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Abstract

The proposed method simulates an embedded flutter shutter camera implemented either ana-
logically or numerically, and computes its performance. The goal of the flutter shutter is to
make motion blur invertible, by a “fluttering” shutter that opens and closes on a well chosen
sequence of time intervals. In the simulations the motion is assumed uniform, and the user can
choose its velocity. Several types of flutter shutter codes are tested and evaluated: the original
ones considered by the inventors, the classic motion blur, and finally several analog or numerical
optimal codes proposed recently. In all cases the exact SNR of the deconvolved result is also
computed.

Source Code

The C++ implementation of the flutter shutter camera simulator is available on the article web
page1, with source code and documentation.

Keywords: Fourier transform, image motion analysis, image restoration, image sensors, Pois-
son noise, image acquisition, computational photography, flutter shutter, motion-invariant pho-
tography, SNR

1 Introduction

Classic digital cameras are devices counting at each pixel sensor the number of photons emitted by
the observed scene during an interval of time ∆t called exposure time. Due to the nature of photon
emission the counted number of photons is a Poisson random variable. Its mean would be the ideal
pixel value. The difference between this ideal mean value and the actual value counted by the sensor
is called (shot) noise. The ratio of the mean of the photon count over its standard-deviation is called
signal to noise ratio (SNR). At (very) low SNR the noise is so strong compared to the underlying
signal that it is almost impossible to distinguish the scene being observed from the noise. Therefore,
photography has been striving to achieve the highest possible SNR. In passive imaging systems,

1https://doi.org/10.5201/ipol.2012.t-fscs
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where there is no control over the scene lighting, the only way to increase the SNR is to accumulate
more photons by increasing the exposure time ∆t.

If the photographed scene moves during the exposition process, or if the scene is still and the
camera moves, the resulting images are degraded by motion blur. The difficulty of motion blur is
illustrated by its simplest example, the one-dimensional uniform motion blur. Indeed, if the relative
velocity between the camera and the scene remains constant, then motion blur is nothing but a
convolution of the image with a one-dimensional window function. This motion blur is not invertible
if the blur exceeds two pixels. Consequently, when photographing with a moving camera, it is not
possible to accumulate an arbitrary number of photons and to reach any SNR, contrarily to standard
steady photography.

Recently, a revolutionary imaging method to circumvent the motion blur problem has been in-
vented by Agrawal, Raskar et al. [1, 9, 10, 11]. These authors propose to use a binary shutter sequence
interrupting the flux of incoming photons on time sub-intervals of the exposure time interval. Indeed
for well-chosen such binary shutter sequences, arbitrarily severe motion blur can be made invertible
as illustrated by figure 1. Therefore this method permits to increase at will the exposure time, and
to accumulate as many photons as desired. This technological novelty has generated much inter-
est [2, 5, 7, 8, 10]. According to the analysis proposed by Tendero et al. [12], there are two different
ways to interrupt the flux of photons and therefore to achieve the stroboscopic effect of the flutter
shutter. It can be done with an analog flutter shutter, by stopping part of the photons before they
hit the sensor (temporal sunglasses). The other solution is to use a numerical flutter shutter. In this
second setup, the camera takes a burst of L images using a small exposure time. The k-th image
is then multiplied by a carefully chosen number αk and added to the previous one. For both flutter
shutter setups only one image has to be stored or transmitted. Thus the flutter shutter seems to be
perfectly fit to Earth observation satellites or to any application where the transmission bandwidth
and the computational capabilities are severely limited.

For the analog flutter shutter, any positive function bounded by 1 is technically implementable.
In the numerical flutter shutter, the flutter shutter gain function can also have negative values. It
is proven by Tendero et al. [13] that the Levin et al. motion-invariant photography (MIP) [7] is an
example of numerical flutter shutter camera device.

This paper presents the detailed algorithm (sections 2 and 3) and an on line demo (section 4)
simulating both kinds of flutter shutter. It simulates the random (Poisson) image, the blurry acquired
image, the deconvolved image, and gives the final SNR. Some examples will be commented in
section 5, and others can be simulated using the on line demo. The algorithm simulates for example
the following setup: a camera on a satellite or a plane flies over a landscape at a high altitude and at
fixed velocity v. Alternatively, the camera is assumed to be steady and the observed object moves in
uniform translation. In both setups, the resulting motion blur is a convolution by the characteristic
function of an interval.

Using a general formalization and simulation of the flutter shutter, we shall compare numerically
many apparatus: standard cameras, analog, numerical flutter shutter using various flutter strategies,
varying velocities, SNRs, etc. A special attention has been given to the noise simulation. Indeed, it
is here crucial to give a good estimation of the SNR after the deconvolution process estimating the
underlying landscape.

The theory underlying the simulations and the computation of the SNR is developed by Tendero
et al. [13].
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The Flutter Shutter Camera Simulator

Figure 1: Left: simulated observed (blurry and noisy) image, notice the stroboscopic effect of the
flutter shutter apparatus. The blur interval length is 52 pixels. Right: reconstructed image (RMSE
= 2.55). Such reconstruction is not possible without a flutter shutter camera.
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2 Algorithm

There exist two different types of flutter shutter depending on whether the gain modification takes
place before (analog flutter shutter) or after the photons hit the sensor (numerical flutter shutter).
For an analog flutter shutter the gain is defined as the proportion of incoming photons that are
allowed to travel to the pixel sensor. Thus only positive (actually in [0, 1]) gains are feasible. The
numerical flutter shutter camera, instead, takes a burst of L images using an exposure time of ∆t.
Then the k-th image is multiplied by a gain α ∈ R and added to the previous one to obtain the
observed image. Consequently, only one image is stored and transmitted. This implies that the
observed value o(n) at pixel n is always a Poisson random variable for the analog flutter shutter, but
not for the numerical flutter shutter.

In the following the sequence of gains used on the camera is called “flutter shutter code” and
is defined as the vector (αk)k=0,...,L−1. Given a code the flutter shutter gain function is defined by
α(t) = αk for t ∈ [k∆t, (k + 1)∆t[, α(t) = 0 otherwise.

2.1 Short Description

The algorithms will be first described in a continuous, and then in a discrete (see section 3) framework.
Roughly the algorithm consists of four steps:

1. Simulate the ideal noiseless observed image.

2. Simulate Poisson (photonic) noise (see section 2.2) to obtain the observed image.

3. Estimate the landscape by deconvolution.

4. Compute the error, namely the root mean squared error (RMSE) and a contrast invariant
RMSE (see section 2.4).

The implementation in C++ is detailed in the implementation section 3. For color images each
component is processed independently, and the RMSE is averaged over all components.

2.1.1 The Analog Flutter Shutter

The simulation data are an image u(x), a code (fluttering sequence or gain) α(t) ≥ 0, a velocity
v, and an SNR level (and using a normalized ∆t = 1). Let û(ξ) =

∫∞
−∞ u(x)e−ixξdx be the Fourier

transform of u. We assume in the following that u is band limited: û(ξ) = 0, ∀|ξ| > π. The flutter
shutter gain function

α(t) =
L−1
∑

k=0

αk1[k∆t,(k+1)∆t[(t)

is designed so that

α̂(ξv) = ∆t
2sin( ξv∆t

2
)

ξv∆t

L−1
∑

k=0

αke
iξv∆t 2k+1

2 6= 0 ∀ξ ∈ [−π, π],

therefore it is invertible on the support of û(ξ). A detailed numerical implementation is given in
section 3.

Step 1. Compute the ideal noiseless observed pixel value.
At pixel x, the ideal noiseless observed pixel value is

(

1
v
u ∗ α( .

v
)
)

(x) computed using inverse
Fourier transform F−1 (û(ξ)α̂(vξ)) (x).
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Step 2. Simulate the observed pixel value.
The observed pixel value at pixel x is a Poisson random variable with intensity λ(x) =
(

1
v
u ∗ α( .

v
)
)

(x) computed using λ(x) = F−1 (û(ξ)α̂(vξ)) (x) by definition of the analog flut-
ter shutter. Let o(x) be a realization of Poisson(λ(x)) (see section 2.2 below).

Step 3. Estimate the landscape pixel value by deconvolution.
The estimated landscape from the observed pixel value is then obtained by a deconvolution
filter, ✉est(ξ) = o ∗ γ, where γ is the inverse filter satisfying

(

u ∗ 1
v
α( .

v
)
)

∗ γ = u, computed by

ûest(ξ) = ô(ξ)γ̂(ξ) = ô(ξ)
α̂(vξ)

.

Step 4. Compute error using RMSE and contrast invariant RMSECI.
Straightforward with section 2.4.

2.1.2 The Numerical Flutter Shutter

For the numerical flutter shutter, the only difference is that there is no positivity constraint on α(t).
But the simulation algorithm is slightly different:

α(t) =
L−1
∑

k=0

αk1[k∆t,(k+1)∆t[(t)

is designed so that

α̂(ξv) = ∆t
2sin( ξv∆t

2
)

ξv∆t

L−1
∑

k=0

αke
iξv∆t 2k+1

2 6= 0 ∀ξ ∈ [−π, π],

therefore invertible on the support of û(ξ). A detailed numerical implementation is available in
section 3.

Step 1. Compute the ideal noiseless observed pixel value.
At pixel x the elementary noiseless pixel value is ek(x) =

(

1
v
u ∗ 1[k∆t,(k+1)∆t[(

.
v
)
)

(x) computed

using F−1
(

1
v
û(ξ)1̂[k∆t,(k+1)∆t[(ξv)

)

(x).

Step 2. Compute the simulated observed pixel value.
By definition of the numerical flutter shutter, the observed pixel value is realization of the
Poisson mixture o(x) =

∑L−1
k=0 αkPoisson(ek(x)) (see sections 2.2, 2.3 below).

Step 3. Estimate the landscape pixel value by deconvolution.
The estimated landscape from the observed pixel value is then obtained by deconvolution
✉est(ξ) = o ∗ γ, where γ is the inverse filter satisfying

(

u ∗ 1
v
α( .

v
)
)

∗ γ = u, computed by

ûest(ξ) = ô(ξ)γ̂(ξ) = ô(ξ)
α̂(vξ)

.

Step 4. Compute error using RMSE and contrast invariant RMSECI.
Straightforward with section 2.4.

2.2 Simulation of a Poisson Random Variable X with Intensity λ

The usual method, from Knuth [6], is described in algorithm 1.
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Algorithm 1: Poisson random variable simulation

if (λ ≤ 50) then
g = exp(−λ);
em = −1;
t = 1;
rejected = true;
while rejected do

em = em+ 1;
t = t.rand (where rand is a uniform on [0, 1] random generator) ;
if (t <= g) then

X = em;
rejected = true;

end

end

else
simulate a Gaussian random variable X with mean and variance equal to λ, the method by
Box et al. [3] is used here), and round it;

end

2.3 Signal to Noise Ratio Selection

The goal is to find a renormalization factor λ2 such that the random variable X defined by

X ∼
1

λ2
Poisson(λ2u(x))

has a SNR(X) = k when u(x) = 100. It corresponds to tuning an averaged number of photons for a
medium brightness value of 100. If λ2 = k2

100
then SNR(X) = k.

2.4 Contrast Invariant RMSE

In many cases reconstruction errors inherent to a method can be quantified using the Root-Mean-
Squared-Error

RMSE (u, uest) :=

√

∫

D
|u(x)− uest(x)|2dx

measure(D)
.

However, when a small contrast change occurs between the original and the processed image, the
RMSE can become substantial, while the images remain perceptually indistinguishable. For example
take an image u(m,n) defined over a sub-domain D ⊂ Z

2, and another one uest = u + 10. Then
RMSE(u, uest) = 10 is large but does not reflect the quality of the reconstruction ✉est. Compara-
tively, a convolution with for example a Gaussian can give a smaller RMSE while making considerable
damage. This bias is avoided by normalizing the images before computing the RMSE. The principle
of the normalization is that two images related to each other by a contrast change are perceptually
equivalent. Their distance should reflect this fact and be zero. The Delon et al. midway equaliza-
tion [4] is best suited for that purpose, because it equalizes the image histogram to a “midway”
histogram depending on both images. By the midway operation both images undergo a minimal
distortion and adopt exactly the same histogram. Thus we shall define the contrast invariant RMSE
(RMSECI) by

RMSECI = RMSE(uestmid(u,uest)
, umid(u,uest))
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where mid(u, uest)(= mid(uest, u)) is the midway histogram between u and ✉est. umid(u,uest) is the
image u specified on the mid(u, uest) histogram (having an histogram equal to mid(u, uest)) and
uestmid(u,uest) is uest specified on mid(uest, u).

3 Implementation

The described algorithm has been implemented in C++, the code and its documentation are available
on the article web page (https://doi.org/10.5201/ipol.2012.t-fscs).

Given an image u(m,n) defined for m ∈ {1, . . . ,M} and n ∈ {1, . . . , N}, a code (αk)k=0,...,L−1,
a velocity v, and an SNR level (and using a normalized ∆t = 1), the analog flutter shutter camera
and its restoration process are simulated as described in algorithm 2. The numerical flutter shutter
implementation is detailed in algorithm 3. For color images each component is processed indepen-
dently, the RMSE is averaged over all components. Assuming without loss of generality that the
blur is in direction of the image lines, the following algorithm is repeated for each component.

4 On Line Demo

The purpose of this demo is to compare different strategies (snapshots, numerical and analog flutter
shutter) on test examples and user uploaded images. The C++ source code (documented) used in the
on line demo is available from the article web page (https://doi.org/10.5201/ipol.2012.t-fscs).
Notice that the source code allows for any ∆t (see section 2), but ∆t = 1 is fixed here for the sake
of simplicity.

Inputs are an image (PNG 8bits grayscale or 3×8 bits color), a flutter shutter code (binary
sequence or gain function2), an SNR level, a velocity v, a type of flutter shutter (analog or numerical).

Outputs are the simulated observed image, the restored image obtained from the observed by
deconvolution, the ground truth (crop of the input to ease the comparison), the residual noise image
(difference between the restored and the landscape with stretched dynamic on [0, 255] by an affine
contrast change), the code sequence used, and the Fourier transform (modulus) of the code.

5 Examples

The purpose of this section is to compare experimentally different acquisition strategies: snapshot,
flutter shutter using the Agrawal, Raskar et al. code [10, 11], a random code uniform over [−1, 1], the
motion-invariant photography code and the sinc code. All strategies are compared using the RMSE,
the contrast invariant RMSE (RMSECI) and the visual image quality. A benchmark of acquisition
strategies is given in the table 1.

6 Usual Codes

For comparison purposes the length L of all codes is 52 like in works by Agrawal, Raskar et al. [1,
2, 9, 11]. These strategies are snapshot, accumulation, Agrawal, Raskar et al. code [10, 11], random
code, motion-invariant photography (MIP) code, and sinc code, explicitly given hereafter. The list

also provides
||α||

L1

sup{|α(t)|, t∈R} the normalized L1 norm of the associated flutter shutter gain function
which gives the quantity of light integrated with respect to the code.

2A list of the most characteristic such codes is proposed to the demo users.
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Algorithm 2: Analog flutter shutter

Step 1
begin

compute ũ(m,n), the 2D −DFT of u:
for m = −M

2
, . . . , M

2
− 1 do

for n = −N
2
, . . . , N

2
− 1 do

ũ(m,n) = 1
MN

∑M−1
k=0

∑N−1
l=0 u(k, l)ω−km

M ω−nl
N where ωN = exp

(

2iπ
N

)

;
end

end
compute the motion kernel generated by the flutter shutter):
for m = −M

2
, . . . , M

2
− 1 do

for n = −N
2
, . . . , N

2
− 1 do

a(m,n) = ∆t
sin(πv∆tn

N
)

πv∆tn
N

∑L−1
k=0 αke

−i( 2πv∆tn
N

)(k+0.5);

end

end
compute the product of ũ(m,n) and a(m,n);
compute the inverse DFT of the previous, store it in e(m,n) (here e(m,n) is a coefficient
of the ideal noiseless image observed, up to the periodization effect);
crop the result to avoid the periodization effect;

end
Step 2
begin

foreach (m,n) do
simulate the Poisson random variable with intensity e(m,n) and the desired SNR using
sections 2.2, 2.3;
store it in o(m,n) (here o(m,n) contains a simulation of the observed image);

end

end
Step 3
begin

use classic mirror symmetry among the columns obtain us(m,n);
compute the 2D −DFT of us;
compute the motion kernel like in Step 2;
divide the 2D −DFT of us by the motion kernel;
compute the inverse 2D −DFT of the previous;
crop to remove the mirror symmetry (here the last operation gives a simulation of the
restored knowing o(m,n) and the code);

end
Step 4
begin

compute the RMSE and RMSECI after cropping to avoid border effects;
end
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Algorithm 3: Numerical flutter shutter

Step 1
begin

compute ũ(m,n), the 2D −DFT of u:
for m = −M

2
, . . . , M

2
− 1 do

for n = −N
2
, . . . , N

2
− 1 do

ũ(m,n) = 1
MN

∑M−1
k=0

∑N−1
l=0 u(k, l)ω−km

M ω−nl
N where ωN = exp

(

2iπ
N

)

;
end

end
compute the elementary noiseless observations ek(m,n):
for m = −M

2
, . . . , M

2
− 1 do

for n = −N
2
, . . . , N

2
− 1 do

ck(m,n) = ∆t
sin(πv∆tn

N
)

πv∆tn
N

e−i( 2πv∆tn
N

)(k+0.5);

end

end
compute the product of ũ(m,n) and ck(m,n);
compute the inverse 2D −DFT of the previous, store it in ek(m,n) (here ek(m,n)
contains the ideal noiseless observed up to the periodization effect);
crop the result to avoid periodization effect;

end
Step 1
begin

foreach (m,n) do
simulate the Poisson random variable with intensity ek(m,n) and the desired SNR
using section 2.2, 2.3, store it in ok(m,n);

end
foreach (m,n) do

compute the observed o(m,n) =
∑L−1

k=0 αkek(m,n) (here o(m,n) contains a simulation
of the observed image);

end

end
Steps 3-4
identical to the analog flutter shutter ;

Code type Snapshot Agrawal, Raskar et al. code Random code MIP code Sinc code
RMSE 1.34 2.34 2.01 2.11 1.33
RMSECI 1.33 3.14 2.48 2.10 1.33

Table 1: Quantitative (RMSE, RMSECI) comparison of different strategies for fixed velocity v = 1
(so the blur support is 52 pixels, except for the snapshot) on the House test image. The random
code performs better than the Agrawal, Raskar et al. code or the MIP code. Indeed the random
code is (on average) closer to the optimum sinc code. Unsurprisingly, the best RMSE is obtained
using the sinc code. But it beats only slightly the snapshot as predicted by the theory developed
Tendero et al. [13]. The Levin et al. motion-invariant photography and the Agrawal, Raskar et al.
code of flutter shutter are perfects examples of the Tendero et al. flutter shutter paradox [13]. More
acquired photons does not necessarily imply a better SNR for the deconvolved image (“a photon can
kill another photon!”).
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Figures 2, 3, 4, 5, 6 and 7 display the codes on the left, and on the right their Fourier transforms
(modulus) given for normalized ∆t = 1, for each code: the snapshot (figure 2), the standard blur
(figure 3), Agrawal, Raskar et al. code (figure 4), the random code, (figure 5), the MIP code (figure 6),
and the optimal sinc code (figure 7).
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Figure 2: Snapshot. Left: the flutter shutter gain function for a snapshot. Right: the Fourier
transform (modulus) of a snapshot.
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Figure 3: Accumulation code. Left: the flutter shutter gain function for the accumulation. Right:
the Fourier transform (modulus) of the accumulation, invertible only when Lv∆t < 2.

Snapshot (figure 2)

(1, 0, . . ., 0),
||α||

L1

sup{|α(t)|, t∈R} = ∆t

The first code is a standard shutter strategy in classic cameras.

Accumulation (figure 3)

(1, . . ., 1),
||α||

L1

sup{|α(t)|, t∈R} = 52∆t

This code is another standard shutter strategy in classic cameras.

Agrawal, Raskar et al. code (figure 4)
(1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0,

1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1),
||α||

L1

sup{|α(t)|, t∈R} = 26∆t

234



The Flutter Shutter Camera Simulator

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

−4 −3 −2 −1 0 1 2 3 4
0

5

10

15

20

25

30

Figure 4: Agrawal, Raskar et al. code. Left: the binary flutter shutter gain function for the optimized
Agrawal, Raskar et al. code. Right: The Fourier transform (modulus) of the Agrawal, Raskar et al.
code found by an extensive research among binary sequences of length 52 [10, p. 5] and patent
application [11].
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Figure 5: Random code. Left: the flutter shutter gain function for the random code. Right: the
Fourier transform (modulus) of the random code. We shall see in table 1 that despite the lack of
optimization this code performs better than the optimized Agrawal, Raskar et al. code.
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Figure 6: Motion-invariant photography code. Left: the flutter shutter gain function for the MIP
code. Right: the Fourier transforms (modulus) of the motion-invariant photography code (in bold)
and of the idealmotion-invariant photography function α̂MIP−ideal (dash dots line style). As predicted
the proposed approximation is close to the ideal motion-invariant photography function α̂MIP−ideal.
As it is stated by Levin et al. [7] this apparatus performs better than the Agrawal, Raskar et al.
code. However, it may be noticed that the both the ideal motion-invariant photography function
and its piecewise constant approximation are far from the ideal flutter shutter gain function coming
from a sinc (figure 7). Thus, the SNR of the recovered image is small compared to the best snapshot
(table 1). This fact shall not surprise the reader, the constant acceleration apparatus was found by
searching the best strategy among camera motions. Thus, the degrees of freedom of the motion-
invariant photography are smaller than the numerical flutter shutter.
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Figure 7: Sinc code. Left: the flutter shutter gain function for the sinc code (left). Right: the
Fourier transform (modulus) of the sinc code, approximating the Fourier transform of the ideal gain
function.
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This code is published in their article [10, p. 5] and patent application [11].

Random code (figure 5)
(0.5491, −0.4903, −0.6919, −0.5125, −0.9079, 0.3560, −0.6357, 0.0275, 0.9568, 0.8670, 0.4087,
0.4097, 0.8659, 0.3344, 0.9198, −0.8389, 0.7476, 0.9808, 0.1366, −0.7247, 0.9320, 0.8069,
−0.5848, 0.9493, −0.1682, 0.9533, −0.2173, −0.5834, 0.7483, 0.4785, 0.2266, 0.9764, −0.4708,
0.6723, 0.8312, 0.0084, 0.6892, −0.5245, −0.8651, 0.3417, 0.5183, 0.1317, −0.1301, 0.3432,

−0.3262, 0.4367, −0.9771, −0.2120, 0.1160, 0.6648, 0.9446, 0.0590),
||α||

L1∫
∞

−∞
α(t)dt

≈ 3.0702∆t

This code was generated from a uniform distribution over [−1, 1].

Motion-invariant photography code (figure 6)
(−0.0072629, 0.0075565, −0.0078763, 0.0082229, −0.0086028, 0.0090181, −0.0094769, 0.0099834,
−0.010549, 0.01118, −0.011893, 0.012702, −0.01363, 0.014703, −0.015961, 0.017451, −0.01925,
0.021458, −0.024239, 0.027842, −0.032697, 0.03958, −0.050083, 0.067993, −0.10493, 0.21912,
1, 0.29949, 0.40839, 0.22649, 0.29058, 0.18999, 0.23588, 0.16715, 0.20305, 0.15111, 0.18066,
0.13904, 0.16419, 0.12953, 0.15143, 0.12177, 0.14119, 0.11529, 0.13274, 0.10976, 0.12561, 0.10498,

0.11949, 0.10078, 0.11418, 0.097058),
||α||

L1

sup{|α(t)|, t∈R} ≈ 6.0031∆t

This code is the best L2 approximation of the ideal motion-invariant photography function.

More precisely, given v, it is a discretization of the αMIP−ideal(t) =
1]0,∞[(t)√

t
function with

cutoff frequency equal to πv (given here for |v|=1 and ∆t = 1). As it is stated by Levin et
al. [7] this apparatus performs better than the Agrawal, Raskar et al. code. However, it may
be noticed that the both the ideal motion-invariant photography function and its piecewise
constant approximation are far from the ideal flutter shutter gain function coming from a sinc
(figure 7). Thus, the SNR of the recovered image is small compared to the best snapshot
(table 1). This fact shall not surprise the reader, the constant acceleration apparatus was
found by searching the best strategy among camera motions. Thus, the degrees of freedom of
the motion-invariant photography are smaller than the numerical flutter shutter.

Sinc code (figure 7)
(0.0002, −0.0002, 0.0002, −0.0003, 0.0003, −0.0003, 0.0003, −0.0004, 0.0004, −0.0005, 0.0005,
−0.0006, 0.0007, −0.0008, 0.0009, −0.0011, 0.0014, −0.0017, 0.0021, −0.0027, 0.0037, −0.0053,
0.0082, −0.0141, 0.0296, −0.0917, 1.0000, −0.0917, 0.0296, −0.0141, 0.0082, −0.0053, 0.0037,
−0.0027, 0.0021, −0.0017, 0.0014, −0.0011, 0.0009, −0.0008, 0.0007, −0.0006, 0.0005, −0.0005,

0.0004, −0.0004, 0.0003, −0.0003, 0.0003, −0.0003, 0.0002, −0.0002),
||α||

L1

sup{|α(t)|, t∈R} ≈ 1.3364∆t

This code is the best L2 approximation of the ideal gain function. More precisely, given v, it is
a discretization of the sinc(x) = sin(πx)

πx
function with cutoff frequency equal to πv (given here

for |v|=1 and ∆t = 1).

7 Experiments

Different strategies are here compared on the following image using the numerical flutter shutter,
which gives a better SNR than an analog flutter shutter. Without loss of generality all results are
given here for a normalized velocity v = 1 and a SNR equal to 100 for the gray level 100.

On the house image is applied successively a snapshot (figure 9), an accumulation code (figure 10),
a classic motion blur code from Agrawal, Raskar et al. (figure 11), a random code (figure 12), the
motion-invariant photography code (figure 13), and the optimal numerical flutter sinc code (figure 14).
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Figure 8: The House test image.

Figure 9: Snapshot. Left: observed image. The blur interval length is equal to 1 pixel here. Middle:
reconstructed image (RMSE = 1.34). Right: residual noise (difference between ground truth and
reconstructed, dynamic normalized on [0, 255] by an affine contrast change).
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Figure 10: Accumulation code. Left: observed image. The blur interval length is equal to 52 pixels
here. Middle: reconstructed image. Right: residual noise (difference between ground truth and
reconstructed, dynamic normalized on [0, 255] by an affine contrast change).

Figure 11: Agrawal, Raskar et al. code. Left: observed image. The blur interval length is equal to 52
pixels here. Center: reconstructed image (RMSE = 2.34). Right: residual noise (difference between
ground truth and reconstructed, dynamic normalized on [0, 255] by an affine contrast change).
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Figure 12: Random code. Left: observed image. The blur interval length is equal to 52 pixels here.
Middle: reconstructed image (RMSE = 2.01). Right: residual noise (difference between ground truth
and reconstructed, dynamic normalized on [0, 255] by an affine contrast change).

Figure 13: Motion-invariant photography code. Left: observed image. The blur interval length
is equal to 52 pixels here. Center: reconstructed image (RMSE = 2.11). Right: residual noise
(difference between ground truth and reconstructed, dynamic normalized on [0, 255] by an affine
contrast change).
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Figure 14: Sinc code. Left: observed image. The blur interval length is equal to 52 pixels here.
Middle: reconstructed image (RMSE = 1.33). Right: residual noise (difference between ground
truth and reconstructed, dynamic normalized on [0, 255] by an affine contrast change). The acquired
image is “sharp”, it is no surprise since the sinc code has a nearly constant Fourier transform thus,
despite the motion it does not alter any frequency.
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