
Published in Image Processing On Line on 2013–07–23.
Submitted on 2012–09–25, accepted on 2013–09–09.
ISSN 2105–1232 c© 2013 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2013.45

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Analysis and Extension of the Ponomarenko et al. Method,

Estimating a Noise Curve from a Single Image

Miguel Colom1, Antoni Buades2

1 Universitat de les Illes Balears, Spain and CMLA, ENS Cachan, France (miguel.colom@cmla.ens-cachan.fr)
2 Universitat de les Illes Balears, Spain (toni.buades@uib.es)

Communicated by Bartomeu Coll Demo edited by Miguel Colom

Abstract

In the article An Automatic Approach to Lossy Compression of AVIRIS Images N.N. Pono-
marenko et al. propose a new method to specifically compress AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) images. As part of the compression algorithm, a noise estimation is per-
formed with a proposed new algorithm based on the computation of the variance of overlapping
8× 8 blocks. The noise is estimated on the high-frequency orthonormal DCT-II coefficients of
the blocks. To avoid the effect of edges and textures, the blocks are sorted according to their
energy measured on a set of low-frequency coefficients. The final noise estimation is obtained
by computing the median of the variances measured on the high-frequency part of the spectrum
of the blocks using only those whose energy (measured on the low-frequencies) is low. A small
percentile of the total set of blocks (typically the 0.5%) is used to select those blocks with the
lower energy at the low-frequencies. Although the method measures uniform Gaussian noise, it
can be easily adapted to deal with signal-dependent noise, which is realistic with the Poisson
noise model obtained by a CCD device in a digital camera.

Source Code

The C++ implementation of the Ponomarenko et al. noise estimator version 3.0 is the one which
has been peer reviewed and accepted by IPOL. The source code, the code documentation, and
the online demo are available in the IPOL web page of this article1.

Keywords: noise, noise estimation, gaussian noise, DCT

1https://doi.org/10.5201/ipol.2013.45

Miguel Colom, Antoni Buades, Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image,
Image Processing On Line, 3 (2013), pp. 173–197. https://doi.org/10.5201/ipol.2013.45

Miguel Colom, Antoni Buades

1 Noise Estimation Method

1.1 Notation and Terminology

This section prepares the detailed description of the noise estimation algorithm given in section 1.2
by fixing its notation and terminology.

• U: the noiseless ideal image.

• Ũ: the discrete noisy image of U.

• Nx, Ny: the width and height of Ũ in pixels.

• Ũ(x, y): the gray-level value of Ũ at pixel (x, y), x ∈ [0, Nx − 1] and y ∈ [0, Ny − 1].

• W(x, y): a w×w pixels block in Ũ, W(x, y) = {Ũ(x+ i, y+j) : i ∈ [0, w−1], j ∈ [0, w−1], x ∈
[0, Nx − w + 1], y ∈ [0, Ny − w + 1]}.

• w: the side of the overlapping w × w pixels blocks W(x, y).

• M : the total number of overlapping blocks. M = (Nx − w + 1)(Ny − w + 1).

• Dx,y: the result of applying the orthonormal 2D DCT-II to a block W(x, y). Its coefficients
are Dx,y(i, j) and the transform is defined as

Dx,y(i, j) = Qw(i)Qw(j)
w−1
∑

nx=0

w−1
∑

ny=0

W(x+ nx, y + ny) cos

[

π

w

(

nx +
1

2

)

i

]

cos

[

π

w

(

ny +
1

2

)

j

]

,

with x ∈ [0, Nx − w − 1], y ∈ [0, Ny − w − 1], i ∈ [0, w − 1], j ∈ [0, w − 1] and QN(k) is a
normalization factor

QN(k) =

1√
N
, k = 0

√

2
N
, k 6= 0

.

From now on the DCT operator will refer specifically to this definition of the orthonormal 2D
DCT-II.

• Wm: a w × w pixels block in Ũ according to its index m in a list of overlapping blocks

Wm = W(x, y) where y =
⌊

m
Nx−w+1

⌋

, x = m− y(Nx − w + 1),m ∈ {0, 1, . . . ,M − 1}.

• Dm(i, j) = DCT (Wm) where m is the index of the block.

• T : threshold used by the function δ(i, j) that labels the coefficients of the transformed blocks
Dx,y(i, j) as low-frequency coefficients (see section 1.2.2 for more details).

174

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

1.2 The Algorithm

1.2.1 Step 1: Computing the Set of Transformed Blocks {Dm(i, j)}
From an image Ũ of widthNx and heightNy, corrupted with additive white Gaussian noise of variance
σ2, it is extracted a set of M = (Nx−w+ 1)(Ny −w+ 1) (overlapping) w×w blocks {Wm}, where
m is the index of the block, m ∈ {0, 1, . . . ,M − 1}. Many noise estimation algorithms [2, 4, 6, 9]
compute local estimates of the noise variance in small blocks that are used for a final statistical
estimation (median, average, percentile, . . .). Unlike other methods that pre-filter the image before
extracting noise variance information from the blocks [5], the Ponomarenko et al. method measures
the variance directly on Wm. The DCT of each of these blocks is computed and gives the set {Dm}
of transformed blocks. The DCT coefficients in each block are denoted by Dm(i, j) where m is the
index of the block and 0 ≤ i, j < w is the frequency pair associated to that coefficient.

1.2.2 Step 2: Defining a Function to Label the Low/High Frequency Coefficients

The algorithm labels coefficients of the transformed blocks as belonging to low or medium/high
frequencies. A coefficient corresponds to a low frequency if and only if δ(i, j) = 1. If not, it is labeled
as belonging to the medium/high frequencies set, where δ is defined by

δ(i, j) =

{

1, (i+ j < T) ∧ (i+ j 6= 0),→ low frequencies

0, (i+ j ≥ T) ∨ (i+ j = 0)→ medium/high frequencies.

where T is a given threshold, and ∧ and ∨ stand for the AND and OR logical operators, namely.
Note that this function does not label the mean of the block term (i+ j = 0) as a low-frequency.

1.2.3 Step 3: Estimating the Block Empirical Variance only with the Low-Frequency
Coefficients

Given the set of transformed blocks {Dm} with m = 0, 1, . . . ,M − 1 the set of (empirical) variances
associated to the low-frequency coefficients of the block m is defined as

VL
m =

1

θ

w−1
∑

i=0

w−1
∑

j=0

[Dm(i, j)]
2 δ(i, j),

where θ =
w−1
∑

i=0

w−1
∑

j=0

δ(i, j) is the adequate normalization factor to get a mean.

1.2.4 Step 4: Computing the Empirical Variance of the High-Frequency Coefficients

The set of transformed blocks {D0, . . . ,Dm, . . . ,DM−1} is rewritten with respect to the corresponding
value of VL

m in ascending order. The block that gives the lowest low-frequency variance will be noted
as D(0), the next with the lowest low-frequency variance as D(1) and so on. The block with the
highest low-frequency variance is D(M−1). Given the list of sorted blocks {D(m)}, the noise variance
estimate associated with the high-frequency coefficient at (i, j) is defined by

VH(i, j) =
1

K

K−1
∑

k=0

[

D(k)(i, j)
]2
,

where i + j ≥ T and K = ⌊pM⌋, p < 1 is the position of the p-quantile in the list {D(m)}m∈[0,M−1].
Note that this empirical variance estimate is made with the list of the K transformed blocks whose

175

Miguel Colom, Antoni Buades

empirical variance as measured in their low-frequencies is lowest. It is understood that these blocks
are likely to contain only noise. Thus their high frequencies are good candidates to estimate the
noise. Noise in high and low frequencies is uncorrelated and since most of the energy of the ideal
image is concentrated in the low and medium frequency coefficients (because of the sparsity of most
natural images), one can assume that VH(i, j) gives an accurate estimation of the noise variance.
However, if the image is highly textured, those high-frequency coefficients might give a variance that
is explained by the textures of the image and not by the noise.

1.2.5 Step 5: Choosing the Best K and Obtaining the Final Noise Estimate

The final noise estimation is given by the median of the variance estimates VH(i, j),

σ̂ :=
√

mediani,j

(

{VH(i, j) | i+ j ≥ T}
)

.

However, the values in the list {VH(i, j)} depend on the value of the quantile K. Ponomarenko et
al. [8] propose to use the following adaptive strategy to find out the best value for K:

1. Set K =
√
M . The original setting is K = M/512, because the algorithm is designed to work

with AVIRIS images of size 512× 677. In order to be able to use any size of image, we propose
to set K =

√
M .

2. Compute an upper bound of noise variance as A = 1.3VL
K/2.

3. Determine a new K = mmin, where mmin is the value of m that minimizes |A−VL
m|.

4. Repeat seven times the steps 2 and 3.

5. Set A = A/5.

Nevertheless, we found that fixing directly a small percentile equal to 0.5% of the set of variances
gives more accurate and reliable results than the above procedure. This is the only place where
our implementation differs from the original algorithm. The complete algorithmic description of the
original method is summarized in algorithm 1. The modified version of the algorithm that uses a
fixed percentile p = 0.5% instead of the iterations to find the value of K is given in algorithm 2.

For a review of several noise estimation methods we refer the reader to the Secrets of image

denoising cuisine [3] and Estimation of noise in images: an evaluation [7] articles.

2 Extensions of the Original Method

2.1 Extension to Signal-Dependent Noise

Most noise estimation methods found in the literature assume that the noise in the image is additive,
signal-independent, and Gaussian. Note that in this context uniform means that the variance of the
Gaussian noise is fixed and it does not depend on the intensity of the pixels of the ideal image. This
assumption is not realistic because of the physical nature of light and the way a CCD responds to
light. It is well-known that the emission of photons by a body follows a Poisson distribution. This
distribution can be approximated by a Gaussian distribution when the number of photons is large
enough. For very dark regions of the image this assumption does not hold. We consider an image
pixel Ũ(x, y) as a Poisson variable with variance and mean U(x, y). The Poisson noise has therefore
a standard deviation of

√

U(x, y). An image is nothing but a noise whose mean would be the ideal

176

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

Algorithm 1 Pseudo-code for the Ponomarenko et al. noise estimation algorithm.

NOISE ESTIMATION - Returns the standard deviation of the white Gaussian noise of the input
image.
Input Ũ: noisy image.
Output σ̃: estimated standard deviation of its noise.

1: w = 8.
2: T = 9.
3: Nx = width(Ũ)
4: Ny = height(Ũ)
5: M = (Nx − w + 1)(Ny − w + 1): number of (overlapping) blocks in Ũ.
6: W← all M possible w × w (overlapping) blocks in Ũ.
7: D← DCT (W). 2D orthonormal DCT-II of the w × w blocks in W.
8: δ[i, j] = 1 if (i+ j < T) ∧ (i+ j 6= 0) else 0, ∀(i, j) ∈ [0, w − 1]2.

9: θ =
w−1
∑

i=0

w−1
∑

j=0

δ[i, j].

10: VL
m = 1

θ

w−1
∑

i=0

w−1
∑

j=0

[Dm(i, j)]
2 δ[i, j]

11: K =
√
M .

12: for n = 1 . . . 7 do
13: A = 1.3VL

K/2.

14: K = argminm

(

|A−VL
m|
)

.
15: end for
16: K = K/5.
17: I = sortm(V

L
m). I contains the sorting indices.

18: VH [i, j] = 1
K

K−1
∑

k=0

D2
I[k](i, j), where VH [i, j] is defined only for those [i, j] such that i+ j ≥ T .

19: σ̂ =
√

mediani,j

(

VH(i, j)
)

177

Miguel Colom, Antoni Buades

Algorithm 2 Pseudo-code for the Ponomarenko et al. noise estimation algorithm (using a fixed
percentile).

NOISE ESTIMATION - Returns the standard deviation of the white Gaussian noise of the input
image.
Input Ũ: noisy image.
Output σ̃: estimated standard deviation of its noise.

1: w = 8.
2: T = 9.
3: p = 0.005.
4: Nx = width(Ũ)
5: Ny = height(Ũ)
6: M = (Nx − w + 1)(Ny − w + 1): number of (overlapping) blocks in Ũ.
7: W← all M possible w × w (overlapping) blocks in Ũ.
8: D← DCT (W). 2D orthonormal DCT-II of the w × w blocks in W.
9: δ[i, j] = 1 if (i+ j < T) ∧ (i+ j 6= 0) else 0, ∀(i, j) ∈ [0, w − 1]2.

10: θ =
w−1
∑

i=0

w−1
∑

j=0

δ[i, j].

11: K = pM . Get a p-quantile of the list of variances. Typically p = 0.005⇒ the 0.5%-percentile.

12: VL
m = 1

θ

w−1
∑

i=0

w−1
∑

j=0

[Dm(i, j)]
2 δ[i, j].

13: I = sortm(V
L
m). I contains the sorting indices.

14: VH [i, j] = 1
K

K−1
∑

k=0

D2
I[k](i, j), where VH [i, j] is defined only for those [i, j] such that i+ j ≥ T .

15: σ̂ =
√

mediani,j

(

VH(i, j)
)

178

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

image. This noise adds up to a thermal noise and to an electronic noise which are approximately
additive and white. On a motionless scene with constant lighting, the expected value U can be
approximated by simply accumulating photons for a long exposure time, and then by taking the
temporal average of this photon count. Any noise estimation algorithm assuming that the noise is
uniform is unrealistic. Fortunately, most block-based methods are easily adapted to signal-dependent
noise.

For a signal dependent noise, a “noise curve” must be established. This noise curve associates
with each image value U(x, y) an estimation of the standard deviation of the noise associated with
this value. Thus, for each block in the image, its mean must be computed and will give an estimation
of a value in U. The measurement of the variation of the block (for example, its variance) will also be
stored. The means are classified into a disjoint union of variable intervals or bins, in such a way that
each interval contains a large enough number of elements. For the Ponomarenko et al. algorithm,
the chosen minimum was 42000 elements/bin. These measurements allow for the construction of a
list of block variances whose corresponding means belong to the given bin. Therefore, it is possible
to apply the Ponomarenko noise estimation algorithm to each set of blocks associated with a given
bin. In this way, an estimation of the noise for the intensities inside the limits of the bin is obtained.
Because the set of bins is disjoint and there is no gap between bins, it is possible to deduce by
interpolation a curve that relates the means of the blocks with their standard deviation, hence
obtaining a signal-dependent noise curve. Note that if the number of bins is exactly one, the original
signal-independent white Gaussian noise estimator [8] using a fixed percentile is obtained. To choose
the intensity value associated with each bin, the median of the means of all blocks inside each bin is
computed. The algorithmic description of the function building this histogram of block means can
be found in algorithm 3. This algorithm works as follows:

1. It takes as input the number of bins that will be used (“bins” variable), the input data (the
variances of the blocks, “data” variable), the associated intensities of the input data (the
means of the blocks, “datal” variable) and the total number of samples (“N” variable). The
algorithm stores at the variable “samples per bin” the integer value of N/bins. In general,
samples per bin = 42000 samples/bin. Since the last bin contain the remaining samples, it
may contain less than samples per bin samples.

2. It returns for each bin b its intensity bounds (“limits begin[b]” and “limits end[b]” variables),
the list of variances that belong to bin b (“data bins[b]” variable) and the list of intensities
(block means) that belong to bin b (“datal bins[b]” variable).

3. For each bin b, the algorithm fills the data bins[b] and datal bins[b] buffers with the variances
and intensities of the blocks, sorted by their mean.

4. The lower and upper intensity bounds of the current bin b are stored into the variables lim-
its begin[b] and limits end[b]. Then, the next bin is processed.

2.2 Filtering the Noise Curve

Optionally, the noise curve obtained on real images can be filtered. Indeed, it may present peaks
when some given gray level interval contains mostly means of blocks belonging to a highly textured
region. In this case, the measured block variance would be caused by the signal itself and not by the
noise and the noise variance would be overestimated.

Given the i-th control point of the noise curve (µ̂i, σ̂i) a closed intensity interval centered at this
bin is considered, that is, [µ̂i −D, µ̂i +D]. For each intensity µ inside the interval (assuming that µ
starts at µ̂i − D and it is incremented with a step of 0.05 while it is less or equal to µ̂i + D), it is

179

Miguel Colom, Antoni Buades

Algorithm 3 Algorithm classifying blocks by their means.

CLASSIFY BY MEAN - Splits the input elements into disjoint bins according to the mean of
the elements trying that each bin has the same cardinality.
Input bins: number of bins.
Input data: list of input data elements.
Input N: number of elements/bin.
Input datal: list of means of the input elements.
Output limits begin[b]: the lower intensity bound for bin b.
Output limits end[b]: the upper intensity bound for bin b.
Output data bins[b]: list of elements at bin b.
Output datal bins[b]: list of means of the elements at bin b.

1: samples per bin = ⌊N/bins⌋
2: limits begin = zeros(bins)
3: limits end = zeros(bins)
4: num elements = zeros(bins)
5: data bins = array(bins)
6: datal bins = zeros(bins)
7: buffer = array(N)
8: bufferl = zeros(N)
9: indices = argsort(datal, N) ⊲ Sort data by datal
10: min datal = datal[indices[0]] ⊲ Min and max
11: max datal = datal[indices[N-1]]
12: lim0 = min datal
13: elements count = 0
14: bin = 0
15: for idx = 0 . . . N do
16: if idx == N then
17: finished loading = true
18: else
19: lim1 = datal[indices[idx]]
20: finished loading = ¬ (bin == bins - 1) ∧ (elements count ≥ samples per bin)
21: end if
22: if finished loading then
23: data bins[bin] ← buffer
24: datal bins[bin] ← bufferl
25: limits begin[bin] = lim0 ⊲ Update limits and number of elements of the bin
26: limits end[bin] = lim1
27: num elements[bin] = elements count
28: lim0 = lim1 ⊲ Prepare for the next element
29: bin = bin + 1
30: elements count = 0
31: else
32: buffer[elements count] = data[indices[idx]] ⊲ Keep loading...
33: bufferl[elements count] = datal[indices[idx]]
34: elements count = elements count + 1
35: end if
36: end for
37: limits end[bins-1] = max datal

180

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

obtained the interpolated standard deviation that corresponds to each intensity µ. In order to avoid
an excessive interpolation, if µ̂i − D < µ̂0 for the i-th bin, then the diameter D is changed to the
value µ̂b− µ̂0. In the same way, if µ̂i+D > µ̂B−1 (being B the number of bins), then the diameter D
is changed to the value µ̂B−1 − µ̂b. Since each µ̂i can be seen as an oscillation (given by the RMSE)
around the ideal value, averaging the noise curve inside the interval [µ̂i−D, µ̂i +D] for each control
point attenuates the oscillations and puts them closer to the ground-truth. Once the oscillations have
been attenuated, it might happen that a control point corresponds to a peak caused by a texture.
In that case, the action taken is to compute the average inside the interval [µ̂i − D, µ̂i + D] and
to substitute the standard deviation µ̂i of the i-th control point by the average only if it is lower

than the average of the intensities in the interval. In practice, the filtering procedure is iterated five
times. In the first three iterations the control points are allowed to go up and down, thus canceling
the oscillations around the ideal value. In the next two iterations the points are only allowed to
go down, to attenuate the overestimation of the noise because of textures. The simple strategy
presented here performs properly for most natural images and in general not more than five filtering
iterations are needed to get a reliable estimation of the noise. Applying more than five iterations
does not improve the results significantly and for certain images it could produce noise curves that
are excessively smooth. A diameter D = 7 is recommended. The pseudo-code of the filtering is
detailed in algorithm 6. It uses algorithm 5 to interpolate the standard deviation corresponding to
a given intensity. Algorithm 5 uses algorithm 4 to get the corresponding standard deviation by a
simple affine transformation.

0 50 100 150 200 250
Intensity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

St
an

da
rd

 d
ev

ia
tio

n

Noise curve, image "Lena"

Figure 1: Left: test image Lena used to compare the noise curves with and without filtering. Right:
noise curve for Lena. The non-filtered curve is drawn with solid lines and the filtered curve (five
iterations) with dashed lines, using D = 7, p = 0.5%, w = 8 and 6 bins. Note that the peak in the
blue channel has decreased.

Figure 1 shows the noise curve for the test image Lena. The non-filtered curve is drawn with
solid lines and the filtered curve (five iterations) with dashed lines, using D = 7, p = 0.5%, w = 8
and 6 bins. Note that the peak in the blue channel has decreased.

2.3 Discarding Saturated Pixels

When the number of photons measured by the CCD during the exposure time is too high, its output
may get saturated, and therefore underestimated. When the signal saturates the output of the CCD,
the measured variance in the saturated areas of the image is zero. Figure 2 shows an image with
some saturated pixels. If the saturated pixels are taken into account when measuring the noise, the

181

Miguel Colom, Antoni Buades

Algorithm 4 Obtain a corresponding standard deviation by an affine transformation.
AFFINE.
Input (µc, σc): current control point.
Input (µe, σe): endpoint control point.
Input µ: intensity of the control points whose standard deviation is wanted.
Output σ: standard deviation attributed to the intensity µ.

1: ε = 10−6

2: if |µc − µe| < ε then
3: s = 0 ⊲ Avoid dividing by zero
4: else
5: s = σc−σe

µc−µe

6: end if
7: σ = (µ− µe)s+ σe return σ

Algorithm 5 Interpolates an affine standard deviation from of the points of the given noise curve.
INTERPOLATION.
Input (µc, σc): known control points.
Input µ: the intensity of the point whose interpolated standard deviation is wanted.
Output σ: the interpolated standard deviation of the point whose intensity is µ.

1: i = argmini (µc[i]− µ|) ⊲ Find the nearest control point
2: m = µc[i]
3: if µ < m then ⊲ on the right of µ
4: if i = 0 then
5: i = 1 ⊲ Treat boundary
6: m = µc[i]
7: end if
8: m1 = µc[i− 1]
9: m2 = m
10: s1 = σc[i− 1]
11: s2 = σc[i]
12: else ⊲ on the left of µ
13: N = len(µc)
14: if i ≥ N − 1 then ⊲ Treat boundary
15: i = N − 2
16: m = µc[i]
17: end if
18: m1 = m
19: m2 = µc[i+ 1]
20: s1 = σc[i]
21: s2 = σc[i+ 1]
22: end if

return AFFINE(m1, s1,m2, s2, µ)

182

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

Algorithm 6 Filters a noise curve.
FILTER CURVE
Input (µc, σc): list of control points to be filtered.
Input D: diameter.
Input allow up: allow the points to go up and down. Otherwise, they are only allowed to go down.
Output σo

c : returned list filtered standard deviations

1: B = len(µc)
2: σo

c ← ∅
3: for b = 0 . . . B − 1 do
4: mu current, std current = µc[b], σc[b]
5: left = mu current−D
6: right = mu current +D
7: if left < µc[0] then ⊲ Adjust the diameter for the points near the boundary
8: dist = µc[b]− µc[0]
9: left = mu current - dist
10: right = mu current + dist
11: else
12: if right > µc[B − 1] then
13: dist = µc[B − 1]− µc[b]
14: left = mu current - dist
15: right = mu current + dist
16: end if
17: end if
18: sum window = 0 ⊲ Add the interpolated control points inside the interval [left, right]
19: L = 0
20: for µ = left . . . right (with step ∆ = 0.05) do
21: sum window += INTERPOLATION(µc, σc, µ)
22: L += 1
23: end for
24: std new /= L
25: if allow up then
26: std filtered = std new
27: else
28: std filtered = std new if std new < std current else std current
29: end if
30: σo

c ← std filtered
31: end for

return σo
c

183

Miguel Colom, Antoni Buades

Figure 2: Image with saturated pixels.

noise curve is no more reliable. Figure 3 shows a noise curve obtained when the saturated pixels are
avoided in the noise estimation (left) and when they are used (right). In this estimation 8× 8 blocks
and 49 bins where used. Since the intensity of the saturated pixels is much higher than the intensity
of most of the pixels in the image, there is usually a large intensity gap between the values of normal
non saturated pixels and those saturated (from about 600 to approximately 4000 in figure 3) since
the over-exposed pixels represent usually outlier values. Even if there are few pixels with an intensity
ranging between 600 and 4000, the noise curve will interpolate the standard deviation between the
curve value at mean 600 and the noise curve value at mean 4000. Of course, the information given
by the noise curve inside this gap is not correct at all. Therefore, it is better to detect and remove
the saturated points before the noise curve estimation. In general, the strategy used to discard

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Intensity

0

10

20

30

40

50

St
an

da
rd

 d
ev

ia
tio

n

Noise curve for raw image IMG_1071, ch=1. Avoiding saturated pixels

(a) Noise curve estimation avoiding the saturated
pixels

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Intensity

0

10

20

30

40

50

St
an

da
rd

 d
ev

ia
tio

n

Noise curve for raw image IMG_1071, ch=1. Using saturated pixels

(b) Noise curve estimation affected by the saturated
pixels

Figure 3: Noise curve obtained when the saturated pixels are avoided in the noise estimation (a) and
when they are taken into account (b). Using w = 8, p = 0.5% and 49 bins, blue channel.

saturated pixels is to avoid the blocks that contain a group of four connected exactly equal pixels, in
any of the channels. This is useful not only to discard saturated pixels, but also to avoid processing
blocks whose pixels have suffered other types of alterations that can be detected by finding these
special blocks. For example, JPEG encoding with a high compression factor sets to zero the value
of the high-frequency coefficients in many of the 8 × 8 blocks. Among other undesired effects like

184

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

lower frequency artifacts and blocking patterns, it can also create smooth zones, since high-frequency
coefficients of the DCT of the block were set to zero by the JPEG encoder. In natural images that
have not been deeply compressed, the probability of finding a set of four connected pixels sharing
exactly the same value is very low, because of noise and textures. The pseudo-code and the details
on how the pixels should be connected can be found in algorithm 7.

Algorithm 7 Removal of equal pixels algorithm.

REMOVAL - Creates a mask of valid pixels.
Input I: input image.
Input Nx: width of I.
Input Ny: height of I.
Input w: block side.
Input num channels: number of channels of I.
Output mask: mask of VALID/INVALID pixels.

1: ε = 10−3

2: for i = 0 . . . Nx − 1 do
3: for j = 0 . . . Ny − 1 do
4: if i < Nx − w + 1 ∧ j < Ny − w + 1 then ⊲ Check if the pixel is not too close to the

image boundary
5: for c = 0 . . . num channels - 1 do
6: u = I.get channel(c)
7: pixel status = (INVALID if c == 0 else mask[x,y])
8: if |u[i, j]−u[i+1, j]| > ε∨|u[i+1, j]−u[i, j+1]| > ε∨|u[i, j+1]−u[i+1, j+1]| > ε

then ⊲ Look if the 2× 2 block is constant
9: pixel status = VALID ⊲ Try to validate pixel
10: end if
11: mask[i, j] = pixel status
12: end for
13: else
14: mask[i, j] = INVALID
15: end if
16: end for
17: end for

3 Evaluation of the Method

To evaluate the accuracy of the method, several kinds of tests were performed.

• Tests on simulated uniform Gaussian noise using the images of figure 4. In this case we have
taken seven and also one bins to classify the blocks according to their means (see section 2.1).

• Tests on simulated signal-dependent Gaussian noise with variance σ2 = 5 + 0.3Ũ using the
images shown in figure 4.

• Tests on a set of real raw images obtained by a Canon EOS 30D camera (see figure 5). The
procedure explained in section 2.1 was used to get a noise curve. The results were compared
to the ground-truth noise curve of the camera.

185

Miguel Colom, Antoni Buades

• Test on multi-scale coherence. The standard deviation of a Gaussian white noise is divided by
two when the image is down-scaled. By down-scaling the image we mean a sub-sampling of
the image where each block of four pixels is substituted by their mean. This test checks if the
measured noise is divided by two at each image down-scaling.

3.1 Evaluation with Simulated Uniform Noise

In this experiment, uniform noise was simulated and then added to a set of ten noise-free images.
Since the noise is perfectly known a priori, it can be used as a ground truth. One can therefore
compute the RMSE of the standard deviation estimations. Figure 4 shows a set of 704× 469 pixels
noise-free images that were used in this test. In order to get the noise-free images, we have applied
the following procedure. The pictures were taken with a Canon EOS 30D reflex camera of scenes
under good lighting conditions and with a low ISO level. To reduce further the noise level, the
average of each block of 5 × 5 pixels was computed, reducing therefore the noise by a factor of 5.
Since the images are RGB, the mean of the three channels was computed, reducing the noise by a
further

√
3 factor. Therefore the noise was reduced by a 5

√
3 ≃ 8.66 factor. Finally, the images,

which already had a good SNR before being processed, can be considered noise-free.

Figure 4: Set of noise-free images used to test the noise estimation algorithm with uniform noise.
From left to right and from top to bottom: bag, building1, computer, dice, flowers2, hose, lawn,
leaves, stairs and traffic.

To measure the error made when estimating the standard deviation σ of the simulated noise in
the bin b in the image i, the RMSE along all the bins was used. This RMSE is denoted by E

(1)
i,σ and

it is defined by

E
(1)
i,σ :=

√

√

√

√

1

|B|

|B|
∑

b=1

|σ̂i,b − σ|2,

where |I| is the number of images, i is the image index (1 ≤ i ≤ |I|), |B| is the number of bins, b is
the index of the bin (1 ≤ b ≤ |B|), σ is the standard deviation of the simulated noise and σ̂i,b is the

estimated noise for the image i at the bin b. Table 1 shows the obtained E
(1)
i,σ for each image i and

each σ of the simulated noise. A new image is added to the set of noise-free images, the flat image,
which is a constant image where all pixels have the value 127. This permits to test the response of
the algorithm to a pure white noise image. It is apparent that the highly textured images create a
significant error, particularly when little noise was added. Estimates of noise below 2 are therefore
obviously clearly unreliable. All in all, the estimate is nevertheless quite reliable for values σ > 5.
Seven bins are used. The last row is the RMSE obtained for a given σ and all the images. It is

186

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

denoted by E
(2)
σ and defined as

E(2)
σ :=

√

√

√

√

1

|B||I|

|I|
∑

i=1

|B|
∑

b=1

|σ̂i,b − σ|2 =

√

√

√

√

1

|I|

|I|
∑

i=1

(

E
(1)
i,σ

)2

.

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.86 0.48 0.28 0.59 0.45 1.10 1.05
building1 0.19 0.16 0.06 0.29 0.52 1.16 1.66
computer 0.20 0.10 0.19 0.21 0.48 2.26 1.82
dice 0.12 0.05 0.11 0.18 0.43 0.94 2.17
flowers2 0.19 0.08 0.13 0.30 0.50 1.60 0.89
hose 0.86 0.60 0.39 0.42 0.58 1.68 1.18
lawn 1.46 1.25 0.68 0.47 0.51 1.40 1.92
leaves 1.47 1.09 0.65 0.56 0.44 1.43 2.17
stairs 0.59 0.32 0.34 0.28 0.49 0.80 1.30
traffic 0.13 0.09 0.21 0.22 0.64 1.44 2.21
Flat image 0.02 0.03 0.05 0.17 0.37 1.34 1.23

E
(2)
σ 0.56 0.39 0.28 0.34 0.49 1.38 1.60

Table 1: This table shows the E
(1)
i,σ RMSE after adding simulated noise to the set of noise-free images

(figure 4) with several values of standard deviation σ. The last row is the E
(2)
σ RMSE using the

estimated σ̂i,b of all the images. The percentile p = 0.005 and seven bins are used.

For completeness, the results corresponding to the estimation using just a single bin and with the
iteration to fix the percentile K used by the original method (see algorithm 1) are shown in table 2,
although this model of signal-independent noise using a single bin is not realistic at all.

Table 3 shows the obtained E
(2)
σ RMSE depending on the number of the iterations of the noise

curve filter (see section 2.2). Using five filtering iterations seems to be safe for any image with
independence of the standard deviation of the noise, the kind of textures or the number and type of
the edges the image may contain.

3.2 Evaluation Comparing the Noise Curve of the Raw Image with the
Ground Truth

In this evaluation, the noise curve obtained by the algorithm for the raw images in figure 5 (12
bits/channel, ISO 1600, t=1/30s) was compared to the “ground truth” noise curve of the camera for
that ISO. The ground truth was obtained by computing for each pixel the standard deviation of a
large burst [1] of fixed snapshots of the same calibration pattern (figure 6).

To get the ground truth of the camera, we fixed the ISO sensitivity (in this case at ISO 1600)
and used four exposure times, t ∈ {1/30s, 1/250s, 1/400s, 1/640s}. For each exposure time about
two hundred pictures of the pattern were taken (see figure 6). After cropping the area of the image
that does not contain the calibration pattern, the final size of the raw image was 1352× 1952. Since
each 2 × 2 block of the CFA2 contains one sample of the red channel, two samples of the green
channel and one sample of the blue channel, one of the green channels can be discarded to get a
single color pixel of each 2 × 2 block of the CFA, given an effective size of the color raw image of

2Color Filter Array.

187

Miguel Colom, Antoni Buades

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.78 1.57 0.73 0.32 0.26 0.13 0.16
building1 0.16 0.09 0.02 0.10 0.07 0.04 0.30
computer 0.15 0.05 0.08 0.05 0.05 0.15 0.23
dice 0.11 0.06 0.01 0.03 0.07 0.51 0.29
flowers2 0.09 0.03 0.02 0.05 0.11 0.17 0.07
hose 0.75 0.36 0.24 0.17 0.06 0.44 0.22
lawn 1.86 0.42 0.75 0.27 0.37 0.09 0.00
leaves 3.04 1.30 0.55 0.67 0.44 0.41 0.05
stairs 1.06 0.85 0.45 0.23 0.14 0.41 0.27
traffic 0.10 0.07 0.08 0.13 0.11 0.47 0.27
Flat image 0.00 0.01 0.01 0.02 0.05 0.23 0.22

E
(2)
σ 0.83 0.44 0.27 0.18 0.16 0.28 0.19

Table 2: This table shows the E
(1)
1,σ RMSE after adding simulated noise to the set of noise-free images

(figure 4) with several values of standard deviation σ. The last row is the E
(2)
σ RMSE using the

estimated σ̂1,b of all the images. It corresponds to the original signal-independent method, using a
single bin and the iterations show in algorithm 1 to fix the percentile K.

Image / E
(2)
σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

No filtering 0.56 0.39 0.28 0.34 0.49 1.38 1.60
1 iteration 0.55 0.38 0.26 0.27 0.41 1.23 1.35
2 iterations 0.54 0.37 0.24 0.24 0.38 1.16 1.22
3 iterations 0.53 0.37 0.23 0.23 0.36 1.12 1.13
4 iterations 0.53 0.36 0.23 0.22 0.36 1.10 1.11
5 iterations 0.52 0.35 0.22 0.21 0.35 1.09 1.10
6 iterations 0.51 0.35 0.21 0.21 0.35 1.08 1.10
7 iterations 0.51 0.34 0.21 0.21 0.35 1.08 1.09

Table 3: This table shows the obtained E
(2)
σ RMSE values depending on the number of iterations

of the noise curve filtering and the standard deviation of the noise (see section 2.2). The percentile
p = 0.005 and seven bins are used. Five iterations is the recommend value, since using more iterations
does not improve the result significantly and it could soften too much the noise curves for certain
images.

188

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

Figure 5: Set of raw images used to test the noise estimation algorithm using 8× 8 blocks, percentile
0.5%, 49 bins and without any noise curve filtering. The images are raw 12 bits/channel, taken
with a Canon EOS 30D camera, ISO 1600 and exposure time t=1/30s. From left to right and up to
bottom: images 1, 2, 3, 4, 5, 6, 7, and 8.

Figure 6: One of the pictures of the calibration pattern mire used to build the ground truth noise
curve of the camera.

189

Miguel Colom, Antoni Buades

676× 976 pixels. Since the position of the camera was fixed when taking the snapshots of the image
and assuming constant lighting, the variance along several samples coming from different images at
the same pixel position could only be explained by the presence of noise. Therefore, it was possible to
measure the mean of a block and the temporal standard deviation along all the snapshots to create
an association mean→standard deviation, that is, a ground truth for camera noise curve, given the
ISO and exposure times. Moreover, since the exposure time only affects the photon count and not
the noise model, it was possible to overlap the noise curves for the four exposure times tested in a
single ground truth noise curve depending only on the ISO parameter (see figure 7). Figure 8 shows

0 500 1000 1500 2000 2500
Mean

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n

Mean noise curve, canon, ISO=1600
R

G1

G2

B

Figure 7: Ground truth of the Canon EOS 30D camera with ISO=1600.

an example of the noise curve obtained with this method. It matches with the ground truth quite
accurately (figure 7).

0 200 400 600 800 1000 1200 1400 1600 1800
Intensity

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n

Estimation of raw image #1, ISO 1600, t=1/30s

Figure 8: Noise curve obtained for the test image #1. Compare it with the ground truth noise curve
in figure 7. Both curves match with small error.

Given an estimated noise curve A of a test image, its control points are the pairs (µ̂A,i,b, σ̂A,i,b) ∈ A
where µ̂A,i,b is the mean intensity for bin b and image i in A and σ̂A,i,b is the corresponding standard
deviation values for bin b and image i in A. In the same way, given a ground truth noise curve
G, its control points are the pairs (µG,v, σG,v) ∈ G. Unfortunately the means of the noise curve A

190

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

and those in G do not necessarily coincide; that is, µ̂A,i,b 6= µG,v for most (b, v) pairs. To solve this
problem, instead of using G, a new ground truth curve G̃i is used. This G̃i curve has the same
means µ̂A,i,b as A (and therefore the same number of bins), and its standard deviation values are
obtained by a simple proportionality rule. Therefore, the control points in the new curve G̃i are

(µ̂A,i,b, σ̃Gi,i,b) =
(

µ̂A,i,b,
σG,v+1−σG,v

µG,v+1−µG,v
(µ̂A,i,b − µG,v+1) + σG,v

)

where v is the index of the bin in the

curve G such that µG,v ≤ µ̂A,i,b < µG,v+1 (see figure 9).

0 1 2 3 4 5 6
Intensity

0

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n

(
µ̂A,i,b,σ̂A,i,b

)

(
µ̂A,i,b,σ̃Gi ,i,b

)
(µG,v,σG,v)

(µG,v+1,σG,v+1)

Comparing a noise curve (red) with the ground truth (green)

Ground truth
Tested curve

Figure 9: Checking a noise curve A (red) against the ground truth G (green), where i is the index
of the image, b is the index of the bin, (µ̂A,i,b, σ̂A,i,b) are the control points of the noise curve A,
(µG,v, σG,v) are the control points of G, and σ̃Gi,i,b is the standard deviation value projected from A
into G.

The error between the ground truth noise curve G and the test noise curve A for the image i and
bin b is defined as

E
(3)
G,A,i,b := |σ̃Gi,i,b − σ̂A,i,b| =

∣

∣

∣

∣

(σG,v+1 − σG,v)(µ̂A,i,b − µG,v+1)

µG,v+1 − µG,v

+ σG,v − σ̂A,i,b

∣

∣

∣

∣

.

The values of E
(3)
G,A,i,b for each test image in figure 5 are shown in table 4.

Img. 1 Img. 2 Img. 3 Img. 4 Img. 5 Img. 6 Img. 7 Img. 8
0.802 0.381 0.372 0.307 0.437 0.694 0.436 0.580

Table 4: Values of E
(3)
G,A,i,b measuring the error between the noise curve A obtained for each test

image i (figure 5) and the ground truth curve G for the Canon EOS 30D with ISO 1600. Note that
the values of the intensities in a raw image are expressed in 12 bits and not with the usual 8 bits.
Therefore, these errors should be divided by 16 in order to be compared with those obtained using
8 bits.

To test the average behavior of the algorithm in all the bins of any test image, we define a mean
error function E

(4)
G,A,b as the mean of the E

(3)
G,A,i,b values over the |I| images for each of the |B| bins,

191

Miguel Colom, Antoni Buades

that is,

E
(4)
G,A,b :=

1

|I|

|I|−1
∑

i=0

E
(3)
G,A,i,b.

Figure 10 shows the error E
(4)
G,A,b for all the 49 bins of the test images in figure 5 for the first green

channel.

0 10 20 30 40 50
Bin (0...48)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E

(4
)

G
,A
,b
 e

rr
or

Mean error E (4)

G,A,b
 in all the bins for the 8 test images

Figure 10: Mean error E
(4)
G,A,b for the 49 bins of all the eight tests images in figure 5.

3.3 Evaluation of the Multi-scale Coherence of the Result

Consider the down-scaling operator S that tessellates the image into 2×2 pixels blocks, and replaces
each block by a pixel having the mean of the four previous pixels as new value. If Ũ is a discrete
pure Gaussian noise image with standard deviation σ, then S(Ũ) has standard deviation σ

2
. Indeed,

if a block W contains the pixels {u1, u2, u3, u4} each one with variance σ2, the variance of the mean
of W is Var(W̄) = Var

(

u1+u2+u3+u4

4

)

= 1
16
[Var(u1) + Var(u2) + Var(u3) + Var(u4)] =

1
16
[4σ2] = σ2

4
.

Therefore, the standard deviation is Std(W̄) = σ
2
; the noise is divided by two. The objective of this

test is to check if the noise estimation algorithm indeed divides the noise by two when the image is
down-scaled several times.

Set: E
(5)
A0,Ak,i,b

=

∣

∣

∣

∣

σ̃A0,i,b

σ̂Ak,i,b

− 2k
∣

∣

∣

∣

=

∣

∣

∣

∣

(σ̂A0,i,v+1 − σ̂A0,i,v)(µ̂Ak,i,b − µ̂A0,i,v+1)

σ̂Ak,i,b(µ̂A0,i,v+1 − µ̂A0,i,v)
+

σ̂A0,i,v

σ̂Ak,i,b

− 2k
∣

∣

∣

∣

.

where

• Ak is the noise curve corresponding to the input image i after applying the down-scaling
operator k times. For example, if k = 2 then A corresponds to the curve of the noise estimation
of SS(Ũ).

• i is the image index, for the raw images in figure 5, 1 ≤ i ≤ |I|, where |I| is the number of
images. |I| = 8 images were used.

• b is the bin index, 1 ≤ b ≤ |Bk| where |Bk| is the number of bins of the noise curve at scale k.
For the test images |B0| = 49, |B1| = 12 and |B2| = 3 bins are used.

• v is the index of the bin in the curve A0 such that µ̂A0,i,v ≤ µ̂Ak,i,b < µ̂A0,i,v+1 (see figure 11).

192

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

0 1 2 3 4 5 6
Intensity

0

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n

(
µ̂Ak ,i,b

,σ̂Ak ,i,b

)

(
µ̂Ak ,i,b

,σ̃A0 ,i,b

)
(
µ̂A0 ,i,v

,σ̂A0 ,i,v

) (
µ̂A0 ,i,v+1,σ̂A0 ,i,v+1

)

Comparing the n.c. at scale k (red) with the same curve at scale 0 (green)

Ground truth
Tested curve

Figure 11: Checking a noise curve Ak at scale k (red) against the noise curve A0 of the same image
at scale 0 (green), where i is the index of the image, b is the index of the bin, (µ̂Ak,i,b, σ̂Ak,i,b) are the
control points of the noise curve of the sub-scaled image, (µ̂A0,i,v, σ̂A0,i,v) are the control points of the
noise curve of the image at scale 0 and σ̃A0,i,b is the standard deviation value projected from Ak into
A0.

Remark: since the noise should be divided by two when the operator S is applied and an ideal

noise estimator is used, the relation
σ̃A0,i,b

σ̂Ak,i,b
between the standard deviation estimations at scale 0 and

scale k (applying k times D) should be equal to 2k. The error E
(5)
A0,Ak,i,b

measures, for the tested noise

estimator, the absolute deviation from the ideal value 2k at each bin. To get a mean estimation of
the error E

(5)
A0,Ak,i,b

along all the test images and bins in figure 5, we define another error function as

E
(6)
A0,Ak,b

:=
1

|I||Bk|

|I|
∑

i=1

|Bk|
∑

b=1

E
(5)
A0,Ak,i,b

Table 5 shows the obtained mean down-scale error E
(6)
A0,Ak,b

for the raw images in figure 5 depending
on the scale k. The measurements are done for one of the green channels of the raw images.

k 1 2 3

E
(6)
A0,Ak

0.195 0.738 1.684

Table 5: Evaluation E
(6)
A0,Ak,b

for the raw images in figure 5 depending on the scale k. The measure-
ments are done for one of the green channels of the raw images.

4 Complexity Analysis of the Algorithms

The noise estimation procedure (algorithm 1) first computes the DCT of all the w×w blocks in the
image. Since the DCT is computed using the FFT algorithm, that has a complexity O(M logM).

193

Miguel Colom, Antoni Buades

The loop that iterates seven times to get the optimal K executes the argmin operation that involves
the Quick-sort algorithm and therefore it can be done with O(n log n) with n = |VL

m|. The compu-

tation of VL
m = 1

θ

w−1
∑

i=0

w−1
∑

j=0

[Dm(i, j)]
2 δ(i, j) and VH(i, j) = 1

K

K−1
∑

k=0

[

D(k)(i, j)
]2

have linear complexity

O(M) and O(K), namely. Therefore, algorithm 1 has a linear complexity O(M) since M > K.
Algorithm 2 performs the same operations with the exception of substituting the seven iterations
to get K with the product k = pM . Therefore, algorithm 2 has also linear complexity O(M). Al-
gorithm 3 first executes the argsort operation that can be executed with complexity O(N logN)
using the Quick-sort algorithm. The loop that iterates idx = 0 . . . N just copies data in linear time
O(N). Therefore, algorithm 3 is executed with complexity O(N logN). Algorithm 4, is simply an
conditional comparison and then simple arithmetic operations. Therefore, algorithm 4 is executed
in constant time O(1). Algorithm 6 loops over the number of bins of the noise curve and inside the
loop algorithm 4 is called. Since algorithm 4 is executed in constant time O(1), algorithm 6 has a
linear complexity O(B), being B the number of bins. Algorithm 7 loops over all possible pixels in the
image (with the exception of the boundary of the image). The loop iterates through all the channels
of the image and looks for groups of four connected pixels. Therefore, the inner loop is executed in
linear time with the number of channels, O(num channels). Since the number of channels is fixed
and smaller than M , the complexity of algorithm 7 is given by its main loop, that is executed in
linear time with complexity O(M).

5 Online Demo

An online demo is available for this algorithm in the IPOL web page of this article3. The users can
upload any image to measure its noise. The demo also offers several types of pre-uploaded images to
test the algorithm:

• Raw images obtained by splitting the raw channels R,G1, G2, B and leaving out the G2 channel.
Then, an RGB image is formed by using the R,G1, B channels. Since in the raw image no
gamma correction has been done yet, the values of the image are multiplied by 32 to increase
their dynamics and screen visibility. The colors of these images are not quite adapted to human
visualization, because no white balance has been applied to them.

• The JPEG versions of the same raw images, as they are encoded by the camera.

• Various JPEG images.

• High SNR raw images, down-scaled by eight with their color channels averaged, so that they
are nearly noiseless. In the demo they are referred to as “no noise” images.

Once an image has been chosen, the following parameters can be configured:

Percentile. The possible values are 0.01%, 0.1%, 0.5% (default), 5%, 10%, 50%. It can be also
configured to use the iterations of the original method in order to find the percentile K (see
algorithm 1).

Block size. The possible choices are 3×3, 5×5, 7×7, 8×8 (default), 11×11, 15×15 and 21×21.

Mean of blocks computation. permits to choose how the intensity associated to each bin is cal-
culated. The possible choices are the average of the mean value of the pixels of the blocks that
belong to the bin, or the median of the pixels of the blocks that belong to the bin (default).

3https://doi.org/10.5201/ipol.2013.45

194

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

Curve filter iterations. It indicates the number of filtering iterations that are applied to filter the
noise curve (see section 2.2). Default: five iterations.

Treatment of groups (2× 2) of equal pixels. It allows to choose between ignoring the blocks
that contain a group of four equal pixels in any channel (default), or using all the blocks
unconditionally (see section 2.3).

Number of bins. It is the number of bins in the noise curve (see section 2.1). The number of bins
that are used depends on the size of the image when “automatic selection” is chosen. First, a
nearest compatible size of the image is considered. For images whose size is S0, S1 or S2, the
number of bins is given by dividing the total number of pixels of the image by 42000. If the
image is compatible with the size S3, 4 bins are used. If the image is compatible with the size
S4 or if it is smaller, a single bin is used. Default: automatic selection.

A and B noise parameters. Add a simulated noise with variance A + BŨ is added to the input
image. If A = B = 0 no noise will be added. If B = 0 uniform noise with variance A will be
added. Default: A = B = 0.

5.1 Subtraction of the Quantization Noise

In the online demo, all the images are encoded using 8 bits/pixel/channel. This adds a quantization
error over the noise being estimated that must be subtracted. Indeed, the variance of a uniform
random variable is

σ2
q =

1
2

∫

− 1
2

(x− x̄)2 dx =

1
2

∫

− 1
2

x2 dx =

[

x3

3

]
1
2

− 1
2

=
1

12
.

This is the variance of the quantization error that must be subtracted at each scale. The standard
deviation of the noise is computed at each bin as the square root of the noise variance computed
directly by the algorithm minus the variance of the variance of the (independent) quantization error.
At each scale k the variance is divided by 4k and thus the corrected standard deviation of the noise
given by the demo is

σ̃k =

√

σ̂2
k −

σ2
q

4k
=

√

σ̂2
k −

1

4k12
.

5.2 Example: traffic Image

The results of this example can be reproduced by adding noise with parameters A = 0 and B = 0.5
to the traffic image. The rest of the parameters are the default parameters of the demo. Figure 12
shows the input noiseless image traffic before adding signal dependent noise with variance σ2 = 0.5U.
Figure 13 shows the noise estimated for the three first scales of the signal-dependent noise with
variance σ2 = 0.5U added to the traffic image. Because the noise was added to a noise-free image,
we can compute the RMSE for the different scales S0, S1 and S2, and the corresponding errors are
0.15, 0.18 and 0.16, respectively. Note that, as expected, the noise standard deviation is divided by
approximately two when down-scaling the image by the same ratio.

Acknowledgements

Research partially financed by the MISS project of Centre National d’Etudes Spatiales, the Office of
Naval Research under grant N00014-97-1-0839, by the European Research Council, advanced grant

195

Miguel Colom, Antoni Buades

Figure 12: Noise free input image traffic before adding noise with variance σ2 = 0.5U.

Figure 13: The noise estimated for the three first scales of the signal-dependent noise with variance
σ2 = 0.5U added to the traffic image. From left to right: scales S0 (original), S1 and S2. Note that
the noise standard deviation is approximately divided by two when down-scaling.

196

Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image

”Twelve labours” and the Spanish government under TIN2011-27539.

Image Credits

Miguel Colom, CC-BY

The USC-SIPI Image Database [10].

References

[1] A. Buades, Y. Lou, J.M. Morel, and Z. Tang. A note on multi-image denoising. In Proceedings of

the International Workshop on Local and Non-Local Approximation in Image Processing, pages
1–15. IEEE, 2009, http://dx.doi.org/10.1109/LNLA.2009.5278408.

[2] J. Immerkaer. Fast noise variance estimation. Computer Vision and Image Understanding,
64(2):300–302, 1996, http://dx.doi.org/10.1006/cviu.1996.0060.

[3] M. Lebrun, M. Colom, A. Buades, and J.M. Morel. Secrets of image denoising cuisine. Acta

Numerica, 21:475–576, 2012, http://dx.doi.org/10.1017/S0962492912000062.

[4] J.S. Lee and K. Hoppel. Noise modelling and estimation of remotely-sensed images. In Proceed-

ings of the International Geoscience and Remote Sensing Symposium, volume 2, pages 1005–
1008, 1989, http://dx.doi.org/10.1109/IGARSS.1989.579061.

[5] G.A. Mastin. Adaptive filters for digital image noise smoothing: An evaluation. Computer

Vision, Graphics, and Image Processing, 31(1):103–121, 1985, http://dx.doi.org/10.1016/S0734-
189X(85)80078-5.

[6] P. Meer, J.M. Jolion, and A. Rosenfeld. A fast parallel algorithm for blind estimation of noise
variance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):216–223,
1990, http://dx.doi.org/10.1109/34.44408.

[7] S.I. Olsen. Estimation of noise in images: an evaluation. Computer Vision, Graphics,

and Image Processing: Graphical Models and Image Processing, 55(4):319–323, July 1993.
http://dx.doi.org/10.1006/cgip.1993.1022.

[8] N.N. Ponomarenko, V.V. Lukin, M.S. Zriakhov, A. Kaarna, and J.T. Astola. An automatic
approach to lossy compression of AVIRIS images. In IEEE International Geoscience and Remote

Sensing Symposium, pages 472–475, 2007, http://dx.doi.org/10.1109/IGARSS.2007.4422833.

[9] K. Rank, M. Lendl, and R. Unbehauen. Estimation of image noise variance. In Vision, Im-

age and Signal Processing, volume 146, pages 80–84. IET, 1999, http://dx.doi.org/10.1049/ip-
vis:19990238.

[10] Allan G Weber. The USC-SIPI image database version 5. USC-SIPI Report, 315:1–24, 1997.

197

	Noise Estimation Method
	Notation and Terminology
	The Algorithm
	Step 1: Computing the Set of Transformed Blocks Dm(i,j)
	Step 2: Defining a Function to Label the Low/High Frequency Coefficients
	Step 3: Estimating the Block Empirical Variance only with the Low-Frequency Coefficients
	Step 4: Computing the Empirical Variance of the High-Frequency Coefficients
	Step 5: Choosing the Best K and Obtaining the Final Noise Estimate

	Extensions of the Original Method
	Extension to Signal-Dependent Noise
	Filtering the Noise Curve
	Discarding Saturated Pixels

	Evaluation of the Method
	Evaluation with Simulated Uniform Noise
	Evaluation Comparing the Noise Curve of the Raw Image with the Ground Truth
	Evaluation of the Multi-scale Coherence of the Result

	Complexity Analysis of the Algorithms
	Online Demo
	Subtraction of the Quantization Noise
	Example: traffic Image

