
Published in Image Processing On Line on 2013–12–17.
Submitted on 2013–04–29, accepted on 2013–11–02.
ISSN 2105–1232 c© 2013 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2013.87

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

A Survey of Gaussian Convolution Algorithms

Pascal Getreuer

CMLA, ENS Cachan (getreuer@cmla.ens-cachan.fr)

Communicated by Luis Álvarez Demo edited by Pascal Getreuer

Abstract

Gaussian convolution is a common operation and building block for algorithms in signal and
image processing. Consequently, its efficient computation is important, and many fast approx-
imations have been proposed. In this survey, we discuss approximate Gaussian convolution
based on finite impulse response filters, DFT and DCT based convolution, box filters, and sev-
eral recursive filters. Since boundary handling is sometimes overlooked in the original works,
we pay particular attention to develop it here. We perform numerical experiments to compare
the speed and quality of the algorithms.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the IPOL web
page of this article1. Future software releases and updates will be posted at http://dev.ipol.
im/~getreuer/code.

Keywords: filtering, convolution

1 Introduction

This work surveys algorithms for the computation and fast approximation of Gaussian convolution,

u(x) = (Gσ ∗ f)(x) :=

∫
Rd

Gσ(x− y)f(y) dy, Gσ(x) = (2πσ2)−d/2 exp

(
−‖x‖

2
2

2σ2

)
, (1)

where f is the input signal, u is the filtered signal, and where Gσ is the Gaussian (see figure 1) with
standard deviation σ. Gaussian convolution is a building-block operation used in many signal and
image processing algorithms. To name a few prominent examples, Gaussian convolution is used in
Gabor filtering [9, 25], Canny edge detection [6], and SIFT feature detection [18].

While we focus on Gaussian convolution, many of the ideas here can be applied more broadly,
such as other kernels and spatially-varying filtering [10, 20, 22, 28].

1https://doi.org/10.5201/ipol.2013.87

Pascal Getreuer, A Survey of Gaussian Convolution Algorithms, Image Processing On Line, 3 (2013), pp. 286–310.
https://doi.org/10.5201/ipol.2013.87

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2013.87
https://doi.org/10.5201/ipol.2013.87
https://doi.org/10.5201/ipol.2013.87
http://dev.ipol.im/~getreuer/code
http://dev.ipol.im/~getreuer/code
https://doi.org/10.5201/ipol.2013.87

A Survey of Gaussian Convolution Algorithms

− 2σ − σ 0 σ 2σ

Figure 1: The Gaussian in one and two dimensions.

1.1 Notations

Notations bxc and dxe denote respectively the floor and ceiling functions, (·)∗ denotes complex

conjugation, ‖v‖p :=
(∑

n|vn|p
)1/p

denotes the `p norm of sequence v, and ‖v‖∞ := supn|vn| the `∞

norm of v. We use the following definition of the continuous Fourier transform,

f̂(ξ) :=

∫ ∞
−∞

f(x)e−2πixξ dx, ǧ(x) :=

∫ ∞
−∞

g(ξ)e2πixξ dξ, (2)

where ˆ denotes the forward transform and ˇ the inverse transform. For discrete filters, define the
Z-transform

Z{h}(z) :=
∞∑

n=−∞
hnz

−n. (3)

1.2 Properties

Compared to other smoothing kernels, the Gaussian has a unique combination of properties that
make it especially attractive. A few well-known properties are listed below.

• Separability. The Gaussian is separable:

exp(−x21+x
2
2

2σ2) = exp(− x21
2σ2) exp(− x22

2σ2). (4)

• Semigroup property. Gaussians have the semigroup property that convolution of two Gaus-
sians is another Gaussian [14, 15],

Gσ1 ∗Gσ2 = Gσ, σ =
√
σ2
1 + σ2

2. (5)

Thus the convolution u = Gσ ∗ f may be implemented as two convolutions, w = Gσ1 ∗ f and
u = Gσ2 ∗ w, possibly using two different algorithms.

• Extrema properties. In one dimension, Gaussians are the only filters among a broad class
that do not create or enhance local extrema or create new zero-crossings in the second deriva-
tive [4, 5, 14, 19].

• Locality in space and frequency. Gaussians are optimally localized in space and frequency
in the sense of the Heisenberg–Weyl inequality [1, 2]: for any nonzero function ψ ∈ L2(R),
ψ : R→ C, and any fixed but arbitrary constants x0, ξ0 ∈ R,(∫

R
(x− x0)2|ψ(x)|2 dx

)(∫
R
(ξ − ξ0)2|ψ̂(ξ)|2 dξ

)
≥ ‖ψ‖

4
2

16π2
. (6)

and equality is attained only when ψ is a Gaussian or modulated Gaussian.

287

Pascal Getreuer

2 Discretization and Boundary Handling

For a discrete one-dimensional signal (fn), n ∈ Z, Gaussian convolution is

un =
∞∑

m=−∞
gmfn−m (7)

where (gn) is a discretization of the Gaussian. We discuss several possibilities for how to define (gn).

2.1 Discretizations of the Gaussian

Sampling A simple discretization of the Gaussian is by sampling,

gsampled
n = Gσ(n), n ∈ Z. (8)

Normalized samples The samples are often normalized to ensure that they have unit sum,

gn = 1
S
Gσ(n), S =

∞∑
n=−∞

Gσ(n). (9)

Both gsampled
n and gn are straightforward and preserve separability.

Lemma 1. For any σ > 0, the sum S in (9) is strictly greater than 1.

Proof. Using the Poisson summation formula2 and Ĝσ(ξ) = e−2π
2σ2ξ2 ,

S =
∞∑

n=−∞
Gσ(n) =

∞∑
k=−∞

Ĝσ(k) = 1 + 2
∞∑
k=1

e−2π
2σ2k2 > 1.

Remark 1. The sum S is typically very nearly but not exactly one, and the difference S−1 decreases
rapidly as σ increases (see figure 2). For σ = 1.5, the difference is S − 1 ≈ 1.0295 × 10−19. This
difference is so small that S cannot be distinguished from 1 in double-precision floating-point rep-
resentation.3 Truncating the sum in the proof above yields that the difference is S − 1 ≈ 2e−2π

2σ2
,

which due to the sum’s exponential decay is a very accurate approximation for σ ≥ 0.5.

σ S − 1

0.5 1.4384× 10−2

1.0 5.3506× 10−9

1.5 1.0295× 10−19

2.0 1.0245× 10−34

2.5 5.2735× 10−54

16.0 5.1037× 10−2195

S − 1

σ
0 4 8 12 16

10−2000

10−1000

100

Figure 2: The sum S =
∑

nGσ(n) is very nearly one for σ ≥ 1.5. Computed using the mpmath
library [26].

Remark 2. The sum S is closely related to Ramanujan’s theta function, for which a few exact values
are known [16, 21]. For instance S = 1

4
π1/4(2 + 23/4)/Γ(3

4
) ≈ 1.000006974684712 if σ =

√
2/π.

2Poisson summation formula:

∞∑
n=−∞

f(n)e−i2πnξ =

∞∑
n=−∞

f̂(ξ − n).

3The least IEEE 754 double-precision number greater than one is 1 + 2−52 ≈ 1 + 2.22× 10−16.

288

A Survey of Gaussian Convolution Algorithms

Preserving the semigroup property Lindeberg [7] notes that the semigroup property is not
preserved with discretization (8) or (9) and proposes the discretization

gLindebergn = e−tIn(t), t = σ2, (10)

which does preserve the semigroup property and the In are the modified Bessel functions. In analogy
to Gaussian convolution arising from the continuous heat equation, u = gLindeberg ∗ f satisfies

∂tun = 1
2
(un−1 − 2un + un+1). (11)

Interpolation Another reasonable discretization is to define Gaussian convolution using a linear
interpolation F (x) =

∑
n ϕ(x− n)fn of (fn) as

un =

∫
Rd

Gσ(n− x′)F (x′) dx′

=
∑
n′∈Zd

ginterpn−n′ fn′ , ginterpn := (Gσ ∗ ϕ)(n). (12)

If nearest neighbor interpolation is used, then ϕ(x) = 1 for |x| < 1
2

and zero otherwise and

gnearestn =

∫ +1/2−n

−1/2−n
Gσ(x) dx =

1

2

[
erf

(
n+ 1/2√

2σ2

)
− erf

(
n− 1/2√

2σ2

)]
(13)

where erf is the error function. With Shannon–Whittaker interpolation, ϕ is the sinc function
sin(πx)/(πx) and

gsincn = (Gσ ∗ ϕ)(n) =
(
Ĝσ · ϕ̂

)̌
(n), Ĝσ(ξ) = e−2π

2σ2ξ2 , ϕ̂(ξ) =

{
1 if |ξ| < 1

2

0 if |ξ| > 1
2

=

∫ 1/2

−1/2
e−2π

2σ2ξ2 cos(2πξn) dξ = Gσ(n) Re

{
erf

(
πσ√

2
+ i

n√
2σ

)}
.

(14)

That is, gsinc is a bandlimited version of Gσ sampled on the integers.

Comparison Table 1 shows the `1 differences between the sampled and normalized discretization
defined by (9) and the other discretizations discussed above. For σ ≥ 1, the difference among these
discretizations is small and decreases as σ increases. Moreover, most of the Gaussian convolution
algorithms discussed in this work are approximate, and discretization differences are negligible com-
pared to approximation errors. From here on, we use discretization (9), except for DFT/DCT-based
convolution where the sinc discretization gsinc (14) is used.

σ ‖gsampled − g‖1 ‖gLindeberg − g‖1 ‖gnearest − g‖1 ‖gsinc − g‖1
1 5.3506× 10−9 1.5245× 10−1 3.2996× 10−2 7.1919× 10−3

2 1.0245× 10−34 3.2195× 10−2 9.6135× 10−3 2.6753× 10−9

4 1.3771× 10−137 7.3356× 10−3 2.4908× 10−3 5.1225× 10−35

8 4.4952× 10−549 1.8269× 10−3 6.2826× 10−4 6.8854× 10−138

16 5.1037× 10−2195 4.5615× 10−4 1.5742× 10−4 2.2476× 10−549

Table 1: Differences among Gaussian discretizations. Computed using the mpmath library [26].

289

Pascal Getreuer

2.2 Boundary Handling

Care is needed at the boundaries when filtering a signal of finite-length, f0, . . . , fN−1. For some m,
the samples fm−n in (7) lie outside of the domain of definition. We apply a boundary extension to
extrapolate f to all n ∈ Z. Several common choices of extension are

• zero-padding f̃n =

{
fn if 0 ≤ n < N ,

0 otherwise, n
−N 0 N 2N

• constant f̃n = fmin(max(n,0),N−1),
n

−N 0 N 2N

• symmetric f̃n =


fn if n = 0, . . . , N − 1,

f̃−1−n if n < 0,

f̃2N−1−n if n ≥ N .
n

−N 0 N 2N

We select the (half-sample) symmetric extension since this is usually a reasonable choice for images,
our application of interest. Signal extension will be denoted by tilde ˜ accent. For error analysis, we
assume at least that ‖f̃‖∞ = ‖f‖∞, which is true for the above extensions.

Several of the Gaussian approximation methods discussed in this survey are based on recursive
(infinite impulse response) filters, which have the form

un = b0fn + b1fn−1 + · · ·+ bpfn−p

− a1un−1 − a2un−2 − · · · − aqun−q,
Z−→ U(z) =

b0 + b1z
−1 + · · ·+ bpz

−p

1 + a1z−1 + · · ·+ aqz−q
F (z). (15)

A chicken-and-egg problem with recursive filters is how to initialize them on the boundaries. The
first sample u0 depends recursively on outputs u−1, . . . , u−q. How to obtain the first output sample
when it depends on other output samples?

To untangle this problem, we first note that a recursive filter can be expressed nonrecursively as
convolution with its impulse response h. The impulse response of (15) can be obtained as shown in
algorithm 1 (let bn = 0 for n > p so that the bn term in the loop has effect only for n = 0, . . . , p).

Algorithm 1

hn = 0 for all n < 0
for n = 0, 1, 2, . . . do

hn = bn − a1hn−1 − a2hn−2 − · · · − aqhn−q

We assume that the hn decay, which is true provided the filter is stable. To compute the first q
output samples u0, . . . , uq−1, we write the filter as u = h ∗ f̃ and truncate the infinite sum,

um =
∞∑

n=−m
hn+mf̃−n ≈

k−1∑
n=−m

hn+mf̃−n, m = 0, . . . , q − 1. (16)

The approximation error due to this truncation is bounded,∣∣∣ ∞∑
n=k

hn+mf̃−n

∣∣∣ ≤ ‖f‖∞ ∞∑
n=k

|hn|, m = 0, . . . , q − 1. (17)

Provided the filter is stable,
∑∞

n=0|hn| is finite, which implies that k can be selected such that∑
n≥k|hn| is arbitrarily small. Therefore, um is computable with any desired accuracy. Together with

290

A Survey of Gaussian Convolution Algorithms

algorithm 1, algorithm 2 computes u0, . . . , uq−1 with error less than tol ‖f‖∞.

Algorithm 2

input : signal f , filter coefficients (bi) and (ai), accuracy tol
output: um = h ∗ f , m = 0, . . . , q − 1, with boundary handling
Compute h0, . . . , hq−1 with algorithm 1
s←∑∞

n=0|hn|
um ←

∑−1
n=−m hn+mf̃−n, m = 0, . . . , q − 1

for n = 0, 1, 2, . . . do

um ← um + hn+mf̃−n, m = 0, . . . , q − 1
s← s− |hn|
if s ≤ tol then stop
hn+q = bn+q − a1hn+q−1 − a2hn+q−2 − · · · − aqhn

The variable s tracks the absolute sum of the remaining filter samples, s =
∑

m>n|hm|, and the
loop stops once s ≤ tol . To initialize s, the infinite sum

∑∞
n=0|hn| must somehow be evaluated or

accurately precomputed. If h is nonnegative, the infinite sum is computed exactly as

∞∑
n=0

hn = H(1) =
b0 + · · ·+ bp

1 + a1 + · · ·+ aq
. (18)

Complexity In the following sections, several algorithms use boundary initialization where the
filter h is related to approximating the Gaussian. As the standard deviation σ increases, h generally
becomes proportionally wider and more terms in algorithm 2 must be added to achieve the tolerance.
This cost can be ignored when N is reasonably large compared to σ, since then the majority of the
computation time is spent filtering interior samples.

2.3 Multidimensional Convolution

Thanks to separability, Gaussian convolution in multiple dimensions is a tensor product of one-
dimensional convolutions, provided the domain is a Cartesian product. Convolution of images and
volumes may be implemented using one-dimensional convolutions (see algorithm 3), which simplifies
algorithm design and implementation. We focus hereafter on one dimension.

Algorithm 3: 2D Gaussian convolution decomposed into 1D convolutions.

input : image f defined on {0,M − 1} × {0, N − 1}
output: u = Gσ ∗ f
for n = 0, . . . , N − 1 do

Compute (um,n)M−1m=0 ← Gσ ∗ (fm,n)M−1m=0 with any 1D method

for m = 0, . . . ,M − 1 do
Compute (um,n)N−1n=0 ← Gσ ∗ (um,n)N−1n=0 with any 1D method

291

Pascal Getreuer

3 Methods

3.1 FIR Filtering

The simplest implementation of Gaussian convolution is approximation by a finite impulse response
(FIR) filter, where the Gaussian is truncated to |n| ≤ r,

H(z) = 1
s(r)

r∑
n=−r

Gσ(n)z−n, s(r) =
r∑

n=−r
Gσ(n). (19)

The size of the radius r determines the tradeoff between accuracy and speed.

Theorem 1. Define the truncated filter gtruncn = Gσ(n)/s(r) for |n| ≤ r and zero otherwise, then the
error made in approximating (g ∗ f̃) by (gtrunc ∗ f̃) is bounded as

‖g ∗ f̃ − gtrunc ∗ f̃‖∞ ≤ 2 erfc(r√
2σ2

)‖f‖∞, (20)

where erfc(t) := 1− erf(t) is the complementary error function.

Proof. The `1 distance between g and gtrunc is

‖g − gtrunc‖1 =
∑
|n|≤r

(
1
s(r)

Gσ(n)− 1
s(∞)

Gσ(n)
)

+
∑
|n|>r

1
s(∞)

Gσ(n). (21)

The first sum can be rewritten by factoring and using s(∞)− s(r) =
∑
|n|>rGσ(n),∑

|n|≤r

(
1
s(r)

Gσ(n)− 1
s(∞)

Gσ(n)
)

= (1
s(r)
− 1

s(∞)
)s(r)

=
s(∞)− s(r)

s(∞)

= 1
s(∞)

∑
|n|>r

Gσ(n) (22)

Combining (21) and (22), we obtain the bound

‖g − gtrunc‖1 = 2
s(∞)

∑
|n|>r

Gσ(n)

= 4
s(∞)

∞∑
n=r+1

Gσ(n)

≤ 4
s(∞)

∫ ∞
r

e−t
2/(2σ2)

√
2πσ2

dt

= 2
s(∞)

erfc(r√
2σ2

), (23)

where 2
s(∞)

< 2 by lemma 1. The conclusion (20) then follows from Young’s inequality.

The practical value of theorem 1 is that it tells how large the radius r must be for a desired level
of accuracy. Selecting r as

r = d
√

2 erfc−1(tol/2)σe (24)

ensures error less than tol‖f‖∞, where for instance
√

2 erfc−1(tol/2) ≈ 3.4808 if tol = 10−3.

292

A Survey of Gaussian Convolution Algorithms

Boundary handling is relatively straightforward for FIR-based convolution. In algorithm 4, f̃
denotes the symmetric extension of f as defined in section 2.2.

Algorithm 4: Gaussian convolution with truncated FIR approximation

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, accuracy tol
output: u ≈ gσ ∗ f
r = d

√
2 erfc−1(tol/2)σe

gtruncm = 1
s(r)

exp(−m2

2σ2), m = −r, . . . , r
for n = 0, 1, . . . , N − 1 do

un ← gtrunc0 fn
for m = 1, . . . , r do

un ← un + gtruncm (f̃n+m + f̃n−m)

Complexity For a length-N input, the computational complexity of FIR Gaussian approximation
is O(Nr). If tol is fixed, r is proportional to σ and the complexity is O(Nσ). FIR filtering is
reasonable for small σ but costly for large values of σ.

3.2 DFT/DCT Convolution

It is well known that while direct convolution of two length-N signals costs O(N2) operations,
convolution via the discrete Fourier transform (DFT) costs only O(N logN) operations, leveraging
the convolution-multiplication property and fast Fourier transform (FFT) algorithms [8].

3.2.1 DFT-based Convolution

Define periodic (cyclic) convolution of length-N signals h and f ,

um = (h
per∗ f)m :=

N−1∑
n=0

hnf(m−n) mod N , m = 0, 1, . . . , N − 1. (25)

By the convolution-multiplication property of the DFT, (25) can be computed as

(h
per∗ f)m = F−1

(
F(h) · F(f)

)
, F(f)k :=

N−1∑
n=0

fne−i2πnk/N , (26)

where · denote elementwise multiplication and F is the DFT. Unfortunately, the convolution (25)
corresponds to periodic boundary extension, which is generally undesirable for images. A solution is
to pad the input signal as fpad = (f0, f1, . . . , fN−1, fN−1, . . . , f1, f0), then its periodization corresponds

to half-sample symmetric boundary extension, h ∗ f̃ = h
per∗ fpad.

It is convenient to use the sinc-interpolated Gaussian discretization gsinc since its DFT can be
computed in closed form. Recall that

gsincn = (Gσ ∗ ϕ)(n) =
(
Ĝσ · ϕ̂

)̌
(n), Ĝσ(ξ) = e−2π

2σ2ξ2 , ϕ̂(ξ) =

{
1 if |ξ| < 1

2
,

0 if |ξ| > 1
2
.

Since the Gaussian has infinite support, we wrap it by summing periodic translates

hn =
∞∑

m=−∞
gsincn−2Nm, n = 0, 1, . . . , 2N − 1, (27)

293

Pascal Getreuer

such that h
per∗ fpad is equal to gsinc ∗ f̃ . We then obtain the length-2N DFT

F(h)k :=
2N−1∑
n=0

hne−i2πnk/(2N) =
∞∑

n=−∞
(Gσ ∗ ϕ)(n)e−i2πnk/(2N)

=
∞∑

n=−∞
(Ĝσ · ϕ̂)(k

2N
− n) =

{
Ĝσ(k

2N
) if 0 ≤ k ≤ N ,

Ĝσ(k
2N
− 1) if N ≤ k < 2N ,

(28)

where the third equality follows from the Poisson summation formula and we extrapolate F(gsinc)N =
limξ↑ 1

2
(Ĝσ · ϕ̂)(ξ) = limξ↓ 1

2
(Ĝσ · ϕ̂)(ξ − 1) to overcome the discontinuity in ϕ̂.

The DFT-based Gaussian convolution is summarized in algorithm 5.

Algorithm 5: DFT-based Gaussian convolution

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ
output: u = gsincσ ∗ f with symmetric boundary handling
fpad = (f0, f1, . . . , fN−1, fN−1, . . . , f1, f0)
F = F(fpad)

Uk =

{
Fk exp

(
−2π2σ2(k

2N
)2
)
, k = 0, . . . , N

Fk exp
(
−2π2σ2(k

2N
− 1)2

)
, k = N + 1, . . . , 2N − 1

upad = F−1(U)

u = (upad0 , upad1 , . . . , upadN−1)

3.2.2 DCT-based Convolution

Since the Gaussian is an even function, the discrete cosine transform (DCT) domain may be used
instead of the DFT (algorithm 5) for greater computational efficiency. The data does not need to
be padded in this case because symmetric boundaries are implied by the transforms, reducing the
computational and memory costs. Martucci [11] showed that convolution with half-sample symmetric
boundary handling can be implemented through DCT transforms as

h ∗ f̃ = C−12e

(
C1e(h) · C2e(f)

)
, (29)

where C1e and C2e are the DCT-I and DCT-II transforms of the same period lengths,

C1e(h)k = h0 + (−1)khN + 2
N−1∑
n=1

hn cos(πnk/N), k = 0, . . . , N, (30)

C2e(f)k = 2
N−1∑
n=0

fn cos
(
π(n+ 1

2
)k/N

)
, k = 0, . . . , N − 1. (31)

294

A Survey of Gaussian Convolution Algorithms

Since (27) has the symmetry h2N−n = hn, its DCT-I transform reduces to C1e(h) = F(h) (28).

Algorithm 6: DCT-based Gaussian convolution

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ
output: u = gsincσ ∗ f with symmetric boundary handling

Fk = C2e(f)k := 2
N−1∑
n=0

fn cos
(
π(n+ 1

2
)k/N

)
, k = 0, . . . , N − 1

Uk = Fk exp
(
−2π2σ2(k

2N
)2
)
, k = 0, . . . , N − 1

un = C−12e (U)n :=
1

2N

(
U0 + 2

N−1∑
k=1

Uk cos
(
π(n+ 1

2
)k/N

))
, n = 0, . . . , N − 1

Compared to algorithm 5, the advantage of DCT-based convolution is that no padding is needed.
The computation can be performed in-place by reusing one length-N memory buffer for f , F , U , u.

Complexity The DCT-II transform of size N can be evaluated in O(N logN) operations4 with
fast cosine transform algorithms or with FFT algorithms through an equivalent DFT.

3.3 Box

The box (or boxcar) filter is a recursive filter with a box-shaped impulse response,

H(z) =
1

2r + 1

zr − z−r−1
1− z−1 .

−r 0 r
0

1/(2r + 1)

(32)

The virtue of the box filter is that its computational cost is independent of its radius r. Gaussian
convolution can be approximated by K passes of box filtering where K is usually 3, 4, or 5 (see
algorithm 7). Wells [3] suggests to select r according to σ2 = 1

12
K
(
(2r + 1)2 − 1

)
.

Algorithm 7: Box filtering approximation of Gaussian convolution

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, passes K
output: uK ≈ gσ ∗ f with symmetric boundary handling

r =
⌊
1
2

√
12
K
σ2 + 1

⌋
u0 ← f/(2r + 1)K

for k = 0, . . . , K − 1 do
s←∑r

n=−r ũ
k
n

uk+1
0 ← s

for n = 1, . . . , N − 1 do
s← s+ ũkn+r − ũkn−r−1
uk+1
n ← s

Complexity For a length-N input and K passes, the complexity of box filtering is O(NK + r).
The cost per interior pixel is K additions, K subtractions, and one multiplication.

4N need not be an integer power of two, there exist O(N logN) algorithms for any N ≥ 1 [8].

295

Pascal Getreuer

Improvements Since r is integer-valued, a limitation of box filtering is that the set of possible
approximated standard deviations is quantized. With K = 3, the possible standard deviations by
Wells’ formula are σ ∈ {2, 6, 12, 20, 30, . . .}. There are several methods to overcome this limitation:

1. Semigroup property. For a desired standard deviation of σ, box filtering is first performed
with σ1 ≤ σ, then the result is convolved with Gσ2 (using any method) where σ2 =

√
σ2 − σ2

1.

2. Extended box filter (algorithm 8). Gwosdek, Grewenig, Bruhn, and Weickert [30] extend
the box filter to allow a fractional radius,

un = un−1 + c1(fn+r+1 − fn−r−2) + c2(fn+r − fn−r−1).

−r 0 r
0
c1

c1 + c2

(33)

Gaussian convolution is approximated byK passes of extended box filtering with the parameters

r =

⌊
1
2

√
12σ2

K
+ 1− 1

2

⌋
,

c1 =
α

2α + 2r + 1
, c2 =

1− α
2α + 2r + 1

, where α = (2r + 1)
r(r + 1)− 3σ

2

K

6(σ
2

K
− (r + 1)2)

.

(34)

Algorithm 8: Extended box filtering approximation of Gaussian convolution

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, passes K
output: uK ≈ gσ ∗ f with symmetric boundary handling
Set r, c1, c2 according to (34)
u0 ← f
for k = 0, . . . , K − 1 do

s← (c1 + c2)
∑r

n=−r ũ
k
n + c1(ũ

k
r+1 + ũk−r−1)

uk+1
0 ← s

for n = 1, . . . , N − 1 do
s← s+ c1(ũ

k
n+r+1 − ũkn−r−2) + c2(ũ

k
n+r − ũkn−r−1)

uk+1
n ← s

3. Stacked integral images (SII) [27, 29]. A weighted sum of box filters is computed,

un =
K∑
k=1

wk(sn+rk − sn−rk−1), sn =
n∑

m=−pad
f̃n, pad = 1 + max

k
rk. (35)

The kth term of the sum effectively computes a box filter of radius rk since sn+rk − sn−rk−1 =∑n+rk
m=n−rk fn. Extended box filtering is a special case with K = 2. The radii r1, . . . , rK and

weights w1, . . . , wK are selected to optimize the approximation of the Gaussian. Table 2 lists
effective values suggested by Elboher and Werman [29] for standard deviation σ0 = 100/π.
These parameters can be rescaled for other σ as described in algorithm 9.

296

A Survey of Gaussian Convolution Algorithms

K r0k w0
k

3 76, 46, 23 0.1618, 0.5502, 0.9495
4 83, 56, 37, 19 0.0976, 0.3376, 0.6700, 0.9649
5 85, 61, 44, 30, 16 0.0739, 0.2534, 0.5031, 0.7596, 0.9738

Table 2: Radii and weights that optimize the approximation of the Gaussian for SII [29]

Algorithm 9: SII approximation of Gaussian convolution

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, number of boxes K
output: u ≈ gσ ∗ f with symmetric boundary handling
Read r01, . . . , r

0
K and w0

1, . . . , w
0
K from table 2

rk = [σ
σ0
r0k], wk = w0

k/
∑K

j=1w
0
j (2rj + 1), k = 1, . . . , K

pad = 1 + maxk rk
s−pad−1 = 0
for n = −pad , . . . , N + pad − 1 do

sn = sn−1 + f̃n

for n = 0, . . . , N − 1 do

un =
∑K

k=1wk(sn+rk − sn−rk−1)

3.4 Deriche

Deriche [10] constructs approximations for the right half of the Gaussian n ≥ 0 of the form

Gσ(n) ≈ h(K)
n :=

1√
2πσ2

K∑
k=1

αke
−nλk/σ Z−→ H(K)(z) =

1√
2πσ2

K∑
k=1

αk
1− e−λk/σz−1

. (36)

H(K) is an order-K recursive filter, allowing efficient implementation. The left half of the Gaussian
n < 0 is obtained using a similar anticausal filter. These left- and right-half filters are added (a parallel
filter combination) to construct an approximately Gaussian impulse response (algorithm 10).

Deriche optimized the αk and λk parameters to find the `2-best fit to the Gaussian over the domain
n = 0, . . . , 1000 with σ = 100. This optimization is numerically difficult, but Deriche succeeded with
routine E04FCF of the NAG library [31]. We fortunately do not need to repeat this optimization
and only need the resulting values, which are

K = 2: α1 = 0.48145 + i0.971,
λ1 = 1.26 + i0.8448,

K = 3: α1 = −0.44645 + i0.5105, α3 = 1.898,
λ1 = 1.512 + i1.475, λ3 = 1.556,

K = 4: α1 = 0.84 + i1.8675, α3 = −0.34015 − i0.1299,
λ1 = 1.783 + i0.6318, λ3 = 1.723 + i1.997,

(37)

where α2k = α∗2k−1, λ2k = λ∗2k−1. The recursive filter H(K)(z) can be expressed in the form of (15)
by algebraically combining the sum into a single fraction,

H(K)(z) =
1√

2πσ2

K∑
k=1

αk
1− e−λk/σz−1

=

∑K−1
k=0 b

+
k z
−k

1 +
∑K

k=1 akz
−k
. (38)

297

Pascal Getreuer

For example for K = 3,

b+0 = 1√
2πσ2

(α1 + α2 + α3), a1 = β1 + β2 + β3,

b+1 = 1√
2πσ2

(
α1(β2 + β3) + α2(β1 + β3) + α3(β1 + β2)

)
, a2 = β1β2 + β1β3 + β2β3,

b+2 = 1√
2πσ2

(α1β2β3 + α2β1β3 + α3β1β2), a3 = β1β2β3,

(39)

where βk = −e−λk/σ. The conjugacy of the pairs α2 = α∗1, λ2 = λ∗1 allows to express the coefficients
in purely real arithmetic [10].

The left (anticausal) half of the Gaussian is obtained by spatial reversal and subtracting the
sample at n = 0 so that it is not produced twice,∑K

k=1 b
−
k z

k

1 +
∑K

k=1 akz
k

= H(K)(z−1)− h(K)
0 =

∑K
k=1(b

+
k − akb+0)zk

1 +
∑K

k=1 akz
k

. (40)

Algorithm 10: Deriche approximation of Gaussian convolution [10]

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, order K, accuracy tol
output: u ≈ gσ ∗ f with symmetric boundary handling
Use (37) and (38) to determine b+0 , . . . , b

+
K−1 and a1, . . . , aK

b−k = b+k − akb+0 for k = 1, . . . , K

Compute q+0 , . . . , q
+
K−1 with accuracy tol using algorithm 2 Causal filter

for n = K, . . . , N − 1 do

q+n ←
∑K−1

k=0 b
+
k fn−k −

∑K
k=1 akq

+
n−k

Compute q−N−1, . . . , q
−
N−K with accuracy tol using algorithm 2 Anticausal filter

for n = N −K − 1, . . . , 1, 0 do

q−n ←
∑K−1

k=0 b
−
k fn+k −

∑K
k=1 akq

−
n+k

u = q− + q+

Complexity Ignoring boundary initialization, the computational complexity is O(N). The com-
putational cost is 4K multiplications and (4K − 1) additions per interior pixel.

3.5 Alvarez–Mazorra

Alvarez and Mazorra [12] derive a recursive filter from a finite difference discretization of the heat
equation. Let K be the number of passes, λ = q2/(2K), and ν = 1

2λ
(1 + 2λ −

√
1 + 4λ), then the

filter is

H(z) = (ν/λ)K
(

1

1− νz−1
1

1− νz

)K
. (41)

The filter is a cascade of the causal filter u′n = fn+νu′n−1 and anticausal filter u′′n = u′n+νu′′n+1, both
applied K times, and a scale factor (ν/λ)K .

In the original work [12], Alvarez and Mazorra set q = σ. While the method with q = σ converges
to Gaussian filtering with parameter σ as K → ∞, this choice tends to undersmooth for small K.
Here we introduce an adjustment to compensate for this effect (see algorithm 11). For each value of
q = 1, 1.5, . . . , 500 and K = 2, 3, . . . , 20, we compute the impulse responses hq,K of (41) and estimate
the best-fitting Gaussian σ? = arg minσ‖hq,K − Gσ‖1. Regression over (σ?, K) leads to an estimate
for the value of q that best approximates a desired Gaussian standard deviation σ:

q = σ

(
1 +

0.3165K + 0.5695

(K + 0.7818)2

)
. (42)

298

A Survey of Gaussian Convolution Algorithms

The experiments section compares Alvarez–Mazorra with (42) to the original method with q = σ.

Boundary handling Alvarez and Mazorra’s discussion is on the infinite grid and does not include
boundary handling. Here we develop its use with half-sample symmetric boundaries. We apply
the approximation discussed in section 2.2 to compute the left endpoint of the causal recursion
u′n = fn + νu′n−1,

u′0 ≈
M−1∑
m=0

νmf̃−m, (43)

where from (17) it follows that the `∞ error is less than ‖f‖∞νM/(1 − ν). For the right endpoint
of the anticausal recursion u′′n = u′n + νu′′n+1, we note that f̃ is half-sample symmetric and the filter
(1− νz−1)−1(1− νz)−1 is whole-sample symmetric, therefore their convolution u′′ is also half-sample
symmetric [11]. This symmetry implies u′′N−1 = u′′N , so together with u′′N−1 = u′N−1 + νu′′N , it allows
to solve for u′′N−1 as

u′′N−1 =
u′N−1

(1− ν)
=
uN−1 + νu′N−2

(1− ν)
. (44)

Algorithm 11: Alvarez–Mazorra approximation of Gaussian convolution [12]

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, passes K, accuracy tol
output: u ≈ gσ ∗ f with symmetric boundary handling
Compute q with (42)

λ = q2/(2K), ν = 1+2λ−
√
1+4λ

2λ
, M =

⌈
logν

(
(1− ν)tol

)⌉
u← (ν/λ)Kf
for k = 0, 1, . . . , K − 1 do

u0 ←
∑M−1

m=0 ν
mũ−m Causal filter u′n ← un + νu′n−1

for n = 1, 2, . . . , N − 2 do
un ← un + νun−1

uN−1 ← (uN−1 + νuN−2)/(1− ν) Anticausal filter u′′n ← u′n + νu′′n+1

for n = N − 2, . . . , 1, 0 do
un ← un + νun+1

Complexity Ignoring boundary initialization, Alvarez–Mazorra filtering has complexity O(NK).
For each interior pixel, the cost is (2K + 1) multiplications and 2K additions.

3.6 Vliet–Young–Verbeek

Another recursive approximation of Gaussian convolution, proposed by Young and van Vliet [13] and
refined by van Vliet, Young, and Verbeek [17], has the form

H(z) =
K∏
k=1

dk − 1

dk − z−1
·
K∏
k=1

dk − 1

dk − z
= G(z)G(z−1), G(z) =

b0
1 + a1z−1 + · · ·+ aKz−K

, (45)

which is the cascade of causal filter G(z) and anticausal filter G(z−1). The denominator
∏

(dk− z−1)
can be algebraically expanded to obtain b0, a1, . . . , aK . Van Vliet et al. select the poles dk to minimize

299

Pascal Getreuer

the L2 distance from the Gaussian with standard deviation σ0 = 2,

K = 3: d1 = 1.41650 + i1.00829, d3 = 1.86543
K = 4: d1 = 1.13228 + i1.28114, d3 = 1.78534 + i0.46763
K = 5: d1 = 0.86430 + i1.45389, d3 = 1.61433 + i0.83134, d5 = 1.87504

(46)

where d2k = d∗2k−1. For a general standard deviation σ, the poles are scaled according to d
1/q
k 7→ dk,

where q is selected such that the filter variance equals σ2,

var(h) =
K∑
k=1

2d
1/q
k

(d
1/q
k − 1)2

= σ2. (47)

The value of q is accurately estimated by initializing q = σ/σ0 and performing several iterations of
Newton’s method.

Boundary handling Van Vliet et al. [17] do not discuss boundary handling. Triggs and Sdika [24]
developed constant extension boundary handling when K = 3. Here we develop handling for half-
sample symmetric extension: the left endpoints q0, . . . , qK−1 can be computed with algorithm 2.
Similarly to the boundary handling for Alvarez–Mazorra, the right endpoints uN−K , . . . , uN−1 are
obtained by solving the linear system

uN−m = b0qN−m −
∑K

k=1 akũN−m+k, m = 1, . . . , K. (48)

For example, with K = 3 and half-sample symmetric boundaries, the solution isuN−3uN−2
uN−1

 = b0

 1 a1 a2 + a3
0 1 + a3 a1 + a2
a3 a2 1 + a1

−1qN−3qN−2
qN−1

 . (49)

This leads to an efficient algorithm (algorithm 12) with one forward pass and one backward pass
through the data. Computation may be performed in-place by substituting all occurrences of q and
u with f .

Algorithm 12: Vliet–Young–Verbeek approximation of Gaussian convolution [17]

input : signal f = (f0, f1, . . . , fN−1), standard deviation σ, filter order K, accuracy tol
output: u ≈ gσ ∗ f with symmetric boundary handling
Obtain (dk) from equations (46) and (47)

Compute q0, . . . , qK−1 with accuracy tol using algorithm 2 Causal filter

for n = K, . . . , N − 1 do

qn ← c0fn −
∑K

k=1 akqn−k

Compute uN−K , . . . , uN−1 by solving (48) Anticausal filter

for n = N −K − 1, . . . , 1, 0 do

un ← b0qn −
∑K

k=1 akun+k

Complexity Ignoring boundary initialization, the complexity is O(N). The cost per interior pixel
is 2(K + 1) multiplications and 3K additions.

300

A Survey of Gaussian Convolution Algorithms

4 Experiments

4.1 Impulse Responses

In the following experiments, we compute the response of the methods to the unit impulse when
σ = 5, which should be approximately Gaussian.

Box filtering The impulse response of K passes of box filtering (algorithm 7) is the (K − 1)th
B-spline. The response is more Gaussian-like as K increases (figure 3). Extended box filtering
(algorithm 8) has similar impulse responses, the key difference being that the box radius may be
fractional.

−5r −4r −3r −2r −r 0 r 2r 3r 4r 5r

K = 1
K = 2
K = 3
K = 4
K = 5

K = 1 K = 2 K = 3 K = 4 K = 5

Figure 3: Box filter impulse responses with K passes in one and two dimensions.

SII Stacked integral images (SII) yields a piecewise constant impulse response (figure 4).

−30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30

K = 3 K = 4 K = 5

Figure 4: SII impulse responses in one and two dimensions.

Alvarez–Mazorra For K = 1, the impulse response is νλ
1−ν2ν

|n| and has a sharp peak at n = 0.
The impulse response looks much more Gaussian-like for K = 3 and higher (see figure 5).

Figure 6 compares the original Alvarez–Mazorra method with q = σ to the proposed adjustment
(42) for σ = 5, K = 3. While using q = σ produces a Gaussian-like shape, it is too concentrated.
The impulse response using (42) is more accurate. Further comparisons are made in the next section.

301

Pascal Getreuer

−20 −15 −10 −5 0 5 10 15 20

K = 1
K = 2
K = 3
K = 4
K = 5

K = 1 K = 2 K = 3 K = 4 K = 5

Figure 5: Alvarez–Mazorra impulse responses with K passes in one and two dimensions.

−40 −20 0 20 40

q = σ

q from (41)
Gσ

−40 −20 0 20 40

0

10−2

Figure 6: Effect of q in the Alvarez–Mazorra method. Top: impulse responses. Bottom: impulse
response errors.

302

A Survey of Gaussian Convolution Algorithms

Deriche For K ≥ 3, the difference between the Deriche impulse responses and Gσ is less than 10−3.
Figure 7 plots these differences.

−40 −20 0 20 40

0

10−3

K = 3
K = 4

Figure 7: Deriche impulse errors.

Vliet–Young–Verbeek The Vliet–Young–Verbeek impulse responses are also very accurate, though
not as accurate as Deriche impulse responses of the same order K (see figure 8).

−40 −20 0 20 40

0

10−3

K = 3
K = 4
K = 5

Figure 8: Vliet–Young–Verbeek impulse errors.

5 Comparison

This section compares the accuracy and speed of the algorithms. Accuracy is quantified by the `∞

operator norm. Given linear operators Lexact and L representing the exact and approximate Gaussian
convolutions, the `∞ operator norm is ‖Lexact − L‖∞, defined as the smallest constant such that

‖Lexactf − Lf‖∞ ≤ ‖Lexact − L‖∞‖f‖∞ for any f ∈ `∞. (50)

The exact convolution Lexact is approximated using the FIR method with tol = 10−15.
We measure the accuracy and speed in double-precision arithmetic using the C source code

included with this article running on a recent laptop.5 For DCT-based convolution, the FFTW
library [23] is used to compute the transforms. Note that speed measurements are sensitive to the
platform and code optimizations, so these results should be considered as rough indications.

5.1 Accuracy and Speed for σ = 5

Table 3 compares accuracy and speed under the parameters N = 1000, σ = 5, and boundary
initialization accuracy tol = 10−6. As shorthands, “box” refers to the basic iterated box filter-
ing approximation with Wells’ formula, “ebox” denotes extended box filtering (section 3.3), “AM

303

Pascal Getreuer

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
3
/
0
7
/
1
9

v
0
.4

IP
O
L

a
rt
ic
le

c
la
ss

A Survey of Gaussian Convolution Algorithms

Pascal Getreuer

CMLA, ENS Cachan (getreuer@cmla.ens-cachan.fr)

PREPRINT August 7, 2013

Algorithm `∞ operator norm Time (ms)

FIR, tol = 10−2 3.8034× 10−3 54
DCT 2.9092× 10−15 61

box, K = 3 1.2921× 10−1 12
box, K = 4 6.5507× 10−2 16
box, K = 5 8.9585× 10−2 19

ebox, K = 3 5.1577× 10−2 21
ebox, K = 4 3.7858× 10−2 28
ebox, K = 5 2.7937× 10−2 35
SII, K = 3 2.0229× 10−1 7
SII, K = 4 1.8654× 10−1 9
SII, K = 5 1.7999× 10−1 10
AM orig., K = 3 1.1278× 10−1 34
AM orig., K = 4 8.7869× 10−2 46
AM orig., K = 5 7.2186× 10−2 57
AM, K = 3 7.8317× 10−2 34
AM, K = 4 5.9480× 10−2 46
AM, K = 5 4.8207× 10−2 57

Deriche, K = 2 3.4845× 10−2 15
Deriche, K = 3 4.4986× 10−3 18
Deriche, K = 4 6.2498× 10−4 20
VYV, K = 3 2.1031× 10−2 16
VYV, K = 4 6.7471× 10−3 19
VYV, K = 5 2.3703× 10−3 21

Table 3: Accuracy and speed under the parameters N = 1000, σ = 5, and boundary initialization
accuracy tol = 10−6.

orig.” denotes the original Alvarez–Mazorra method and “AM” with the proposed regression on q
(section 3.5), and “VYV” denotes Vliet–Young–Verbeek (section 3.6).

These results show that at one extreme, SII and box filtering are the fastest Gaussian convolution
algorithms, but with low accuracy. At the other extreme, DCT-based convolution is very accurate
but slow. The algorithms with the most successful speed/accuracy tradeoff are Deriche and VYV.
Deriche appears to be slightly better in both accuracy and speed, though VYV has the advantage
that it may be computed in-place, unlike Deriche.

5.2 Accuracy for varying σ

The images in figure 9 repeat the preceding test with varying σ. We plot σ ∈ [0.5, 25] on the
horizontal axis and the `∞ operator error norm logarithmically on the vertical axis. Line color is
used to indicate parameter K (orange⇒ 2, green⇒ 3, red⇒ 4, blue⇒ 5).

For many algorithms, the error is much higher for σ < 2, then decreases and becomes steady
for σ ≥ 2. FIR filtering is the exception: its error is much lower for small σ, then becomes larger,
though it is always bounded by tol as guaranteed by theorem 1.

DCT-based convolution computes gsinc ∗ f exactly, so aside from numerical imprecision, the error
is entirely due to discrepancy between g and gsinc. For small σ, this difference is significant, but for
σ ≥ 2, the difference is extremely small and the convolution is highly accurate.

The error plot for box filtering is oscillatory, the valleys corresponding to the quantized set of σ
values that it can approximate. SII and extended box filtering have more consistent error for different
σ, though the error is much lower with extended box filtering.

Arguably, some algorithms are simpler to implement than others. Extended box filtering and AM
are attractive as having reasonable accuracy and speed and relatively simple algorithms.

52.40GHz Intel R© CoreTM 2 Duo T7700 with 2GB RAM

304

A Survey of Gaussian Convolution Algorithms

FIR, tol = 10−2

0 5 10 15 20 25
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100 DCT

0 5 10 15 20 25

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100

Box filtering

0 5 10 15 20 25
10−3

10−2

10−1

100 Extended box filtering

0 5 10 15 20 25
10−3

10−2

10−1

100

SII

0 5 10 15 20 25
10−3

10−2

10−1

100

Alvarez–Mazorra original

0 5 10 15 20 25
10−3

10−2

10−1

100 Alvarez–Mazorra

0 5 10 15 20 25
10−3

10−2

10−1

100

Deriche

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100 Vliet–Young–Verbeek

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

Figure 9: `∞ operator error vs. σ ∈ [0.5, 25] for each algorithm. Line color indicates K (orange⇒ 2,
green⇒ 3, red⇒ 4, blue⇒ 5).

305

Pascal Getreuer

5.3 Speed for varying σ

For all algorithms except FIR, the value of σ has negligible effect on run time, testing over the range
[0.5, 25]. In principle, the box filtering methods, Deriche, AM, and VYV depend on σ in the cost
of boundary initialization, but no effect was measured, indicating that the majority of the cost is
filtering the interior samples.

The notable exception is FIR convolution. With fixed tol , its computation time increases linearly
with σ since the filter radius is selected as r = d

√
2 erfc−1(tol/2)σe. Figure 10 shows FIR computation

time vs. σ with tol = 10−2 and N = 1000.

σ
0 5 10 15 20 25

Time (ms)

0

50

100

150

200

250

300

Figure 10: Run time vs. σ for FIR convolution.

5.4 Images

For visual purposes, Gaussian convolution can be approximated with low accuracy. For example,
figure 11 shows that for σ = 5, the SII method with K = 3 produces a result that appears similar to
the exact convolution. Even a single pass of box filtering is a visually convincing approximation.

Accuracy may be more important when the Gaussian convolution is an intermediate step in a
processing chain. Figure 12 plots nine level lines for each of the convolved images. The level lines
are significantly different with the lower-accuracy methods.

As a color example, we perform Gaussian convolution with σ = 5 on a color image by indepen-
dently filtering its RGB channels (figure 13).

6 Conclusion

There is no single Gaussian convolution algorithm that is clearly best; the right choice is a consid-
eration of aspects like accuracy, speed, memory, and ease of implementation. The results from this
survey suggest the following recommendations (where T is a threshold roughly equal to 2):

• For high accuracy, use FIR for σ < T and Deriche or Vliet–Young–Verbeek for σ ≥ T .

• For the best accuracy, use FIR for σ < T and DCT for σ ≥ T .

• For the best speed, use SII or box filtering.

• For ease of implementation, use extended box filtering or Alvarez–Mazorra.

306

A Survey of Gaussian Convolution Algorithms

Input Exact Box filtering, K = 1 SII, K = 3

PSNR ∞ PSNR 41.60 PSNR 45.60

AM, K = 1 Deriche, K = 3 VYV, K = 3

PSNR 44.02 PSNR 53.46 PSNR 58.09

Figure 11: Results of different Gaussian convolution algorithms on a gray-scale image.

Exact Box filtering, K = 1 SII, K = 3

AM, K = 1 Deriche, K = 3 VYV, K = 3

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
3
/
0
7
/
1
9

v
0
.4

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT November 28, 2013

Figure 12: Nine levels for each of the convolved images shown in figure 11.

307

Pascal Getreuer

Input Exact Box filtering, K = 1 SII, K = 3

PSNR ∞ PSNR 43.20 PSNR 47.14

AM, K = 1 Deriche, K = 3 VYV, K = 3

PSNR 45.11 PSNR 54.97 PSNR 59.97

Figure 13: Results of different Gaussian convolution algorithms on a color image.

Image Credits

Standard test image

Photograph courtesy Philip Greenspun (http://philip.greenspun.com)

References

[1] W. Heisenberg, “Über den anschaulichen inhalt der quantentheoretischen kinematic und
mechanik,” Zeit. Physik, vol. 43, no. 172, 1927; The Physical Principles of the Quantum Theory,
Dover Publications, 1930, ISBN:0486601137.

[2] H. Weyl, Gruppentheorie und quantenmechanik, S. Hirzel, Leipzig, 1928; Dover Publications,
1950, ISBN:3534066685.

[3] W.M. Wells, “Efficient synthesis of Gaussian filters by cascaded uniform filters,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 2, pp. 234–239, 1986.
http://dx.doi.org/10.1109/TPAMI.1986.4767776

[4] J. Babaud, A.P. Witkin, M. Baudin, R.O. Duda, “Uniqueness of the Gaussian kernel for scale-
space filtering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 1,
pp. 26–33, 1986. http://dx.doi.org/10.1109/TPAMI.1986.4767749

[5] A.L. Yuille, T.A. Poggio, “Scaling theorems for zero crossings,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8, no. 1, pp. 15–25, 1986. http://dx.doi.org/10.1109/
34.41383

308

http://philip.greenspun.com
http://dx.doi.org/10.1109/TPAMI.1986.4767776
http://dx.doi.org/10.1109/TPAMI.1986.4767749
http://dx.doi.org/10.1109/34.41383
http://dx.doi.org/10.1109/34.41383

A Survey of Gaussian Convolution Algorithms

[6] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986. http://dx.doi.org/10.1109/
TPAMI.1986.4767851

[7] T. Lindeberg, “Scale-space for discrete signals,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 3, 1990. http://dx.doi.org/10.1109/34.49051

[8] P. Duhamel, M. Vetterli, “Fast Fourier transforms: A tutorial review and a state of the art,” Sig-
nal Processing, vol. 19, no. 4, pp. 259–299, 1990. http://dx.doi.org/10.1016/0165-1684(90)
90158-U

[9] K.R. Rao, J. Ben-Ariem “Lattice architectures for multiple-scale Gaussian convolution, image
processing, sinusoid-based transforms and Gabor filtering,” Analog Integrated Circuits and Sig-
nal Processing, vol. 4, no. 2, pp. 141–160, 1993. http://dx.doi.org/10.1007/BF01254865

[10] R. Deriche, “Recursively implementing the Gaussian and its derivatives,” INRIA Research Re-
port 1893, France, 1993. http://hal.inria.fr/docs/00/07/47/78/PDF/RR-1893.pdf

[11] S. Martucci, “Symmetric convolution and the discrete sine and cosine transforms,” IEEE Trans-
actions on Signal Processing SP-42, pp. 1038–1051, 1994. http://dx.doi.org/10.1109/78.
295213

[12] L. Alvarez, L. Mazorra, “Signal and image restoration using shock filters and anisotropic
Diffusion,” SIAM Journal on Numerical Analysis, vol. 31, no. 2, pp. 590–605, 1994. http:

//www.jstor.org/stable/2158018

[13] I.T. Young, L.J. van Vliet, “Recursive implementation of the Gaussian filter,” Signal Processing,
vol. 44, no. 2, pp. 139–151, 1995. http://dx.doi.org/10.1016/0165-1684(95)00020-E

[14] T. Lindeberg, “On the axiomatic foundations of linear scale-space: combining semigroup struc-
ture with causality vs. scale invariance,” In: J. Sporring et al. (eds.), Gaussian Scale-Space
Theory, Kluwer Academic Publishers, pp. 75–98, 1997. ISBN:0792345614.

[15] L. Evans, Partial differential equations, Graduate studies in mathematics, vol. 19, American
Mathematical Society, 1998. ISBN: 0821807722.

[16] B.C. Berndt, Ramanujan’s notebooks, part V, Springer–Verlag, New York, 1998,
ISBN:0387949410.

[17] L.J. van Vliet, I.T. Young, P.W. Verbeek, “Recursive Gaussian derivative filters,” Proceedings
of the 14th International Conference on Pattern Recognition, vol. 1, pp. 509–514, 1998. http:
//dx.doi.org/10.1109/ICPR.1998.711192

[18] D.G. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the Interna-
tional Conference on Computer Vision, vol. 2. pp. 1150–1157, 1999. http://dx.doi.org/10.
1109/ICCV.1999.790410

[19] J. Weickert, S. Ishikawa, A. Imiya, “Linear scale-space has first been proposed in Japan,” Journal
of Mathematical Imaging and Vision, vol. 10, no. 3, pp. 237–252. http://dx.doi.org/10.1023/
A:1008344623873

[20] I.T. Young, L.J. van Vliet, M. van Ginkel, “Recursive Gabor filtering,” IEEE Transactions on
Signal Processing, vol. 50, no. 11, pp. 2798–2805, 2002. http://dx.doi.org/10.1109/TSP.

2002.804095

309

http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/34.49051
http://dx.doi.org/10.1016/0165-1684(90)90158-U
http://dx.doi.org/10.1016/0165-1684(90)90158-U
http://dx.doi.org/10.1007/BF01254865
http://hal.inria.fr/docs/00/07/47/78/PDF/RR-1893.pdf
http://dx.doi.org/10.1109/78.295213
http://dx.doi.org/10.1109/78.295213
http://www.jstor.org/stable/2158018
http://www.jstor.org/stable/2158018
http://dx.doi.org/10.1016/0165-1684(95)00020-E
http://dx.doi.org/10.1109/ICPR.1998.711192
http://dx.doi.org/10.1109/ICPR.1998.711192
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1023/A:1008344623873
http://dx.doi.org/10.1023/A:1008344623873
http://dx.doi.org/10.1109/TSP.2002.804095
http://dx.doi.org/10.1109/TSP.2002.804095

Pascal Getreuer

[21] J. Yi, “Theta-function identities and the explicit formulas for theta-function and their ap-
plications,” Journal of Mathematical Analysis and Applications, vol. 292, pp. 381–400, 2004.
http://dx.doi.org/10.1016/j.jmaa.2003.12.009

[22] S. Tan, J.L. Dale, A. Johnston, “Performance of three recursive algorithms for fast space-variant
Gaussian filtering,” Real-Time Imaging, vol. 9, pp. 215–228, 2003. http://dx.doi.org/10.

1016/S1077-2014(03)00040-8

[23] M. Frigo, S. G. Johnson, “The design and implementation of FFTW3,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 216–231, 2005. http://dx.doi.org/10.1109/JPROC.2004.840301

[24] B. Triggs, M. Sdika, “Boundary conditions for Young–van Vliet recursive filtering,” IEEE Trans-
actions on Signal Processing, vol. 54, no. 6, pp. 2365–2367, 2006. http://dx.doi.org/10.1109/
TSP.2006.871980

[25] G. Amayeh, A. Tavakkoli, G. Bebis, “Accurate and efficient computation of Gabor features in
real-time applications,” Advanced in Visual Computing, Lecture Notes in Computer Science,
vol. 5875/2009, pp. 243-252, 2009, http://dx.doi.org/10.1007/978-3-642-10331-5_23

[26] F. Johansson et al., “mpmath: a Python library for arbitrary-precision floating-point arithmetic
(version 0.14),” 2010. http://code.google.com/p/mpmath

[27] A. Bhatia, W.E. Snyder, G. Bilbro, “Stacked integral image,” IEEE International Conference on
Robotics and Automation (ICRA), pp. 1530–1535, 2010. http://dx.doi.org/10.1109/ROBOT.
2010.5509400

[28] K.N. Chaudhury, A. Muñoz-Barrutia, M. Unser, “Fast space-variant elliptical filtering using
box splines,” IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2290–2306, 2010.
http://dx.doi.org/10.1109/TIP.2010.2046953

[29] E. Elboher, M. Werman, “Efficient and accurate Gaussian image filtering using running sums,”
Computing Research Repository, vol. abs/1107.4958, 2011. http://arxiv.org/abs/1107.4958

[30] P. Gwosdek, S. Grewenig, A. Bruhn, J. Weickert, “Theoretical foundations of Gaussian
convolution by extended box filtering,” International Conference on Scale Space and Vari-
ational Methods in Computer Vision, pp. 447–458, 2011. http://dx.doi.org/10.1007/

978-3-642-24785-9_38

[31] The NAG Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom. http:
//www.nag.co.uk

310

http://dx.doi.org/10.1016/j.jmaa.2003.12.009
http://dx.doi.org/10.1016/S1077-2014(03)00040-8
http://dx.doi.org/10.1016/S1077-2014(03)00040-8
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/TSP.2006.871980
http://dx.doi.org/10.1109/TSP.2006.871980
http://dx.doi.org/10.1007/978-3-642-10331-5_23
http://code.google.com/p/mpmath
http://dx.doi.org/10.1109/ROBOT.2010.5509400
http://dx.doi.org/10.1109/ROBOT.2010.5509400
http://dx.doi.org/10.1109/TIP.2010.2046953
http://arxiv.org/abs/1107.4958
http://dx.doi.org/10.1007/978-3-642-24785-9_38
http://dx.doi.org/10.1007/978-3-642-24785-9_38
http://www.nag.co.uk
http://www.nag.co.uk

	Introduction
	Notations
	Properties

	Discretization and Boundary Handling
	Discretizations of the Gaussian
	Boundary Handling
	Multidimensional Convolution

	Methods
	FIR Filtering
	DFT/DCT Convolution
	DFT-based Convolution
	DCT-based Convolution

	Box
	Deriche
	Alvarez-Mazorra
	Vliet-Young-Verbeek

	Experiments
	Impulse Responses

	Comparison
	Accuracy and Speed for sigma = 5
	Accuracy for varying sigma
	Speed for varying sigma
	Images

	Conclusion

