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Mao-Gilles Algorithm for Turbulence Stabilization
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Abstract

The Mao-Gilles stabilization algorithm was designed to compensate the non-rigid deformations
due to atmospheric turbulence. Given a sequence of frames affected by atmospheric turbulence,
the algorithm uses a variational model combining optical flow and regularization to characterize
the static observed scene. The optimization problem is solved by Bregman Iteration and the
operator splitting method. The algorithm is simple, efficient, and can be easily generalized
for different scenarios involving non-rigid deformations (for instance, in cardiac imagery where
some deformations are present due to the heart beat).

Source Code

A C implementation of this algorithm is provided. This version uses a TV − L1 optical flow
algorithm [3] and the Rudin-Osher-Fatemi [2] regularization. The source code, the code docu-
mentation, and the online demo are accessible at the IPOL web page of this article1.
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1 Introduction

In long range imaging, the quality of the observed image is affected by the atmospheric turbulence,
see figure 2 for examples of geometrically deformed images. Frakes et al. [4] propose to model
these defects as the combination of time-dependent geometrical distortions and some blur. Mao and
Gilles [1] focus on the compensation of the geometrical distortions. In this paper, we propose an
implementation of this algorithm.

We denote the observed image sequence by {fi}i=1,...,N (N is the number of frames) and the true
image that needs to be reconstructed by u. We assume

fi(x) = u(φi(x)) + noise, ∀i (1)

where φi corresponds to the geometric deformation on the i-th frame (note that the φi are the
deformations between the true image and the observed frame i and not the continuous movement
flow from frame to frame, see figure 1). Mao and Gilles propose to invert the geometrical deformations
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Figure 1: The deformation model

by solving problem (2).
min
u,φi

J(u) s.t. fi = Φiu, ∀i (2)

where J(u) is a regularization term applying on u like, for example, the total variation (TV) [2], the
nonlocal TV [5] or some sparsity constraint in a basis or frame representation [6]. The notation Φiu
stands for the fact that the deformation map acts linearly on u (Φi(u1 +u2) = u1(φi(x))+u2(φi(x))).
The choice of the regularizer basically depends on the type of scene we want to restore. For most of
the natural images, total variation is enough to recover a visually “good” picture. But, for instance,
in the case of images which contain a lot of textures and details, the nonlocal TV should provide
better results but with an increasing of the computational cost. In this paper, we only address the
case when J(u) is the total variation. This formulation returns us to a well known problem described
in the next section.

2 Algorithm

An optimization problem like (2) can be solved by an alternating optimization method, i.e. optimizing
over different variables alternatively. First, let us assume that u is fixed (the choice of the initial u will
be discussed later), then the optimal φi can be estimated by (1) via certain optical flow algorithms
(in this paper we will use the TV −L1 algorithm implementation by Sánchez et al. [3]). On the other
hand, for fixed {φi} model (2) is equivalent to a constrained problem which have the general form
(if A is a compact linear operator defined from L2 to L2, see the paper by Osher et al. [7] for more
details):

min
u
J(u) s.t. f = Au, (3)

and can be efficiently solved by the use of Bregman Iteration (4) (see [7] for details).{
uk = arg minu J(u) + λ

2
‖Au− fk‖2

fk+1 = fk + f − Auk,
(4)

where λ is a regularization parameter. The first step in (4) is an unconstrained problem and can be
solved by the forward-backward operating splitting method [8].{

v ← u− δA>(Au− f)

u← arg minu J(u) + λ
2δ
‖u− v‖2.

(5)
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The first line, the forward step, is the gradient descent of ‖Au−f‖2 with the time step δ. The second
line

u← arg min
u
J(u) +

λ

2δ
‖u− v‖2, (6)

is called the backward step and can be solved efficiently for various forms of J(u). For example, if
we choose the total variation as the regularization term then (6) is the standard ROF model [2]. We
apply this general optimization strategy to solve (2) by setting ‖Au − f‖22 =

∑
i ‖Φiu − fi‖22 and

combining the updating step for Φi into the Bregman updating loop. Then the whole algorithm to
solve (2) is given in algorithm 1.

Algorithm 1: Mao-Gilles stabilization algorithm.

Inputs: Sequence of frames fi, parameters λ, δ,Nbregman, Nsplitting;1

Initialize: Start from some initial guess for u. Let f̃i = fi;2

for Nbregman iterations do3

Estimate each Φi which maps u onto fi from (1) via an optical flow scheme;4

for Nsplitting iterations do5

v ← u− δ
∑

i Φ
>
i (Φiu− f̃i);6

u← arg minu J(u) + λ
2δ
‖u− v‖2;7

end8

f̃i ← f̃i + fi − Φiu;9

end10

Output: u11

3 Numerical Implementation

3.1 Initial Guess for u

In the initialization step of algorithm 1, we need an initial guess u. The simplest natural guess is the
temporal average of the input sequence:

uinit =
1

N

N∑
i=1

fi. (7)

This initial guess has less geometrical distortions but is very blurry.

3.2 Optical Flow

To estimate the deformation maps Φi we use an optical flow algorithm. If the operator Φi is the
operator which maps a function v to a function w (w = Φiv), its adjoint, Φ>i , is the operator which
maps w to v (v = Φ>i w). By using the optical flow formalism, we have w(x) = (Φiv) (x) = v(φi(x))
where φi(x) = x+ϕi(x) and ϕi is the optical flow (vector field). This operation can be interpreted as
“we map the pixel at position x+ϕi(x) in v to the pixel at position x in w”. Hence the adjoint operator
consists to map the pixel at position x in w to the pixel at position x+ϕi(x) in v or equivalently we
map the pixel at position x−ϕi(x) in w to a pixel at position x in v: v(x) =

(
Φ>i w

)
(x) = w(φ>i (x))

where φ>i (x) = x − ϕi(x). In practice the grids on both images do not coincide then a bilinear
interpolation is used to get the vectors on the regular grid.
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Mao and Gilles [1] show that the choice of the optical flow algorithm is not crucial (they get quasi
identical results both by using the classic Lukas-Kanade algorithm [10], which is pretty fast but not
precise, and the Black-Anandan algorithm [9], which is more precise but slower). In the proposed
implementation of this paper, we use the TV −L1 optical flow algorithm currently available in IPOL2

and developed by Sánchez et al. [3]. In this paper, we use the default parameters suggested by these
authors.

3.3 Rudin-Osher-Fatemi Regularization

In the proposed implementation, we use the TV-based Rudin-Osher-Fatemi (ROF) algorithm to
regularize the image. While we use the Bregman iterations to solve the overall problem, this TV
regularization is implemented with the help of Chambolle’s method [11] but some other methods like
the split Bregman approach can be used [12, 13]. To solve a problem of type (8),

û = argu min J(u) +
λ

2
‖u− v‖22, (8)

where v is the original image, J(u) is the total variation of u (defined as J(u) =
∫
|∇u|) and û the

regularized image, Chambolle shows that the solution of (8) can be written as û = f − PG1/λ
(v)

where PGµ(v) is evaluated as shown in Proposition. 1.

Proposition 1 If τ < 1
8

(in the proposed implementation, we set τ = 0.12 to fulfill this condition),µ >
0 then µdiv (pn) converges to PGµ(v) when n→ +∞ where

pk+1
m,n =

pkm,n + τ
(
∇
(

div (pk)− v
µ

))
m,n

1 + τ

∣∣∣∣(∇(div (pk)− v
µ

))
m,n

∣∣∣∣ . (9)

The discrete gradient (∇u) and divergence (div p where p = (p1, p2)) operators are respectively
defined by

(∇u)m,n =
(
(∇u)1m,n, (∇u)2m,n

)
, (10)

where ∀(m,n) ∈ [0, . . . ,M − 1]× [0, . . . , N − 1] (i.e. the input image is of size M ×N),

(∇u)1m,n =

{
um+1,n − um,n if m < M − 1

0 if m = M − 1
(11)

(∇u)2m,n =

{
um,n+1 − um,n if n < N − 1

0 if n = N − 1,
(12)

and

(div p)m,n =


p1m,n − p1m−1,n if 0 < m < M − 1

p1m,n if m = 0

−p1m−1,n if m = M − 1

+


p2m,n − p2m,n−1 if 0 < n < N − 1

p2m,n if n = 0

−p2m,n−1 if n = N − 1.

(13)

Moreover, in the proposed code, the stopping criteria is based on two tests: if we reached a
prescribed number of iterations (set to 20) and if the L2 error between two iterations is smaller than
a value ε (set to 0.001).

2Image Processing Online: http://www.ipol.im/
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3.4 Main and Inner Loop

Algorithm 1 has two loops which are theoretically stopped when their respective convergence criteria
are reached. In practice, Mao and Gilles [1] note that the algorithm gives good results even if
some prescribed number of iterations are used. These numbers of iterations are called Nbregman and
Nsplitting corresponding to the main Bregman loop and the inner Splitting loop, respectively. These
parameters are inputs parameters of the algorithm. In the proposed source code, we set Nbregman = 4
and Nsplitting = 5.

3.5 Total vs. Shifted Algorithms

The proposed implementation provides two executable programs: MaoGilles and ShiftMaoGilles.
The first one is the direct implementation of the previously described Algorithm 1. From a sequence
ofN images it gives a single restored image. However, generally, the goal of a stabilization algorithm is
to provide a stabilized sequence and not only a single image. This is the purpose of the ShiftMaoGilles
program. Basically, we add one more parameter: a temporal window size, NT ; then we perform the
initial Mao-Gilles algorithm on each shifted temporal window. This algorithm is summarized in
algorithm 2. The reader should keep in mind that the provided source code for the ShiftMaoGilles
program is not optimized in terms of computational cost as we recursively apply the initial Mao-
Gilles code. For example, some improvement can be made if the restoration at the temporal window
l + 1 uses the restored image obtained from the temporal window l. Moreover some optical flow
computation can be reused. The implementation of these optimizations falls beyond the scope of
this paper, as it needs to split the optical flow algorithm into more basics functions that would need
to be rearranged and adapted.

Algorithm 2: Shifted Mao-Gilles stabilization algorithm.

Inputs: Sequence of frames fi, parameters λ, δ,Nbregman, Nsplitting and the temporal window1

size NT < N ;
Initialization: l = 0;2

while l < N −NT do3

Extract the subsequence {fi}l = {fi}l≤i<l+NT ;4

Apply the Mao-Gilles stabilization algorithm to {fi}l;5

Save the corresponding output ul;6

l = l + 1;7

end8

Output: the sequence of frames {ul}9

4 Results

Concerning the parameters λ and δ, while there are no theoretical results giving any clues about
their choice, the experience shows that if λ is too large (typically ≥ 1), the algorithm diverges.
However λ must not be too small otherwise it allows larger error between fi and Φiu which is not
what we expect. Experimentally, we can check that δ must be chosen in the range [0.05; 1]. If δ > 1,
the algorithm diverges while if δ < 0.05, the algorithm does not retrieve sharp edges. In all the
experiments, we use the same parameters: λ = 0.1, δ = 0.5.

The input sequences are shown on figure 2 as well as their “ground truth” in figure 3. We call
them, from top to bottom, bars (it is a real sequence acquired through atmospheric turbulence, note
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that the “wire” which can be seen on the images is due to the camera design and is not affected by the
turbulence phenomena), lena and poème, respectively. In the last two ones, the deformations were
synthetically generated by the rippling filter available in the software The Gimp. Table 1 indicates
the number of frames for each sequence, their size and the processing time taken to get the result
(experiments made on a core-i5 at 2.5GHz with 8Gb of memory).

Figure 2: Example of deformed images. The first row shows real observations through atmospheric
turbulence (bars sequence) while the other rows show simulated deformations (lena and poème se-
quences).

Sequence Number of frames Size Computing time (in s)
bars 10 256× 256 8
lena 30 256× 256 21

poème 50 576× 330 112

Table 1: Computational times for each test sequences.

The results of the total Mao-Gilles stabilization applied on the whole sequences are given in
figure 4, as well as the corresponding temporal average of each input sequences. We can see that
the structure distortions present in the original frames are rectified. Moreover, our method provides
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Des voix parlaient; pour qui ? Pour l'espace sans 
bornes,

Pour le recueillement des solitudes mornes,
Pour l'oreille, partout éparse, du désert ;

Nulle part, dans la plaine où le regard se perd,
On ne voyait marcher la foule aux bruits sans nombre,

Mais on sentait que l'homme écoutait dans cette ombre.
Qui donc parlait ? C'étaient des monuments pensifs,

Debout sur l'onde humaine ainsi que des récifs,
Calmes, et chacun d'eux semblait un personnage

Vivant, et se rendant lui-même témoignage.

Nulle rumeur n'osait à ces voix se mêler,

Et le vent se taisait pour les laisser parler,

Et le flot apaisait ses mystérieux râles.

Un soleil vague au loin dorait les frontons pâles.

Les astres commençaient à se faire entrevoir

Dans l'assombrissement religieux 

Figure 3: Ground Truth for each sequence. The bars one is a schematic drawing which was painted
on a real 2m× 1m board.

sharper results and more details (see at the textures in Lena’s hat) compared to the temporal averages
of input frames.

Figure 4: Stabilized (left) and temporal average (right) images obtained from the bars, lena and
poème sequences, respectively.
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Figure 5 presents the results obtained with the shifted Mao-Gilles stabilization with NT = 20 for
the bars sequence, NT = 20 for the lena sequence and NT = 30 for the poème sequence, respectively.
In these experiments, we can see that the deformation amplitudes are significantly reduced. Obvi-
ously, the choice of NT will affect the stabilization quality. Indeed, if NT is too small then the output
sequence has less deformation than the original frames but still contain some movement. If NT is
large, the output sequence is really well stabilized but the computational cost becomes important.
While we originally developed this method to compensate turbulence deformations, it can be useful
for many other kind of applications. For example in medical imaging, sequences showing the heart
can be acquired. In such a case, the heart beats generate non-rigid deformations along the sequence.
Our method should be able to provide a stabilized image of the heart.

Figure 5: Three consecutive stabilized frames computed from the bars, lena and poème sequences.
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