derivatives is to use one-sided differences and half-sample symmetric
extension at points near the boundaries. In one dimension, we define the discrete derivative ∂ of a
uniformly-sampled signal f0, f1, . . . , fN−1 as its forward difference,

∂f0

∂f1
...

∂fN−2

∂fN−1

 =


−1 1

−1 1
. . . . . .

−1 1
0




f0

f1
...

fN−2

fN−1

 . (29)

Since the half-sample symmetric extension is 2N -periodic, the discrete gradient may also be viewed
as a cyclic convolution of the reflected signal (f0, . . . , fN−1, fN−1, . . . , f0) with the filter h−1 = 1,
h0 = −1, and h zero otherwise.

In two dimensions, we define the discrete gradient of an N × N image u using the discrete
derivative as ∇u = (∂xu, ∂yu)T , where the subscript on ∂ denotes the dimension along which the
difference is applied. We define discrete divergence through the relationship div := −∇∗ = −∂∗x−∂∗y ,
where the ∗ superscript denotes operator adjoint, and the discrete Laplacian as ∆ := div∇. In the
image interior, the discrete divergence is div v = vxi,j − vxi−1,j + vyi,j − vyi,j−1 and the discrete Laplacian
is the 5-point formula ∆u = −4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1. Please refer to the section on
discrete derivatives in the TV denoising article [22] for details.

Total variation is approximated by summing the vector magnitude |∇ui,j| over all pixels,

‖u‖TV(Ω) ≈
N−1∑
i=0

N−1∑
j=0

|∇ui,j|, (30)

where ∇u is the discrete gradient developed above. Other discretizations of the TV seminorm are
discussed in the TV denoising article [22]. The split Bregman algorithm is applied to solve the
constrained minimization problem

arg min
d,u

∑
i,j

|di,j|+
λ

2

∑
i,j

(fi,j −Kui,j)2

subject to d = ∇u.
(31)

K denotes the discrete blurring operator, which is Ku := ϕ∗Eu or more generally is a linear operator
on u. The auxiliary variable d is a vector field which is constrained to equal ∇u.

The Bregman iteration [2] method is applied to solve the constrained problem. In each iteration
of the Bregman method, the following problem is solved:

arg min
d,u

∑
i,j

|di,j|+
λ

2

∑
i,j

(fi,j −Kui,j)2 +
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2 (32)

where b is a variable related to the Bregman iteration algorithm. The joint minimization over d and
u is solved by an alternating direction method, in each step minimizing either d or u while keeping
the other variable fixed.

d subproblem With u fixed, the d subproblem is

arg min
d

∑
i,j

|di,j|+
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2. (33)

This problem is solved as for TV denoising [22]:

di,j =
∇ui,j + bi,j
|∇ui,j + bi,j|

max
{
|∇ui,j + bi,j| − 1/γ, 0

}
. (34)
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u subproblem With d fixed, the u subproblem is

arg min
u

λ

2

∑
i,j

(fi,j −Kui,j)2 +
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2. (35)

The optimal u satisfies the linear equation

λ
γ
K∗Ku−∆u = λ

γ
K∗f − div(d− b), (36)

where K∗ denotes the adjoint of K. If K is a convolution with symmetric boundary handling,
Ku := ϕ ∗ Eu, then the problem may be efficiently solved in the discrete Fourier domain:

u = F−1

[
λ
γ
F(ϕ) · F(Ef)−F

(
E div(d− b)

)
λ
γ
|F(ϕ)|2 −F(∆)

]
, (37)

where E denotes symmetric extension to the 2N ×2N grid {−N, . . . , N −1}×{−N, . . . , N −1} and
F(∆) is the DFT of the 5-point Laplacian filter.

If ϕ is even in both coordinates, ϕ(x1, x2) = ϕ(±x1,±x2), then the DCT domain may be used
instead to reduce the computational cost. The u variable subproblem is solved as

u = C−1
2e

[
C2e

(
λ
γ
ϕ ∗ f − div(d− b)

)
C1e(

λ
γ
ϕ ∗ ϕ−∆)

]
. (38)

where C1e and C2e are the DCT-I and DCT-II transforms of the same period lengths.

Enforcing the constraint The auxiliary variable b is initialized to zero. To enforce the constraint
d = ∇u, the Bregman iteration algorithm updates b according to

bk+1 = bk +∇u− d. (39)

Bregman iteration ensures that the limiting solution satisfies the constraint exactly for any pos-
itive value γ. For good behavior in both subproblems, γ should be neither extremely large nor
small [22]: the solution in the d subproblem is the vector shrinkage of (∇u + b) by 1/γ, which has
greater effect for smaller γ, but in the u subproblem, the solution u satisfies

λu− γ∆u = λf − γ div(d− b), (40)

where spatial interaction is stronger for larger γ. Therefore, γ should be an intermediate value so
that convergence is efficient in both subproblems. We fix γ = 5.

The overall algorithm is

Initialize u = 0, d = 0, b = 0
while ‖ucur − uprev‖2 > Tol do

Solve the d subproblem
Solve the u subproblem
b = b+∇u− d

Algorithm 1

where Tol = ‖f‖2/1000. To prevent excessive runtimes, we impose a maximum of 140 iterations in
the implementation and online demo. For color images, the vectorial TV (VTV) [9] is used in place
of TV,

‖u‖VTV(Ω) :=

∫
Ω

( ∑
i∈channels

|∇ui(x)|2
)1/2

dx. (41)
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The grayscale algorithm extends directly to VTV-regularized deconvolution. In the color examples
below, the blur operator K is applied separately to the red, green, and blue channels. It is possi-
ble with minor changes to the approach described here to deconvolve a color image where K has
interchannel mixing, e.g.,

Ku =

KRR ∗ uR +KRG ∗ uG +KRB ∗ uB
KGR ∗ uR +KGG ∗ uG +KGB ∗ uB
KBR ∗ uR +KBG ∗ uG +KBB ∗ uB

 . (42)

5 TV Deconvolution with Laplace or Poisson Noise

Interpreted as a maximum a posteriori estimate, TV deconvolution can be adapted to other kinds
of noise [19]. The minimization problem for general noise is

arg min
u∈BV (Ω)

‖u‖TV(Ω) + λ

∫
Ω

F
(
Ku(x), f(x)

)
dx, (43)

where F specifies the noise model,

F
(
u(x), f(x)

)
=

{
|Ku(x)− f(x)| Laplace noise,

Ku(x)− f(x) logKu(x) Poisson noise.
(44)

A splitting with two auxiliary variables can be used to separate F from the derivative terms,

arg min
d,z,u

∑
i,j

|di,j|+ λ
∑
i,j

F (zi,j, fi,j)

subject to d = ∇u, z = Ku.

(45)

This is the same minimization used for denoising by the general-noise algorithm in the TV denoising
article [22] except that z = Ku is used here instead of z = u. Only minor changes to this method
are needed to solve it. Bregman iteration is applied similarly, where in each iteration the problem

arg min
d,z,u

∑
i,j

|di,j|+ λ
∑
i,j

F (zi,j, fi,j)

+
γ1

2

∑
i,j

|di,j −∇ui,j − b1
i,j|2 dx+

γ2

2

∑
i,j

(zi,j −Kui,j − b2
i,j)

2
(46)

is solved. One variable d, z, or u is minimized at a time while keeping the other two fixed.

d subproblem The d subproblem is solved as for TV denoising [22]:

di,j =
∇ui,j + b1

i,j

|∇ui,j + b1
i,j|

max
{
|∇ui,j + b1

i,j| − 1/γ1, 0
}
. (47)

z subproblem With d and u fixed, the z subproblem is

arg min
z

λ
∑
i,j

F (zi,j, fi,j) +
γ2

2

∑
i,j

(zi,j −Kui,j − b2
i,j)

2. (48)

The z subproblem is solved as for TV denoising [22] except that Ku replaces occurrences of u. The
solution decouples over i, j and the optimal z satisfies

λ∂zF (z, f) + γ2(z −Ku− b2) = 0. (49)
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For the Laplace noise model with F (z, f) = |z − f |, the solution is

zi,j = fi,j + sign si,j max
{
|si,j| − λ

γ2
, 0
}
, (50)

s = Ku− f + b2.

For the Poisson noise model with F (z, f) = z − f log z, the solution is

zi,j = si,j/2 +
√(

si,j/2
)2

+ λ
γ2
fi,j, (51)

s = Ku− λ
γ2

+ b2.

u subproblem With d and z fixed, the u subproblem is

arg min
u

γ1

2

∑
i,j

|∇ui,j − di,j + b1
i,j|2 +

γ2

2

∑
i,j

(Kui,j − zi,j + b2
i,j)

2. (52)

The optimal u satisfies

γ2
γ1
K∗Ku−∆u = γ2

γ1
K∗(z − b2)− div(d− b1). (53)

This equation has the same form as the u subproblem in the Gaussian case, where γ2/γ1 substitutes
λ/γ and (z−b2) substitutes f . It can be solved in the Fourier or DCT domain as described previously.

The overall algorithm is

Initialize u = 0, z = 0, b2 = 0, d = 0, b1 = 0
while ‖ucur − uprev‖2 > Tol do

Solve the d subproblem
Solve the u subproblem
Solve the z subproblem
b1 = b1 +∇u− d
b2 = b2 + u− z

Algorithm 2

In the implementation, the default parameter values are Tol = ‖f‖2/1000, γ1 = 5, γ2 = 8.

6 Selection of λ

The method requires specifying the fidelity strength, λ, which balances the effects of deblurring and
noise reduction. The optimal value of λ is indirectly related to the noise level and the kernel. The
value of λ should increase as the noise level decreases or as the kernel becomes less concentrated.
While there is no direct exact formula, the optimal λ values can be computed and tabulated over a
range of noise levels and kernel sizes to obtain an empirical estimate.

We use a 480 × 480 crop of the boats image. Blurring is simulated with a disk-shaped kernel
of radius r ∈ {1, 2, . . . , 15} and Gaussian noise is added of standard deviation σ ∈ {1, 2, . . . , 10}.
Brent’s method [3] is used to find the λ value yielding the TV deconvolution result with the minimum
mean squared error.
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The result is a surface λ(r, σ) specifying the optimal value for each combination of r and σ. The
function is nearly linear along r and decays quickly along σ, suggesting an approximation of the form

λ̂(r, σ) = r
(c1

σ
+
c2

σ2

)
, (54)

where the coefficients c1, c2 are selected for the mean squared error best fit. The average relative
error between the approximation and the data is 0.11 and the maximum relative error is 0.38.
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The optimal λ value depends not only on r and σ, but also on the image itself. We tested this
by comparing the optimal λ values for different σ with fixed kernel radius r = 2 for eight different
natural photographic images, including the 480 × 480 boats image, the peppers image, and Kodak
suite images 5, 7, and 23. We also compare the optimal λ values for different r with fixed noise level
σ = 5.
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The comparison shows that the optimal λ does indeed vary depending on the image. Fortunately,
λ decays at a consistent rate for all images as the noise level σ increases so that the optimal values
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differ by a constant scale factor of up to about 2. Similarly, λ increases at roughly the same rate for
all images as r increases with a maximum difference of about factor 2. So the estimate λ̂ should be
within an order of magnitude of the optimal value for most images over this range of kernel radius
and noise level.

We perform the mean squared error best fit again using the optimal λ values over all eight images
to obtain for disk-shaped ϕ

λ̂(r, σ) = r
(c1

σ
+
c2

σ2

)
, c1 = 427.9, c2 = 466.4. (55)

Similarly, we repeat this process to estimate the optimal λ when ϕ is a Gaussian with standard
deviation r/2,

λ̂(r, σ) = r
(c1

σ
+
c2

σ2

)
, c1 = 117.0, c2 = 4226.3. (56)

These formulas are used in the online demo.

7 Examples

7.1 Comparison with Wiener Deconvolution

We first compare TV deconvolution with Wiener deconvolution [1] where the blurred image is sim-
ulated with a known kernel and noise is added. To show the best possible linear result, we apply
Wiener deconvolution using the exact image’s autocorrelation |û|2 in the construction of the filter
ŵ. Note that in practice the autocorrelation is rarely available and must be estimated, so a realistic
application of Wiener deconvolution would be worse.

The exact image is first convolved with kernel ϕ (shown below), a disk-shaped kernel of radius
r = 8 pixels,

ϕ(x) =

{
1
πr2

if |x| < r,

0 otherwise.
(57)

Gaussian noise is then added with standard deviation 0.01 relative to the intensity range [0, 1]. For
both methods, the parameters are tuned to maximize the PSNR. TV deconvolution reconstructs
sharper edges than Wiener deconvolution.
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Exact f (PSNR 21.76) Blur kernel ϕ

Wiener deconvolution TV deconvolution
(PSNR 23.99) (λ = 1600, PSNR 23.48)

We repeat the previous experiment using a motion blur kernel. The kernel simulates a motion
blur of length 20 pixels at angle 5◦.

Exact f (PSNR 21.54) Blur kernel ϕ

Wiener deconvolution TV deconvolution
(PSNR 24.59) (λ = 1600, PSNR 23.98)

7.2 Deconvolution with Impulsive Noise

The noise model can significantly change the quality of the results. In this example, the image is
blurred with a disk-shaped kernel with a radius of 7 pixels and corrupted with 10% impulsive noise,
that is, each pixel has a 10% chance to be replaced with a uniform random value. The Laplace
noise model is more effective on impulsive noise than the Gaussian noise model. To adapt Wiener
deconvolution to impulsive noise, the exact autocorrelation of the noise is used in the NSR numerator.
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f Wiener deconvolution TV Gaussian model TV Laplace model
(PSNR 21.54) (PSNR 22.69) (λ = 50, PSNR 22.00) (λ = 120, PSNR 23.83)

7.3 Correcting an Out-of-Focus Photograph

TV-regularized deconvolution can be used to correct photographs that are out of focus. Provided
that the objects in the frame are at approximately the same distance, the effect of the focus can
be modeled as a convolution. The following demonstrates deconvolution on a real photograph. The
Gaussian noise model is used and the blurring kernel is modeled as a disk of radius r.

The disk radius r and the fidelity weight λ need to be tuned to obtain good results. The effect
of varying λ is shown below.

Input λ = 100, r = 2.3 λ = 103, r = 2.3 λ = 104, r = 2.3

If λ is too small (λ = 100), then the result loses fine details. If λ is too large (λ = 104), then
artifacts appear because the solution is not sufficiently regularized.

The next table shows the effect of varying the blur kernel’s radius.

Input λ = 103, r = 1.6 λ = 103, r = 2.3 λ = 103, r = 3.0

In these images, λ = 103 is fixed and r is varied. When r is too large, oscillation artifacts appear.
It is visually better to underestimate rather than overestimate the support of the blur kernel.
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7.4 Enhancement

TV-regularized deconvolution can both sharpen edges and remove noise, so it can be applied to
perform light sharpening to enhance an image. Good parameters for enhancement are a concentrated
kernel for ϕ and small λ. Here we use a Gaussian with standard deviation of 0.6 pixels and λ = 352
(corresponding to noise level 4.0 in the online demo) on an image that is slightly out of focus.

Input TV deconvolution
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