
Image Processing On Line

An implementation and detailed analysis of the K-SVD image denoising
algorithm
Arthur Leclaire and Marc Lebrun

French version/Version française

Arthur Leclaire, Université Paris Descartes arthur.leclaire@parisdescartes.fr
Marc Lebrun, ENS Cachan marc.lebrun@cmla.ens-cachan.fr

Edited by Jean-Michel Morel

Abstract

K-SVD is a signal representation method which, from a set of signals, can derive a dictionary
able to approximate each signal with a sparse combination of the atoms. This paper focuses on
the K-SVD-based image denoising algorithm. The implementation is described in detail and its
parameters are analyzed and varied to come up with a reliable implementation.

Overview

Denoising is a major task of image processing. In the last decades, several denoising algorithms
have been proposed.

One class of such algorithms contains those which take profit of the analysis of the image in a
(redundant) frame. For example, in this subset, we can mention the threshold of the image
coefficients in an orthonormal basis, like the cosine basis, [20] and [19], a wavelet basis [8], or
a curvelet basis [18]. In this category can also be included the methods which try to recover the
main structures of the signal by using a dictionary (which basically consists of a possibly
redundant set of generators). The matching pursuit algorithm [15] and the orthogonal matching
pursuit [7] are of this type. The efficiency of these methods comes from the fact that natural
images can be sparsely approximated in these dictionaries.

The variational methods form a second class of denoising algorithms. Among them let us
mention the total variation (TV) denoising [17], [4] where the chosen regularity model is the set
of functions of bounded variations.

In another class, one could include methods that take advantage of the non-local similarity of
patches in the image. Among the most famous, we can name NL-means [3], BM3D [6], and
NL-Bayes [10].

The K-SVD-based denoising algorithm merges some concepts coming from these three classes,
paving the way of dictionary learning. Indeed, the efficiency of the dictionary is encoded

published
reference

2012-05-19
Arthur Leclaire and Marc Lebrun, An implementation and detailed analysis of the K-SVD image denoising
algorithm, Image Processing On Line, 2012.
DOI : http://dx.doi.org/10.5201/ipol.2012.llm-ksvd

http://www.ipol.im/
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol.2012.llm-ksvd
http://www.ipol.im/pub/algo/llm_ksvd/fr
mailto:arthur.leclaire@parisdescartes.fr`
mailto:marc.lebrun@cmla.ens-cachan.fr`

through a functional which is optimized taking profit of the non-local similarities of the image.
It is divided into three steps : a) sparse coding step, where, using the initial dictionary, one
computes sparse approximations of all patches (with a fixed size) of the image; b) dictionary
update, where the dictionary is updated in such a way that the quality of the sparse
approximations is increased; and next : c) reconstruction step which recovers the denoised
image from the set of denoised patches. Actually, before getting to c), the algorithm carries out
K iterations of steps a) and b).

There is by now a thriving literature about dictionary learning. Here we will only quote the
main articles that led to the design of the K-SVD algorithm for color images. The K-SVD
method was introduced in [1] where the whole objective was to optimize the quality of sparse
approximations of vectors in a learned dictionary. Even if this article noticed the interest of the
technique in image processing tasks, it is in [9] that a detailed study has been led on gray-level
images denoising. The adaptation to color images was treated in [14]. This last article proved
that the K-SVD method can also be useful in other image processing tasks, such as non-uniform
denoising, demoisaicing and inpainting.

Following these articles, dictionary learning has become a very active research topic. To go
beyond the scope of this article, see [13] or [11].

Theoretical Description

To get a maximal coherence between the different documents about K-SVD, we use the same
notations as in the article [14].

Algorithm for Grayscale Images

This paragraph explains the algorithm described in [9] . We work with images written in
column vectors. In practice, in our C++ code, images are scanned one row at a time, these rows
being next concatenated to make a single column vector. The same is done for patches. Hence,
let us denote by x0 a size N column vector containing the unknown clean grayscale image.
Starting from x0, we assume that the noisy image is obtained as

where w is a white Gaussian noise vector of zero mean and known standard deviation σ.
Consequently, we look for an image that is close to the initial image, such that each of its
patches admits a sparse representation in terms of a learned dictionary.

For every possible position (i,j) of a pixel in the image x, we denote by Rijx the size n column
vector formed by the grayscale levels of the squared √n × √n patch of the image x and whose
top-left corner has coordinates (i,j). One can notice that, with the column notation, Rijx is
precisely the multiplication of x (column vector of size N) by a matrix Rijx of size n × N whose
columns are indexed by the image pixels. Each of the rows of Rijx allows to extract the value of
one pixel of the image x and thus is zero except for the coefficient of index p, which is equal to
1.

In the following, the notation D refers to a dictionary. It is a matrix of size n × k, with k ≥ n
whose columns are normalized (in Euclidean norm). We take k ≥ n because otherwise, there is
no chance that the columns of D can span ℜn. The algorithm will require an initialization of the
dictionary : to this end, we may choose an usual orthogonal basis (discrete cosine transform,
wavelets...), or we may collect patches from clean images or even from the noisy image itself
(without forgetting the normalization). We give two examples of dictionaries in Figure [1].

Figure 1 - Left, a dictionary formed with random patches from the image ''Castle'' (converted in
grayscale levels) after addition of a white Gaussian noise. Right, the dictionary obtained at the

end of the K-SVD algorithm. For each atom, the contrast is enhanced differently.

The dictionary allows one to compute a sparse representation αij of each patch Rijx. The
representations αij will thus be column vectors of size k satisfying Rijx ≈ Dαij. We put them
together in a matrix α with k rows and Np columns where Np is the number of patches of size
√n × √n of the image. With the above notation it is easy to detail each part of the algorithm. At
first, is initialized with an initial dictionary denoted by Dinit. The initialization alternatives
will be discussed later on.

The first step looks for sparse representations of the patches Rijy of y in the dictionary . In
other words, for each patch Rijy , a column vector (of size k) is built such that it has only a
few non-zero coefficients and such that the distance between Rijy and its sparse approximation

 is small.

The second step updates, one by one, the columns of the dictionary and the representations
in such a way that all patches in the image y become more efficiently represented. Therefore,
the goal is to decrease the quantity

while keeping the sparsity of the vectors .

http://www.ipol.im/pub/algo/llm_ksvd/dico_gris_initial.png
http://www.ipol.im/pub/algo/llm_ksvd/dico_gris_final.png

K iterations of these two first steps are performed. Once finished, to each patch Rijy of the
image y corresponds the denoised version . The third and last step consists in merging the
denoised versions of all patches of the image in order to obtain the final denoised image. A new
parameter λ is introduced in this part, which blends a portion of the initial noisy image into the
final result. To obtain a pixel p of the denoised image, a simple average is done on the values of
p in the denoised patches to which it belongs (weighted by 1), and the value of p in the noisy
image y (weighted by λ).

We will now take a closer look at each one of the three parts of the method.

Sparse Coding

This step allows, with a fixed dictionary , to compute sparse representations of the patches
Rijy of the image in . More precisely, an ORMP (Orthogonal Recursive Matching Pursuit)
gives an approximate solution of the (NP-complete) problem

where refers to the l0 norm of αij, i.e. the number of non-zero coefficients of αij. We
remind the reader that is a matrix whose size is n × k, that αij is a size k column vector and
that Rijy is a size n column vector. If it were perfect, this ORMP would find a patch with the
sparsest representation in and which distance to Rijy is less than n(Cσ)2. This last constraint
brings in a new parameter C. This coefficient multiplying the standard deviation σ guarantees
that, with high probability, a white Gaussian noise of standard deviation σ on n pixels has an l2
norm lower than √nCσ. We give details on the choice of C in Section 4 . In fact, the ORMP is
not perfect : indeed, it only allows one to find a patch having one sparse (not necessarily the
sparsest) representation in and which distance to Rijy is lower than n(Cσ)2.

Let us give more details about how the ORMP can compute a sparse representation of a patch.
A good reference to learn about ORMP is [5]. Nevertheless, we shall give here a complete
explanation using the notation of our C++ code. In order to use lighter notations, we will rather
explain how the ORMP finds a sparse representation a ∈ ℜk of a vector x ∈ ℜn in a dictionary
formed by the normalized vectors d1, ..., dk which span ℜn. This explanation can be found here.

Let x be a vector of ℜn. We wand to find a sparse representation α of x in the
dictionary D formed by the normalized vectors d1, ..., dk-1. Precisely, we are going
to give an approximate solution of the following optimization problem

We will detail the choice of the atoms in order to stick to our C++ code. We denote
by lj the index of the element of the dictionary that we choose at the step j ≥ 0. We
also let Lj = {l0, ..., lj}. Let us assume that we are at the beginning of the jth loop (j
≥ 0) (and thus l0, ..., lj-1 are already chosen). We start by introducing the residue

where ProjF refers to the orthogonal projection on the subspace F, and where
Vectdl0

, ..., dlj-1
 refers to the space spanned by the vectors d1, ..., dj-1. If ||r||2 < ε then

we stop and α is the representation of in (dl0, ..., dlj-1) already
obtained at the previous step, cf. its computation at the end of the loop (if we break
when j = 0, then α = 0). We choose lj in order to minimize the norm of the new
potential residue

Thanks to the Pythagorean theorem, this amounts to

Then we set Lj = Lj-1 ∪ {lj}.
In order to compute the orthogonal projections

we use the Gram-Schmidt process. We denote by (tl0, ..., tlj-1) the orthogonal family
obtained after Gram-Schmidt orthogonalization of (dl0, ..., dlj-1), and by (el0, ..., elj-

1) the orthonormal family obtained after Gram-Schmidt orthonormalization of (tl0,

..., tlj-1). For i ∉ Lj-1, we denote by (tl0, ..., tlj-1, ti(j)) the family obtained after Gram-

Schmidt orthogonalization of (dl0, ..., dlj-1, di), and (el0, ..., elj-1, ei
(j)) the

(orthonormal) family obtained by normalizing of (tl0, ..., tlj-1, ti(j)). The reader have

to be aware that this orthonormalization can be progressively computed : at the jth
step, the vectors (tl0, ..., tlj-1) and (el0, ..., elj-1) are already computed. It is thus

sufficient to detail, at the jth, the computation of di and ti(j) for i ∉ Lj-1

We notice that

(where ProjF refers to the orthogonal projection onto the subspace F) and,
consequently,

Therefore, maximizing the norm of the projection is equivalent to maximizing <x,
ei

(j)>. This is why we choose

and with this index comes the vector tlj = tlj
(j) and the normalized vector elj = elj

(j).

The computation of <x, ei
(j)> is done by replacing elj

(j) by its above given definition

To implement this computation efficiently, we notice that the denominator and the
square of the numerator are nothing but the subtraction of those used at the previous
step by respectively <di, elj-1><x, elj-1> and <di, elj-1>. Hence, at each step, we need
<di, elj-1> and <x, elj-1> which correspond in the code to the variables D_ELj[i][j]
and x_elj, which are updated at each loop. The computation of <x, elj-1> is not a
problem (it is only the formula (3) of the previous step !). However, we have to
explain the update of <di, elj-1>. We will see thereafter that the computation of α
requires the coordinates of (el0, ..., elj-1) on the basis (dl0, ..., dlj-1) and we will
explain how we can obtain them progressively. Once these coordinates are
computed, the scalar product <di, elj-1> can be obtained by a linear combination of

the scalar products <di, dls>, (0 ≤ s < j). The numerator (<x, ti(j)>) is then saved in
the variable x_T[i], and the square of the denominator in the variable scores[i].
Once we have chosen lj, we can go back to the beginning of the loop to stop or
choose the next atom. Clearly, the algorithm terminates because the atoms d1, ..., dk
span ℜn.

At this point let us assume that we are at the end of the jth loop (and thus, we have
chosen l1, ..., lj). We still have to explain how the sparse reprentation α of x in D is
computed. As (el0, ..., elj) is orthonormal and span Vect(dl0, ..., dlj), we have

The coefficients <x, ep>, (p < j) have already been computed in the preceding step.
The last coefficient is given by the equality (3) for i = lj. Finally, we have to go back
to the representation in terms of dl1, ..., dlj. To this aim, we introduce the
coordinates of the (el0, ..., elj-1) on the basis (dl0, ..., dlj-1). Let us denote them by
apq, (p ≤ q)

At the j-1th step, the apq are computed for p < j (and again p ≤ q). It suffices to
explain how we compute ajq for q ≥ j. For the definition elj, replacing the elp, (p < j),
we obtain

from which we get (after inverting the sums)

Finally, we have

and thus we set

We insist on the fact that the coordinates of (el0, ..., elj-1) on the basis (dl0, ..., dlj-1)
are also required for the choice of the index lj, as explained above. Subsequently, it
is natural to compute these coordinates at each loop.

Correspondence with the notations used in the code

Now we link the notations used in the explanation above with the notations used in
the code. First, in the code, let us warn the reader that we have used indexation in
column order, that is, D[i] refers to the i-th column of the matrix D. We have also
used a convention : whenever a variable contains the matrix multiplication of the
transpose of B by A, then the result is saved in the variable A_B. Therefore, A_B =
TBA, and A_B[p][q] is the scalar product between A[p] and B[q]. Let us add that elj
(even if it is not a proper variable) will of course refer to elj. Similarly, DLj (resp.
ELj) will refer to the matrix whose columns are (in order) dl0, ..., dlj (resp. de0, ...,

elj). Last, T will refer to the matrix whose columns are t0(j), ..., tk-1
(j).

Np = Np
n = n
k = k
epsilon = ε
L : maximal sparsity allowed for the representations (here we do not use this
constraint, i.e. in our code, L = min(n, k))
norm[i] = =

x_T[i] = =

scores[i] = =

lj = lj
invNorm = 1/sqrt(norm[lj]) =

x_elj = x_T[lj] * invNorm = <x, elj>
x_el[p] = <x, elp>

delta = x_elj * x_elj = <x, elj>
2

normr =

D_DLj[i][s] = <di, dls>
A[p][q] = apq, (p ≥ q)
D_ELj[i][j] is equal to <di, elj> at the end of the j-th loop
val temporarily saves the variable <di, elj>

coord[q] = αlq = : "``coordinate" of x on dlq

s : summing index.

Some remarks on the implementation

Update of A equations (4) and (5) suggest the update :

Numerical stability an artificial break is added in the code. It happens
if ||tj|| < 10-6. Thus the ORMP is stopped in order to avoid the division
by ||tj.||

Dictionary Update

In this step, we update the columns of the dictionary one by one, to make the quantity

decrease, without increasing the sparsity penalty ||αij||0. We will denote by (1 ≤ l ≤ k) the
columns of the dictionary .

First, let us try to minimize the quantity (6) without taking care of the sparsity. As explained
above, we go through the columns of the dictionary, and the index of the current column will be
denoted by l, (1 ≤ l ≤ k). We are going to modify the atom and the coefficients in order to
improve the approximations in an L2 distortion sense. In order to translate this objective into an
optimization problem, for each (i, j), we introduce the residue

which is the error committed by deciding not to use any more in the representation of the
patch Rijy : eij

l is thus a size n vector.

These residues are grouped together in a matrix El (whose columns are indexed by (i, j). The
values of the coefficients are also grouped in a row vector denoted by . Therefore, El is a
matrix of size n × Np and is a row vector of size Np. We need to find a new and a new row
vector which minimize

where the squared Frobenius norm ||M||F2 refers to the sum of the squared elements of M. This
Frobenius norm is also equal to the sum of the squared (Euclidean) norm of the columns, and it
is easy to check that minimizing (8) amounts to reduce the approximation error caused by . It
is well-known that the minimization of such a Frobenius norm consists in a rank-one
approximation, which always admits a solution, practically given by the singular value

decomposition (SVD). Using the SVD of El :

(where U and V are orthogonal matrices and where Δ is the null matrix except from its first
diagonal, where it is non-negative and decreasing), the updated values of and are
respectively the first column of U and the first column of V multiplied by Δ(1,1). By the way,
we will notice that the rank-one approximation does not require the computation of the whole
matrices U, V, and Δ. In our implementation, it is sufficient to use a truncated SVD, which is
much faster (especially if El is large). The method used to compute the truncated SVD can be
found here.

To use lighter notations, we use, as in the code, the notation X = El. Starting from
the SVD (9), one can write

As a result, Δ(1, 1) is the square of the greatest eigenvalue of the symetrical
positive-definite matrix X XT, and the first column of U is the corresponding
eigenvector. The same observation is valid for V. Therefore, we can find these
eigenvectors and Δ(1, 1) thanks to the power method applied to the matrices X XT

and XT X. Concerning the convergence of the power method, one could refer to [2].
One could notice that in the pseudo-code that we present below, the power method
can be applied to the two matrices simultaneously.

The SVD function takes as arguments a matrix X of which we want the SVD, a
maximal number of iterations max_iter (set to 100 in the code) and a tolerance
threshold ε (set to 10-6 in the code). It gives back an approximation s of the greatest
singular value of X, an approximation u of the first column of U, and an
approximation v of the first column of V.

Here is the pseudo-code.
Initialization : we arbitrarily initialize v (in the code, we set v =); we also set i = 0,
s = 1 and sold = 0.
While (i < max_iter and), we proceed to the following affectations :

u ← Xv;

u ← u / ||u||;

v ← XTu;

sold ← s;

s ← ||v||;

v ← v / s.

The values of s, u, and v obtained at the end of this loop are the return values of the
truncated SVD.

Remark : At the end of this algorithm, we thus have

where λ is the greatest eigenvalue of X XT. Taking the scalar product with u, and
since u is normalized, we have

which yields

This explains why s is an approximation of the largest singular value of X.

This way, for each l = 1, ..., k, the energy (6) never increases. But for now, the sparsity of the
coefficients is not under control. In order to do that, a slight modification is brought into the
preceding process : for each l, the operations involved in the update of and are restricted to
the patches which already used the atom before the update. Setting

the values that we will group together in El and will be only the values of eij
l and for

indices (i, j) ∈ ωl. Hence, the indices (i, j) of the sum of the LHS of (8) will be restricted to (i,
j) ∈ ωl; the matrix El is now of size n × Card(ωl) and is now a row vector of size Card(ωl).
Also, in (6), note that the terms of indices (i, j) ∉ ωl are not affected by this update. This proves
that this modification decreases (6) without increasing ||αij||0. This modification also implies a
reduction of the matrix El which SVD is being computed.

Recall that the sparse coding computes sparse representations and that the dictionary updates
make change but also modify . After K iterations of these steps, we are in possession of a
learned dictionary and of sparse representations of the patches of the image.

Reconstruction

Now that the first two parts of the algorithm built a dictionary and sparse representations
which are well-adapted to our image, we can build the globally denoised image by solving the
minimization problem

The first term controls the global proximity to our reconstruction with the noisy image y. It is
thus a fidelity term that is weighted by the parameter λ. The second term controls the proximity
of the patch to our reconstruction to the denoised patch Dαij. This functional is quadratic,
coercive, and differentiable. Subsequently, this problem admits a unique solution that we can
compute explicitly:

This formula may seem complicated, but it is in fact very simple. The only thing to notice is
that the matrix to be inverted is diagonal. In consequence, this formula only means that the
value of a pixel in the denoised image is computed by averaging the value of this pixel in the
noisy image (weighted by λ) and the values of this pixel on the patches to which it belongs
(weighted by 1). We obtain the values of the pixels of , one by one, without requiring any
matrix inversion that (11) would perhaps suggest.

Comments

In the articles (9) and (14) the following minimization problem is mentioned :

which groups all the quantities that we have tried to minimize in the preceding paragraphs.

Let us briefly analyze this formula, even though the forthcoming comments are slightly
redundant with the previous explanation :

the first term controls the global proximity of to the noisy image y (fidelity term);

the second term controls the sparsity of the representations of the patches;

last, the third term controls for each (i, j), the proximity of the patch Rij of our
reconstruction to the denoised patch Dαij.

The coefficients λ and μij set the balance between the importance given to the fidelity term and
to the sparsity constraints of the representations of the patches.

This non-convex problem is too difficult to be addressed in this form. This explains why the
article [9] suggests to break it down into parts, and to try to minimize separately the different
terms of (12). This way, we are led to the K-SVD algorithm. Notice also a serious difference:
the values of μij are not required in the above implementation.

Without specifying values for μ ij, we cannot really address the problems of linking the
minimization of (12) and the suggested iterative method. Moreover, we do not understand why
the authors did not set only one weight μ rather than weights μij depending on the patches. We
would have to explain why the sparsity of certain patches are more important than others. If the

μij are not equal, then their determination is still a crucial point of the method that remains to be
analyzed.

The alternation of sparse coding step and dictionary update step renders the analysis of the
afore-mentioned energies difficult. On the one hand, the ORMP is only an approximate
solution. On the other hand, in the sparse coding step, the constraints are formed by parts of the
Frobenius norm that is minimized in the dictionary update. For this reason, we want to insist on
the fact that the minimization of (12) is nothing but a possible interpretation of the K-SVD
method. Of course, solving directly the problem (12) is appealing but seems for now out of
reach.

The reader could notice that, each time we update an atom of the dictionary, the algorithm uses
a SVD. Since there are k atoms in the dictionary, this explains the name K-SVD. As stated in
[1], the reference to K-means is not just formal : in K-means, we do not allow sparse
combinations of the atoms, but we try to optimize the dictionary in such a way that the error
committed by representing each observation with a single atom in the dictionary is minimal.

Extending K-SVD to Color Images

It is now time to present the method proposed in [14] to adapt the grayscale algorithm to color
images. To address this problem, a first suggestion would be to apply the K-SVD algorithm to
each channel R, G and B separately. This naïve solution gives color artifacts that are shown on
the left image in Figure 2.

Figure 2 - Denoised images with separated channels (left), and then concatenated channels
(right). (σ = 25). The reader will notice that the denoising is better on the sky and the water

surfaces.

http://www.ipol.im/pub/algo/llm_ksvd/debruitee_separes.png
http://www.ipol.im/pub/algo/llm_ksvd/debruitee_concatenes.png

They are due to the fact that in natural images there is an important correlation between
channels. Another suggestion would be to apply a principal component analysis on channels
RGB, which would uncorrelate them, and then to apply the first suggestion in this more
appropriate environment. This solution has not been tried because the new proposition of [14]
seems even more promising.

In order to obtain the colors correctly, the algorithm previously described will be applied on
column vectors which are the concatenation of the R,G,B values. In this way, the algorithm will
better update the dictionary, because it is able to learn correlations which exist between color
channels. An example of color dictionary is shown in Figure 3.

Figure 3 - Left : dictionary composed by patches extracted randomly from the "Castle" image,
on which a white gaussien noise has been added. Right : dictionary obtained at the end of the

color version of K-SVD. The contrast is enhanced independently for each atom.

One can see the difference in Figure 2. We remind the reader that from now on the size of
columns which represent images is 3N, and the size of columns which represent patches is 3n.

Unfortunately, even with this adaptation, non-negligible color artifacts are still present.

The authors of [14] justify these artifacts with the following statement : the previously described
algorithm tries to adapt the dictionary to all patches contained in the image. This need of
universality implies that the atoms of the dictionary tend to look like grayscale atoms. To
correct these color artifacts, [14] suggests to modify the metric used in the stopping condition of
the ORMP. From now on we use the metric inferred by the scalar product

instead of the Euclidean metric, where we denote by J the matrix whose size is 3n × 3n built
from three diagonal blocks of size n × n, full of 1, and where γ ≥ 0 is parameter which needs to
be fixed. In other words, the new norm can be written as

http://www.ipol.im/pub/algo/llm_ksvd/dico_couleur_initial.png
http://www.ipol.im/pub/algo/llm_ksvd/dico_couleur_final.png

where we denote by mC(x) the average of x on the channel C (and where the Euclidean norm is
denoted by ||.||).

Thus, the new metric, under the parameter γ, put more importance of the proximity of the mean
value of the patches. This color correction can be easily integrated in the ORMP thanks to the
following equality :

where a > 0 is chosen so that γ = 2a + a2. Thus we can write for all vectors x,

Consequently, to work with the new metric, all columns have to be multiplied by (I + (a/n) J)
and we can work again with the Euclidean norm. Nevertheless we remind the reader that in the
ORMP all columns of the dictionary are normalized, which is why a diagonal matrix D is
introduced. Its elements are the inverses of the norm of the colums of (I + (a/n) J)D. Its size is k
× k. Then (I + (a/n) J)DD has normalized columns. Now the ORMP can be applied to obtain the

 such that

for the Euclidean norm. In the next session, if we denote

we get

for the norm ||.||γ.

One can notice the contribution of this color version in Figure 4.

Original Noisy image

γ = 0 γ = 5.25
Figure 4 - Denoising for σ = 30 with γ = 0 and γ = 5.25. Some color artifacts still remain, but

the denoising is slightly better in some areas when γ = 5.25, cf Figure 5.

Here again has appeared a new parameter γ which will be briefly discussed in the following
part. figure 5.

http://www.ipol.im/pub/algo/llm_ksvd/original.png
http://www.ipol.im/pub/algo/llm_ksvd/noisy.png
http://www.ipol.im/pub/algo/llm_ksvd/debruitee_wocc.png
http://www.ipol.im/pub/algo/llm_ksvd/debruitee_wcc.png

Original Noisy image

γ = 0 γ = 5.25
Figure 5 - Denoising for σ = 30 with γ = 0 and γ = 5.25. Zooms.

Summary of the Algorithm

In this section all steps of the algorithm are summarized in their right order.

Input : the noisy image y, an initial dictionary Dinit and the parameters listed in the next part.

All patches of the noisy image are collected in column vectors Rijy (channels R, G and B are
concatenated). We set initially = Dinit. Do K times the two following steps :

1. Sparse coding
The inverses of the norms of the columns of (I + (a/n) J) are put in a diagonal matrix .
An ORMP is applied to the vectors (I + (a/n) J) Rijy with the dictionary (I + (a/n) J)D in a
such way that sparse coefficients for the Euclidean norm are obtained, such that :

Deduce = (sparse too) which then verify

for the norm ||.||γ.

http://www.ipol.im/pub/algo/llm_ksvd/original_rognee.png
http://www.ipol.im/pub/algo/llm_ksvd/noisy_rognee.png
http://www.ipol.im/pub/algo/llm_ksvd/debruitee_wocc_rognee.png
http://www.ipol.im/pub/algo/llm_ksvd/debruitee_wcc_rognee.png

2. Dictionary update
For each l = 1, ..., k, proceed to the four following steps :

1. Introduce ωl = { (i, j) | ≠ 0 }.
2. For each (i, j) ∈ ωl, obtain the residue

3. Put these column vectors together in a matrix El. Values are also
assembled in a row vector denoted by for (i, j) ∈ ωl;

4. Update and as solutions of the minimization problem :

In practice a truncated SVD is applied to the matrix El. It provides partially
U, V (orthogonal matrices) and Δ (filled in with zeroes except on its first
diagonal), such that El = UΔVT Then is defined again as the first column
of U and as the first column of V multiplied by Δ(1,1).

Then the final result is obtained thanks to a weighting aggregation (the formula has already
been explained) :

Influence of the Parameters on the Performance

One can notice that the algorithm as described previously has plenty of parameters that can be
tuned. Here is the exhaustive list :

C : multiplier coefficient;

λ : weight of the noisy image;

K : number of iterations;

k : size of the dictionary;

γ : color correction parameter;

√n : size of patches.

The question is to pick the right values for the various parameters listed above, and to evaluate
their influence on the final result.

Influence of C

This parameter is used in the stopping condition of the ORMP. In order to understand the
chosen value, let us get started with a clean patch x0 (where the length of the column is denoted
by = n (resp. = 3n) for grayscale (resp. color) images), on which a white Gaussian noise w is
added to obtain a noisy patch x. Then the ORMP tries to find a vector α as sparse as possible
such that

If the noise has norm lower than , then x will be in the x0-centered sphere, which radius is
. If we assume that x0 is the only element of this sphere to have a sparse representation in

the dictionary Dx0. Then we will ensure that the noise has a large probability to belong to this
sphere. Thus the idea of [14] is to force

Practically, the corresponding value is obtained by using the inverse of the distribution function
of .

Influence of the Weighting Parameter λ

If for all λ ≥ 0 we denote by the final result of the algorithm as described previously using the
parameter λ, then according to the definition of (cf. formula (11)), one can notice that

If we want to remove from the noisy image the same quantity of energy than the one that was
added by the noise, then it is natural to choose the parameter λ so that

where is equal to N (resp. 3N) for grayscale (resp. color) images. In other words the distance
between and y is forced to be exactly equal to . As belongs to the segment [, y], a
such λ exists if and only if

In this case one can easily see that the only λ leading to the equality (18) is

Despite this theoretical value, the algorithm has been tested with plenty of choices for λ. If λ is
taken too large, then the contribution of the noisy image is too important and adds too much
noise, which consequently reduces the PSNR, as one can see in the following table :

In bold the best result for a given σ. Other parameters are fixed to : K = 15; n = 25; γ = 5.25; k
= 256.

Here are some visual results :
σ = 10

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

σ = 30

http://www.ipol.im/pub/algo/llm_ksvd/lambda_10_0.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_10_05.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_10_15.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_10_25.png

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

σ = 80

http://www.ipol.im/pub/algo/llm_ksvd/lambda_30_0.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_30_05.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_30_15.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_30_25.png

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

The following table shows the comparison between the empirically obtained parameter (λe) and
the theoretically obtained parameter (λt) :

In bold the best result for a given σ. Other parameters are fixed to : K = 15; n = 25; γ = 5.25; k

= 256.

In the end the final kept value for λ is the one given by (18).

Influence of the Number of Iterations K

http://www.ipol.im/pub/algo/llm_ksvd/lambda_80_0.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_80_05.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_80_15.png
http://www.ipol.im/pub/algo/llm_ksvd/lambda_80_25.png

The iterative aspect of the method is important, because it allows the dictionary to be updated
and then to obtain a better sparse representation of the patches of the image. Moreover it allows
to show empirically the convergence of the method. Indeed when K is large enough further
iterations should improve the dictionary only marginally. Depending on the convergence of the
method (which can change according to σ), a huge number of iterations is assumed to be needed
in order to assure the best possible estimate. On the other side, each iteration is really expensive
in terms of processing time. Thus avoiding spurious iterations allows one to obtain a faster
algorithm. In consequence the main goal is to obtain a good compromise between having
enough iterations to obtain a good result close to the optimum and having a correct processing
time.

Here is a table showing the PSNR and RMSE evolutions depending on the number of iterations
:

Other parameters are fixed to : n = 5; γ = 5.25; λ = 0.15; k = 256.

One can notice that for σ ≥ 5 the PSNR converges, and the higher σ, the faster the convergence
of the PSNR. Thus it is possible to keep few iterations for high values of noise. In order to
better illustrate the speed of the PSNR convergence in function of K and σ, here is a Figure
showing f(PSNR(i)) according to the number of iterations i, where f is defined by

with xm = max(xi - x0).

In the following, the number of iterations will therefore be fixed to K = 15, no matter what σ.

Influence of the Size of the Dictionary k

The only constraint on the size of the dictionary is to generate ℜn. As we want some
redundancy, we set k ≥ n. Here is a study about this parameter :

In bold the best result for a given σ. Other parameters are fixed to : K = 15; n = 5; γ = 5.25; λ =

0.15.

http://www.ipol.im/pub/algo/llm_ksvd/graph_N_iter.png

According to this table one can see that it might be interesting to choose larger sizes for the
dictionary for relatively small noise (σ ≤ 30), and smaller sizes for high noise (σ ≥ 60).
Although this parameter has an influence on the processing time, it remains relatively flexible
according to PSNR results. In the following, this parameter will therefore be fixed to k = 256.

Influence of the Correction Parameter γ

The parameter γ is only used in the case of color images. We will see that this empirical
parameter is quite flexible, because some low variations on its value have almost no
consequences on the final result.

In bold the best result for a given σ. Other parameters are fixed to : K = 15; n = 5; λ = 0.15; k =

256.

In the following and according to the original article the correction parameter will therefore be
fixed to γ = 5.25.

Influence of the Size of the Patches n

The size of the patches has a huge influence on the final result, and we can win several decibels
in PSNR by choosing an appropriate n. As for most of the patch-based denoising method, best
results are obtained by working with relatively big patches :

In bold the best result for a given σ. Other parameters are fixed to : K = 15; k = 256; λ = 0.05; γ

= 5.25.

Similarly to other patch-based denoising method (for example BM3D), it is necessary to
increase the size of the patches when the noise increases. Despite the fact that according to
PSNR/RMSE results it seems better to take relatively small patches (√n = 5 or 7) for small
values of noise, we have to take into consideration the visual result. Here are visual results for
several values of the noise and for all studied patch sizes :
σ = 10

Noisy image √n = 3

√n = 5 √n = 7

√n = 9 √n = 11

http://www.ipol.im/pub/algo/llm_ksvd/noisy_10.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_3.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_5.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_7.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_9.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_11.png

√n = 13 √n = 15

σ = 30

http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_13.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_10_15.png

Noisy image √n = 3

√n = 5 √n = 7

√n = 9 √n = 11

http://www.ipol.im/pub/algo/llm_ksvd/noisy_30.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_3.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_5.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_7.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_9.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_11.png

√n = 13 √n = 15

σ = 60

http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_13.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_30_15.png

Noisy image √n = 3

√n = 5 √n = 7

√n = 9 √n = 11

http://www.ipol.im/pub/algo/llm_ksvd/noisy_60.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_3.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_5.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_7.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_9.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_11.png

√n = 13 √n = 15

σ = 100

http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_13.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_60_15.png

Noisy image √n = 3

√n = 5 √n = 7

√n = 9 √n = 11

http://www.ipol.im/pub/algo/llm_ksvd/noisy_100.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_3.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_5.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_7.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_9.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_11.png

√n = 13 √n = 15

One can notice that visually the choice is not so easy. Too small patches give huge artifacts, and
lead to many low frequency fluctuations, but with big patches almost all details are lost. We get
a visually nicer image, but completely blurred. In conclusion a compromise has to be found,
which cannot only be chosen according to the PSNR/RMSE results, but also taken into account
the visual aspect. The values of n which will therefore be kept are

A Detailed Study of Possible Variants

Origin of the Initial Dictionary

In the original article, and in the previously described algorithm, the dictionary is initialized by
taking randomly k patches in the noisy image. Despite the fact that the method works well in
this way, one can wonder whether there would be a better way to initialize the dictionary. For
example by taking random patches from a noise-free image. Let us denote :

Init0 : the dictionary is initialized on the original noiseless image;

Init1 : the dictionary is initialized on the original noisy image;

Init2 : the dictionary is initialized on a noise-free reference image.

http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_13.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_100_15.png

In bold the best result for a given σ. Parameters are fixed to : K = 15; n = 25; γ = 5.25; k = 256;

λ = 0.15.

One can think that the initialization of the dictionary is quite important (because we run the
algorithm with few number iterations, so the maximum is not reached), because depending on
the initialization we have variations of more than 0.1dB. But when σ increases, one observes
less variation in the results. An explanation might be that the number of iterations K is then
more appropriate, so we are close to optimality, and the initialization is not really crucial.

In conclusion the initialization of the dictionary is not crucial, and the initialization by taking
random patches from the noisy image is quite good.

Training of the Dictionary

Because the algorithm can hardly take into account parallel instructions (at least the update of
the dictionary), the algorithm as previously described in this article is extremely slow. Its
processing time is directly proportional to the size of the dictionary (although the study shows
that the size of the dictionary can be reduced without affecting the result too much) as well as to
the number of patches contained in the image (then to the size of the image itself) and to the
size of the patches.

If obviously we cannot reduce the size of the image and if we cannot modify the size of the
patches without highly damaging the final result, it is still possible to reduce the number of
patches used during the training part of the dictionary, by applying the following principle :

1. The set of patches is built on the whole image;

2. Keep one patch out of T to build a T times smaller patch set;

3. Apply the loop on the ORMP and the update of the dictionary by SVD K times on this
subset, in order to obtain a final dictionary Df;

4. Then apply with only one iteration the whole algorithm on the initial full set of patches, but
with Df as previously obtained.

With this simple trick it is then possible to divide the processing time by slightly less than T (we
have to apply at the end a single iteration on the whole set of patches, which can be slower than
the previous 15 ones on the subset). Before applying this trick, we have to determinate its
impact on the final result, in order to find the more appropriate value of T for each σ. We have
seen during the study of the parameters that the result in PSNR for σ = 2 is highly chaotic
depending on the number of iterations K. For that reason we do not present results for this

particular value of noise.

Nevertheless here is a summary table for some values of T (T = 1 represents the initial
algorithm as described in this article without any modifications) :

In bold the best result for a given σ. Parameters are fixed to : K = 15; n = 49; γ = 5.25; k = 256;
λ = 0.05.

This study shows that it is possible to highly reduce the processing time of this method whilst
keeping a result close to the original method. According to the obtained results, it seems
reasonable to take T = 16 for σ ≤ 40 and T = 8 for σ > 40.

In order to help the readers to make up their own idea concerning the gain in term of processing
time with this trick, here is a table showing the processing time in seconds for a 512×512×3
image on a i5 processor with 8Go of Ram. Moreover the process of the ORMP is fully
parallelized :

Thanks to this trick, we obtain reasonable processing time for σ ≥ 10. Moreover we can
decrease this time to 112 seconds (resp. 42s.) for σ = 5 (resp. σ = 10) by taking T = 32, without
decreasing the PSNR. But we cannot decrease the processing time more, because we have to
process a single iteration of the full set of patches, which is mainly responsible for the
processing time. One can be surprised by the fact that the processing time is decreasing with
respect to σ. But it can be easily explained :

For very small values of noise, it is quite complex to get a sparse representation of the
patches since they are very different from one another. Then at the end of the ORMP we
have to process a large matrix;

On the contrary for very high noise the signal is covered by the noise, then patches are very
similar. Thus it is easier to get a sparse representation of them, and then at the end of the
ORMP the matrix is even smaller.

Comparison with several Classic and Recent Methods

In order to evaluate the real capacity of this new denoising method, a fair and precise
comparison with other state-of-the-art methods needs to be done. The other considered methods
are :

BM3D;

DCT denoising;

NL-means;

TV denoising;

NL-Bayes.

Moreover, results for K-SVD will be shown for the algorithm which gives best PSNR results
(named K-SVD 1 in the following) and the one which gives better visual results (K-SVD 2) (to
know the difference, please see the study on the influence of the size of the patches n).

The following study has been led on the following noise-free color image (σreel << 1). All
algorithms have been processed on the same noisy images obtained from noiseless images
(saved in real values and not sampled on [0, 255])) : [show/hide]

Comparative Table

https://edit.ipol.im/edit/algo/l_bm3d/
http://www.ipol.im/pub/algo/ys_dct_denoising/
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
http://www.ipol.im/pub/algo/g_tv_denoising/
http://www.ipol.im/pub/algo/blm_nlm_pca/
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half.png

According to the results, one can observe that the order of the methods is quite independent of
noise value. In order to help the reader to make up its own idea concerning the method
performances comparatively to the others, here is a summary table which shows a mean of the
scores :

Images

In addition to the PNSR/RMSE results, it is really interesting to compare visually those
methods. Here are the results for σ = 20 :[Show/Hide].

Noisy image TV denoising

NL-means DCT denoising

K-SVD 1 K-SVD 2

http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_20.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_TV-Denoising_20.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_NL_means_20.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_DCT_denoising_20.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_K-SVD_Best_PSNR_20.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_K-SVD_slow_20.png

BM3D NL-Bayes

Conclusion

In this article, we have proposed a detailed analysis of the K-SVD algorithm, already introduced
in the articles [9] and [14]. Through this explanation, we showed why we could expect
remarkable denoising results from this algorithm. But we also noticed immediately the difficulty
of the related optimization problems.

On the numerical side, we have observed the stability of this method, but we also brought up its
heavy computational cost. In spite of these drawbacks, our experiments have clarified the
impact of the different parameters on the result, and thus we have proposed reliable values to
tune some of them. Moreover, we showed some denoising experiments which prove that the K-
SVD method leads to good results, both in terms of PSNR values and of visual quality. The
skeptical reader can pursue our experiments by applying the proposed demonstration to the
images of her choice. Finally, the suggested modification (taking into account only a subset of
the patches of the image) seems to get similar results with an interesting reduction of the
execution time.

In conclusion, the K-SVD method can be considered to be part of the state of the art. But,
above all it has to be seen as a first successful use of dictionary learning to address an image
processing task. The more recent algorithms of this field, in particular those which replace the
l0-sparsity constraint by a l1 constraint (cf. [12]), seem very promising. They lead to a great
gain in computational time, and therefore allow one to handle bigger images.

Acknowledgement

The authors are grateful to Julien Mairal for his help and advice.

Glossary

Global Notations

x : generic notation for an image;

http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_bm3d_20.png
http://www.ipol.im/pub/algo/llm_ksvd/valldemossa_half_NL-PCA_double_step_20.png

x0 : clean image;

N : number of pixels of x0;

 : is equal to N (resp. 3N) for a grayscale (resp. color) image;

w : white Gaussian noise which is added to x0;

σ : noise standard deviation;

y : noisy image : y = x0 + w;

 : denoised image obtained after applying the algorithm;

 : (in the paragraph 4.2) final denoised image obtained after applying the algorithm with the
parameter λ;

(i, j) : position of a generic pixel in the image x;

n : total number of pixels in a patch. As we are working with square patches, n is a perfect
square;

Np : number of patches whose size is √n × √n contained in the image x;

Rij : matrix whose size is n × N making the extraction of a square patch whose size is √n ×
√n and whose up left pixel has coordinate (i, j). Columns of Rij are indexed by the pixels of
x;

D : generic notation for a dictionary;

dl : column of index l (1 ≤ l ≤ k) of the dictionary D;

k : number of atoms in the dictionary;

αij : generic notation for the representation of the patch Rijx in the dictionary : Rijx ≈ Dαij;

α : matrix whose columns are formed by αij. Then columns of α are indexed by (i, j) and the
matrix has as many columns as there is patches of size √n × √n in the image x;

 : current dictionary (updated at each iteration of the algorithm);

K : number of iterations of the algorithm;

Dinit : initial dictionary;

 : current representation of the patch Rijx in (updated for each iteration of the algorithm);

 : matrix whose columns are ;

λ : weighting of ||x - y||22 in the minimization problem (12). This coefficient is used during
the reconstruction step;

μij : weighting of ||αij||0 in the minimization problem (12). This coefficient is not explicitely
used in the algorithm;

C : Thanks to this coefficient, the norm l2 on n pixels of a white Gaussian noise whose
standard deviation is σ is lower than √nCσ with probability 0.93. This coefficient is used
during the break condition of the ORMP;

 : column of the dictionary whose index is l, (1 ≤ l ≤ k);

 : coefficient of of index l. It matches to the weighting of the atom in the
representation of the patch Rijx;

eij
l = Rij - + : residue corresponding to the atom l and the patch Rijx (it is a

column vector whose size is n);

El : matrix grouping the residues eij
l together;

(U, Δ V) : singular value decomposition of El;

ωl : set of indices all (i, j) such that ≠ 0;

I : identity square matrix whose size is N × N;

γ : parameter of the new metric of the ORMP for the color processing;

x, y : generic notations for column vectors whose size is ;

α : generic notation for the representation of a vector x in the dictionary D : x ≈ Dα;

J : square matrix whose size is 3n × 3n, built with three blocks of size n × n full of 1;

mC(x) : average of x in the channel C;

I : square identity matrix, whose size is 3n × 3n;

a : positive solution of γ = 2a + a2. Then we get a = √(1 + γ) - 1;

 : = n (resp. 3n) if we are working on grayscale (resp. color) images;

 : result of the ORMP for the current representation of the color patch Rijx in with the
metric ||.||;

D : diagonal matrix containing the inverse of the norm of the columns of (I + (a/n)J)D.

Specific Notations for the Explanation of the ORMP

x : generic vector of ℜn;

D : dictionary used to compute a sparse representation of x;

d0, ..., dk-1 : atoms of the dictionary (columns of D);

α ∈ ℜk : sparse representation of x in D;

ProjF : orthogonal projection onto the vectorial sub-space F;

j : loop index of the ORMP, from 0 to k;

lj : index of the jth chosen vector;

Lj = {l0, ..., lj};

r = x - ProjVect(dl0
, ..., dlj-1

)(x) : current residue;

(tl0, ..., tlj-1) : orthogonal set of (dl0, ..., dlj-1) obtained by Gram-Schmidt process;

(el0, ..., elj-1) : orthonormal set of (dl0, ..., dlj-1) obtained by Gram-Schmidt process;

(tl0, ..., tlj-1, ti(j)) : orthogonal set of (dl0, ..., dlj-1, di) obtained by Gram-Schmidt process;

(el0, ..., elj-1, ei
(j)) : orthonormal set of (dl0, ..., dlj-1, di) obtained by Gram-Schmidt process;

apq : coordinate of elp on the vector dlq (equal to 0 except if p ≤ q).

Specific Notations for the Explanation of the Truncated SVD

X : matrix on which the truncated SVD will be applied. Let us denote X = UΔVT with U and
V orthogonal matrices, and coefficients of Δ are equal to 0 except on its first diagonal where
they are non-negative and decreasing;

U, Δ, V : exact SVD of X : X = UΔVT;

s : estimate of the biggest singular value of X XT;

sold : value of s at the end of the previous loop;

u : estimate of the first column of U;

V : estimate of the first column of V;

max_iter : maximal number of authorized iterations (fixed to 100 in the C++ code);

ε : tolerance threshold controlling the break condition of the SVD (fixed to 10-6 in the C++

code).

Source code

A C/C++ implementation is provided.

source Code : zip

It should compile on any system since it is only strict ANSI C/C++. It is distributed under the
GPL licence. Basic compilation and usage instructions are included in the README.txt file.
This code requires libpng to read/write PNG images and is limited to 8bit RGB or grayscale
PNG image files. The same code is used for the online demo.

On Line Demo

An on-line demo of this algorithm is available. User can choose to run the normal algorithm,
the fast algorithm, the algorithm tuned for best PSNR results and the algorithm tuned to give
better visual results.

References

1. M. Aharon, M. Elad, and A. Bruckstein. "K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation". IEEE Transactions on image
processing, pages 9-12, 2005. DOI:10.1109/TSP.2006.881199

2. G. Allaire and S. M. Kaber. "Algèbre Linéaire Numérique". Ellipses, Paris, 2002.
ISBN:2729810013

3. A. Buades, B. Coll, and J.M. Morel. "A non local algorithm for image denoising". IEEE
Computer Vision and Pattern Recognition", 2 :60-65, 2005. DOI:10.1109/CVPR.2005.38

4. A. Chambolle. "An algorithm for total variation minimization and applications". Journal of
Mathematical Imaging and Vision, 20 :89-97, 2004.
DOI:10.1023/B:JMIV.0000011325.36760.1e

5. S. F. Cotter, R. Adler, R.D. Rao, and K. Kreutz-Delgado. "Forward sequential algorithms
for best basis selection". In Vision, Image and Signal Processing, IEE Proceedings , 146:
235–244, 1999. DOI:10.1049/ip-vis:19990445

6. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. "Image denoising by sparse 3D
transform-domain collaborative filtering". IEEE Transactions on image processing , 16,
2007. DOI:10.1109/TIP.2007.901238

7. G. Davis, S. Mallat, and M. Avellaneda. "Adaptive greedy approximations". Journal of
constructive Approximation, 13 :57–98, 1997. DOI:10.1007/BF02678430

8. D. Donoho and I. Johnstone. "Ideal spatial adaptation by wavelet shrinkage". Biometrika,
81 :425–455, 1993. DOI:10.1093/biomet/81.3.425

9. M. Elad and M. Aharon. "Image denoising via sparse and redundant representations over
learned dictionaries". IEEE Transactions on image processing , 15(12) :3736–3745, 2006.
DOI:10.1109/TIP.2006.881969

10. M. Lebrun, A. Buades, and J.M. Morel. "Implementation of the Non-local Bayes image
denoising". Image Processing on Line. ipol.im . Workshop, 2011.

11. J. Mairal. "Représentations parcimonieuses en apprentissage statistique, traitement d’image
et vision par ordinateur". PhD thesis, 2010.

http://www.ipol.im/pub/algo/llm_ksvd/k-svd_src.zip
http://www.gnu.org/licenses/gpl.html
http://www.libpng.org/pub/png/libpng.html
http://www.ipol.im/pub/demo/llm_ksvd/
http://www.ipol.im/pub/demo/llm_ksvd/
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1023/B:JMIV.0000011325.36760.1e
http://dx.doi.org/10.1049/ip-vis:19990445
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1007/BF02678430
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1109/TIP.2006.881969
http://www.ipol.im/pub/algo/blm_nlm_pca/fr/

12. J. Mairal, F. Bach, J. Ponce, and G. Sapiro. "Online learning for matrix factorization and
sparse coding". Journal of Machine Learning Research, 11 :19–60, 2010.

13. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. "Non-local sparse models for
image restoration". In ICCV’09, 2272–2279, 2009. DOI:10.1109/ICCV.2009.5459452

14. J. Mairal, M. Elad, and G. Sapiro. "Sparse representation for color image restoration". IEEE
Transactions on image processing, 17(1) :53–69, 2008. DOI:10.1109/TIP.2007.911828

15. S. Mallat and Z. Zhang. "Matching pursuits with time-frequency dictionaries". IEEE
Transactions on signal processing, 41(12), December 1992. DOI:10.1109/78.258082

16. Y.C. Pati, R. Rezaiifar, Y.C. Pati R. Rezaiifar, and P. S. Krishnaprasad. "Orthogonal
matching pursuit : Recursive function approximation with applications to wavelet
decomposition". In Proceedings of the 27th Annual Asilomar Conference on Signals,
Systems, and Computers, pages 40–44, 1993. DOI:10.1109/ACSSC.1993.342465

17. L. I. Rudin, S. Osher, and E. Fatemi. "Nonlinear total variation based noise removal
algorithms". Phys. D, 60 :259–268, 1992. DOI:10.1016/0167-2789(92)90242-F

18. J.L. Starck, E.J. Candès, and D.L. Donoho. "The curvelet transform for image denoising".
IEEE Transactions on image processing , 11 :670–684, 2002.
DOI:10.1109/TIP.2002.1014998

19. L.P. Yaroslavsky. "Local adaptive image restoration and enhancement with the use of DFT
and DCT in a running window". In Proceedings of SPIE, 2825 :2–13, 1996.
DOI:10.1007/3-540-76076-8_114

20. L.P. Yaroslavsky, K.O. Egiazarian, and J.T. Astola. "Transform domain image restoration
methods : review, comparison, and interpretation". In Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, 4304 :155–169, 2001.
DOI:10.1117/12.424970

Image credits.

Castle : D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Int’l Conf.

Computer Vision, volume 2, pages 416–423, July 2001.

Frog : http://www.grenouille.info

Valdemossa : CC-BY A. Buades

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol

http://dx.doi.org/10.1109/ICCV.2009.5459452
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1109/ACSSC.1993.342465
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1109/TIP.2002.1014998
http://dx.doi.org/10.1007/3-540-76076-8_114
http://dx.doi.org/10.1117/12.424970
http://www.grenouille.info
http://www.ipol.im/meta/copyright/
http://www.worldcat.org/issn/2105-1232
http://dx.doi.org/10.5201/ipol

	Abstract
	Overview
	Theoretical Description
	Algorithm for Grayscale Images
	Sparse Coding
	Dictionary Update
	Reconstruction
	Comments

	Extending K-SVD to Color Images
	Summary of the Algorithm

	Influence of the Parameters on the Performance
	Influence of C
	Influence of the Weighting Parameter λ
	Influence of the Number of Iterations K
	Influence of the Size of the Dictionary k
	Influence of the Correction Parameter γ
	Influence of the Size of the Patches n

	A Detailed Study of Possible Variants
	Origin of the Initial Dictionary
	Training of the Dictionary

	Comparison with several Classic and Recent Methods
	Comparative Table
	Images

	Conclusion
	Acknowledgement
	Glossary
	Global Notations
	Specific Notations for the Explanation of the ORMP
	Specific Notations for the Explanation of the Truncated SVD

	Source code
	On Line Demo
	References

