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Abstract

In this article, we decipher the Viola-Jones algorithm, the first ever real-time face detection
system. There are three ingredients working in concert to enable a fast and accurate detection:
the integral image for feature computation, Adaboost for feature selection and an attentional
cascade for efficient computational resource allocation. Here we propose a complete algorithmic
description, a learning code and a learned face detector that can be applied to any color image.
Since the Viola-Jones algorithm typically gives multiple detections, a post-processing step is
also proposed to reduce detection redundancy using a robustness argument.

Source Code

The source code and the online demo are accessible at the IPOL web page of this article1.
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1 Introduction

A face detector has to tell whether an image of arbitrary size contains a human face and if so, where
it is. One natural framework for considering this problem is that of binary classification, in which
a classifier is constructed to minimize the misclassification risk. Since no objective distribution can
describe the actual prior probability for a given image to have a face, the algorithm must minimize
both the false negative and false positive rates in order to achieve an acceptable performance.

This task requires an accurate numerical description of what sets human faces apart from other
objects. It turns out that these characteristics can be extracted with a remarkable committee learn-
ing algorithm called Adaboost, which relies on a committee of weak classifiers to form a strong
one through a voting mechanism. A classifier is weak if, in general, it cannot meet a predefined
classification target in error terms.

An operational algorithm must also work with a reasonable computational budget. Techniques
such as integral image and attentional cascade make the Viola-Jones algorithm [10] highly efficient:
fed with a real time image sequence generated from a standard webcam, it performs well on a
standard PC.

1https://doi.org/10.5201/ipol.2014.104
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2 Algorithm

To study the algorithm in detail, we start with the image features for the classification task.

2.1 Features and Integral Image

The Viola-Jones algorithm uses Haar-like features, that is, a scalar product between the image and
some Haar-like templates. More precisely, let I and P denote an image and a pattern, both of the
same size N ×N (see Figure 1). The feature associated with pattern P of image I is defined by∑

1≤i≤N

∑
1≤j≤N

I(i, j)1P (i,j) is white −
∑

1≤i≤N

∑
1≤j≤N

I(i, j)1P (i,j) is black.

To compensate the effect of different lighting conditions, all the images should be mean and
variance normalized beforehand. Those images with variance lower than one, having little information
of interest in the first place, are left out of consideration.

(a) (b) (c)

Figure 1: Haar-like features. Here as well as below, the background of a template like (b) is painted
gray to highlight the pattern’s support. Only those pixels marked in black or white are used when
the corresponding feature is calculated.

(a) (b) (c) (d) (e)

Figure 2: Five Haar-like patterns. The size and position of a pattern’s support can vary provided
its black and white rectangles have the same dimension, border each other and keep their relative
positions. Thanks to this constraint, the number of features one can draw from an image is somewhat
manageable: a 24 × 24 image, for instance, has 43200, 27600, 43200, 27600 and 20736 features of
category (a), (b), (c), (d) and (e) respectively, hence 162336 features in all.

In practice, five patterns are considered (see Figure 2 and Algorithm 1). The derived features
are assumed to hold all the information needed to characterize a face. Since faces are by and large
regular by nature, the use of Haar-like patterns seems justified. There is, however, another crucial
element which lets this set of features take precedence: the integral image which allows to calculate
them at a very low computational cost. Instead of summing up all the pixels inside a rectangular
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Algorithm 1 Computing a 24× 24 image’s Haar-like feature vector

1: Input: a 24× 24 image with zero mean and unit variance
2: Output: a d× 1 scalar vector with its feature index f ranging from 1 to d
3: Set the feature index f← 0
4: Compute feature type (a)
5: for all (i, j) such that 1 ≤ i ≤ 24 and 1 ≤ j ≤ 24 do
6: for all (w, h) such that i+ h− 1 ≤ 24 and j + 2w − 1 ≤ 24 do
7: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
8: compute the sum S2 of the pixels in [i, i+ h− 1]× [j + w, j + 2w − 1]
9: record this feature parametrized by (1, i, j, w, h): S1 − S2

10: f← f + 1
11: end for
12: end for
13: Compute feature type (b)
14: for all (i, j) such that 1 ≤ i ≤ 24 and 1 ≤ j ≤ 24 do
15: for all (w, h) such that i+ h− 1 ≤ 24 and j + 3w − 1 ≤ 24 do
16: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
17: compute the sum S2 of the pixels in [i, i+ h− 1]× [j + w, j + 2w − 1]
18: compute the sum S3 of the pixels in [i, i+ h− 1]× [j + 2w, j + 3w − 1]
19: record this feature parametrized by (2, i, j, w, h): S1 − S2 + S3
20: f← f + 1
21: end for
22: end for
23: Compute feature type (c)
24: for all (i, j) such that 1 ≤ i ≤ 24 and 1 ≤ j ≤ 24 do
25: for all (w, h) such that i+ 2h− 1 ≤ 24 and j + w − 1 ≤ 24 do
26: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
27: compute the sum S2 of the pixels in [i+ h, i+ 2h− 1]× [j, j + w − 1]
28: record this feature parametrized by (3, i, j, w, h): S1 − S2
29: f← f + 1
30: end for
31: end for
32: Compute feature type (d)
33: for all (i, j) such that 1 ≤ i ≤ 24 and 1 ≤ j ≤ 24 do
34: for all (w, h) such that i+ 3h− 1 ≤ 24 and j + w − 1 ≤ 24 do
35: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
36: compute the sum S2 of the pixels in [i+ h, i+ 2h− 1]× [j, j + w − 1]
37: compute the sum S3 of the pixels in [i+ 2h, i+ 3h− 1]× [j, j + w − 1]
38: record this feature parametrized by (4, i, j, w, h): S1 − S2 + S3
39: f← f + 1
40: end for
41: end for
42: Compute feature type (e)
43: for all (i, j) such that 1 ≤ i ≤ 24 and 1 ≤ j ≤ 24 do
44: for all (w, h) such that i+ 2h− 1 ≤ 24 and j + 2w − 1 ≤ 24 do
45: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
46: compute the sum S2 of the pixels in [i+ h, i+ 2h− 1]× [j, j + w − 1]
47: compute the sum S3 of the pixels in [i, i+ h− 1]× [j + w, j + 2w − 1]
48: compute the sum S4 of the pixels in [i+ h, i+ 2h− 1]× [j + w, j + 2w − 1]
49: record this feature parametrized by (5, i, j, w, h): S1 − S2 − S3 + S4
50: f← f + 1
51: end for

52: end for
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window, this technique mirrors the use of cumulative distribution functions. The integral image II
of I

II(i, j) :=

{∑
1≤s≤i

∑
1≤t≤j I(s, t), 1 ≤ i ≤ N and 1 ≤ j ≤ N

0, otherwise
,

is so defined that∑
N1≤i≤N2

∑
N3≤j≤N4

I(i, j) = II(N2, N4)− II(N2, N3 − 1)− II(N1 − 1, N4) + II(N1 − 1, N3 − 1), (1)

holds for all N1 ≤ N2 and N3 ≤ N4. As a result, computing an image’s rectangular local sum requires
at most four elementary operations given its integral image. Moreover, obtaining the integral image
itself can be done in linear time: setting N1 = N2 and N3 = N4 in (1), we find

I(N1, N3) = II(N1, N3)− II(N1, N3 − 1)− II(N1 − 1, N3) + II(N1 − 1, N3 − 1).

Hence a recursive relation which leads to Algorithm 2.

Algorithm 2 Integral Image

1: Input: an image I of size N ×M .
2: Output: its integral image II of the same size.
3: Set II(1, 1) = I(1, 1).
4: for i = 1 to N do
5: for j = 1 to M do
6: II(i, j) = I(i, j) + II(i, j − 1) + II(i − 1, j) − II(i − 1, j − 1) and II is defined to be zero

whenever its argument (i, j) ventures out of I’s domain.
7: end for
8: end for

As a side note, let us mention that once the useful features have been selected by the boosting
algorithm, one needs to scale them up accordingly when dealing with a bigger window (see Algo-
rithm 3). Smaller windows, however, will not be looked at.

2.2 Feature Selection with Adaboost

How to make sense of these features is the focus of Adaboost [1].
Some terminology. A classifier maps an observation to a label valued in a finite set. For face

detection, it assumes the form of f : Rd 7→ {−1, 1}, where 1 means that there is a face and −1 the
contrary (see Figure 3) and d is the number of Haar-like features extracted from an image. Given
the probabilistic weights w· ∈ R+ assigned to a training set made up of n observation-label pairs
(xi, yi), Adaboost aims to iteratively drive down an upper bound of the empirical loss

n∑
i=1

wi1yi 6=f(xi),

under mild technical conditions (see Appendix A). Remarkably, the decision rule constructed by
Adaboost remains reasonably simple so that it is not prone to overfitting, which means that the
empirically learned rule often generalizes well. For more details on the method, we refer to [2, 3].
Despite its groundbreaking success, it ought to be said that Adaboost does not learn what a face
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Algorithm 3 Feature Scaling

1: Input: an e× e image with zero mean and unit variance (e ≥ 24)
2: Parameter: a Haar-like feature type and its parameter (i, j, w, h) as defined in Algorithm 1
3: Output: the feature value
4: if feature type (a) then
5: set the original feature support size a← 2wh
6: i← Jie/24K, j ← Jje/24K, h← Jhe/24K where JzK defines the nearest integer to z ∈ R+

7: w ← max{κ ∈ N : κ ≤ J1 + 2we/24K/2, 2κ ≤ e− j + 1}
8: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
9: compute the sum S2 of the pixels in [i, i+ h− 1]× [j + w, j + 2w − 1]

10: return the scaled feature (S1−S2)a
2wh

11: end if
12: if feature type (b) then
13: set the original feature support size a← 3wh
14: i← Jie/24K, j ← Jje/24K, h← Jhe/24K
15: w ← max{κ ∈ N : κ ≤ J1 + 3we/24K/3, 3κ ≤ e− j + 1}
16: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
17: compute the sum S2 of the pixels in [i, i+ h− 1]× [j + w, j + 2w − 1]
18: compute the sum S2 of the pixels in [i, i+ h− 1]× [j + 2w, j + 3w − 1]

19: return the scaled feature (S1−S2+S3)a
3wh

20: end if
21: if feature type (c) then
22: set the original feature support size a← 2wh
23: i← Jie/24K, j ← Jje/24K, w ← Jwe/24K
24: h← max{κ ∈ N : κ ≤ J1 + 2he/24K/2, 2κ ≤ e− i+ 1}
25: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
26: compute the sum S2 of the pixels in [i+ h, i+ 2h− 1]× [j, j + w − 1]

27: return the scaled feature (S1−S2)a
2wh

28: end if
29: if feature type (d) then
30: set the original feature support size a← 3wh
31: i← Jie/24K, j ← Jje/24K, w ← Jwe/24K
32: h← max{κ ∈ N : κ ≤ J1 + 3he/24K/3, 3κ ≤ e− i+ 1}
33: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
34: compute the sum S2 of the pixels in [i+ h, i+ 2h− 1]× [j, j + w − 1]
35: compute the sum S3 of the pixels in [i+ 2h, i+ 3h− 1]× [j, j + w − 1]

36: return the scaled feature (S1−S2+S3)a
3wh

37: end if
38: if feature type (e) then
39: set the original feature support size a← 4wh
40: i← Jie/24K, j ← Jje/24K
41: w ← max{κ ∈ N : κ ≤ J1 + 2we/24K/2, 2κ ≤ e− j + 1}
42: h← max{κ ∈ N : κ ≤ J1 + 2he/24K/2, 2κ ≤ e− i+ 1}
43: compute the sum S1 of the pixels in [i, i+ h− 1]× [j, j + w − 1]
44: compute the sum S2 of the pixels in [i+ h, i+ 2h− 1]× [j, j + w − 1]
45: compute the sum S3 of the pixels in [i, i+ h− 1]× [j + w, j + 2w − 1]
46: compute the sum S4 of the pixels in [i+ h, i+ 2h− 1]× [j + w, j + 2w − 1]

47: return the scaled feature (S1−S2−S3+S4)a
4wh

48: end if
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(a) (b)

Figure 3: Some supervised examples: (a) positive examples (b) negative examples. All of them are
24× 24 grayscale images. See Section 2.4 for more on this dataset.

should look like all by itself because it is humans, rather than the algorithm, who perform the labeling
and the first round of feature selection, as described in the previous section.

The building block of the Viola-Jones face detector is a decision stump, or a depth one decision
tree, parametrized by a feature f ∈ {1, · · · , d}, a threshold t ∈ R and a toggle T ∈ {−1, 1}. Given
an observation x ∈ Rd, a decision stump h predicts its label using the following rule

h(x) = (1πfx≥t − 1πfx<t)T = (1πfx≥t − 1πfx<t)1T =1 + (1πfx<t − 1πfx≥t)1T =−1 ∈ {−1, 1}, (2)

where πfx is the feature vector’s f-th coordinate. Several comments follow:

1. Any additional pattern produced by permuting black and white rectangles in an existing pattern
(see Figure 2) is superfluous. Because such a feature is merely the opposite of an existing
feature, only a sign change for t and T is needed to have the same classification rule.

2. If the training examples are sorted in ascending order of a given feature f, a linear time ex-
haustive search on the threshold and toggle can find a decision stump using this feature that
attains the lowest empirical loss

n∑
i=1

wi1yi 6=h(xi), (3)

on the training set (see Algorithm 4). Imagine a threshold placed somewhere on the real line,
if the toggle is set to 1, the resulting rule will declare an example x positive if πfx is greater
than the threshold and negative otherwise. This allows us to evaluate the rule’s empirical error,
thereby selecting the toggle that fits the dataset better (lines 8–16 of Algorithm 4).

Since margin

min
i: yi=−1

|πfxi − t|+ min
i: yi=1

|πfxi − t|,

and risk, or the expectation of the empirical loss (3), are closely related [3, 6, 7], of two decision
stumps having the same empirical risk, the one with a larger margin is preferred (line 14 of
Algorithm 4). Thus in the absence of duplicates, there are n + 1 possible thresholds and the
one with the smallest empirical loss should be chosen. However it is possible to have the same
feature values from different examples and extra care must be taken to handle this case properly
(lines 27–32 of Algorithm 4).
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Algorithm 4 Decision Stump by Exhaustive Search

1: Input: n training examples arranged in ascending order of feature πfxi: πfxi1 ≤ πfxi2 ≤ · · · ≤
πfxin , probabilistic example weights (wk)1≤k≤n.

2: Output: the decision stump’s threshold τ , toggle T , error E and margin M.
3: Initialization: τ ← min1≤i≤n πfxi − 1, M ← 0 and E ← 2 (an arbitrary upper bound of the

empirical loss).
4: Sum up the weights of the positive (resp. negative) examples whose f-th feature is bigger than

the present threshold: W+
1 ←

∑n
i=1wi1yi=1 (resp. W+

−1 ←
∑n

i=1wi1yi=−1).
5: Sum up the weights of the positive (resp. negative) examples whose f-th feature is smaller than

the present threshold: W−
1 ← 0 (resp. W−

−1 ← 0).

6: Set iterator j ← 0, τ̂ ← τ and M̂ ←M.
7: while true do
8: Select the toggle to minimize the weighted error: error+ ← W−

1 +W+
−1 and error− ← W+

1 +W−
−1.

9: if error+ < error− then
10: Ê ← error+ and T̂ ← 1.
11: else
12: Ê ← error− and T̂ ← −1.
13: end if
14: if Ê < E or Ê = E & M̂ >M then
15: E ← Ê , τ ← τ̂ , M← M̂ and T ← T̂ .
16: end if
17: if j = n then
18: Break.
19: end if
20: j ← j + 1.
21: while true do
22: if yij = −1 then
23: W−

−1 ← W−
−1 + wij and W+

−1 ← W+
−1 − wij .

24: else
25: W−

1 ← W−
1 + wij and W+

1 ← W+
1 − wij .

26: end if
27: To find a new valid threshold, we need to handle duplicate features.
28: if j = n or πfxij 6= πfxij+1

then
29: Break.
30: else
31: j ← j + 1.
32: end if
33: end while
34: if j = n then
35: τ̂ ← max1≤i≤n πfxi + 1 and M̂ ← 0.
36: else
37: τ̂ ← (πfxij + πfxij+1

)/2 and M̂ ← πfxij+1
− πfxij .

38: end if
39: end while
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Algorithm 5 Best Stump

1: Input: n training examples, their probabilistic weights (wi)1≤i≤n, number of features d.
2: Output: the best decision stump’s threshold, toggle, error and margin.
3: Set the best decision stump’s error to 2.
4: for f = 1 to d do
5: Compute the decision stump associated with feature f using Algorithm 4.
6: if this decision stump has a lower weighted error (3) than the best stump or a wider margin

if the weighted error are the same then
7: set this decision stump to be the best.
8: end if
9: end for

Algorithm 6 Adaboost

1: Input: n training examples (xi, yi) ∈ Rd × {−1, 1}, 1 ≤ i ≤ n, number of training rounds T .
2: Parameter: the initial probabilistic weights wi(1) for 1 ≤ i ≤ n.
3: Output: a strong learner/committee.
4: for t = 1 to T do
5: Run Algorithm 5 to train a decision stump ht using the weights w·(t) and get its weighted

error εt

εt =
n∑
i=1

wi(t)1ht(xi)6=yi ,

6: if εt = 0 and t = 1 then
7: training ends and return h1(·).
8: else
9: set αt = 1

2
ln(1−εt

εt
).

10: update the weights

∀i, wi(t+ 1) =
wi(t)

2

( 1

εt
1ht(xi)6=yi +

1

1− εt
1ht(xi)=yi

)
.

11: end if
12: end for
13: Return the rule

fT (·) = sign
[ T∑
t=1

αtht(·)
]
.
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By adjusting individual example weights (Algorithm 6 line 10), Adaboost makes more effort to
learn harder examples and adds more decision stumps (see Algorithm 5) in the process. Intuitively,
in the final voting, a stump ht with lower empirical loss is rewarded with a bigger say (a higher
αt, see Algorithm 6 line 9) when a T -member committee (vote-based classifier) assigns an example
according to

fT (·) = sign
[ T∑
t=1

αtht(·)
]
.

How the training examples should be weighed is explained in detail in Appendix A. Figure 4 shows
an instance where Adaboost reduces false positive and false negative rates simultaneously as more
and more stumps are added to the committee. For notational simplicity, we denote the empirical
loss by

n∑
i=1

wi(1)1yi
∑T

t=1 αtht(xi)≤0 := P(fT (X) 6= Y ),

where (X, Y ) is a random couple distributed according to the probability P defined by the weights
wi(1), 1 ≤ i ≤ n set when the training starts. As the empirical loss goes to zero with T , so do both
false positive P(fT (X) = 1|Y = −1) and false negative rates P(fT (X) = −1|Y = 1) owing to

P(fT (X) 6= Y ) = P(Y = 1)P(fT (X) = −1|Y = 1) + P(Y = −1)P(fT (X) = 1|Y = −1).

Thus the detection rate

P(fT (X) = 1|Y = 1) = 1− P(fT (X) = −1|Y = 1),

must tend to 1.
Thus the size T of the trained committee depends on the targeted false positive and false negative

rates. In addition, let us mention that, given n− negative and n+ positive examples in a training
pool, it is customary to give a negative (resp. positive) example an initial weight equal to 0.5/n−
(resp. 0.5/n+) so that Adaboost does not favor either category at the beginning.

2.3 Attentional Cascade

In theory, Adaboost can produce a single committee of decision stumps that generalizes well. How-
ever, to achieve that, an enormous negative training set is needed at the outset to gather all possible
negative patterns. In addition, a single committee implies that all the windows inside an image have
to go through the same lengthy decision process. There has to be another more cost-efficient way.

The prior probability for a face to appear in an image bears little relevance to the presented
classifier construction because it requires both the empirical false negative and false positive rate to
approach zero. However, our own experience tells us that in an image, a rather limited number of
sub-windows deserve more attention than others. This is true even for face-intensive group photos.
Hence the idea of a multi-layer attentional cascade which embodies a principle akin to that of Shannon
coding: the algorithm should deploy more resources to work on those windows more likely to contain
a face while spending as little effort as possible on the rest.

Each layer in the attentional cascade is expected to meet a training target expressed in false
positive and false negative rates: among n negative examples declared positive by all of its preceding
layers, layer l ought to recognize at least (1− γl)n as negative and meanwhile try not to sacrifice its
performance on the positives: the detection rate should be maintained above 1− βl.
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(a) (b)

Figure 4: Algorithm 6 ran with equally weighted 2500 positive and 2500 negative examples. Figure
(a) shows that the empirical risk and its upper bound, interpreted as the exponential loss (see
Appendix A), decrease steadily over iterations. This implies that false positive and false negative
rates must also decrease, as observed in (b).

At the end of the day, only the generalization error counts which unfortunately can only be
estimated with some validation examples that Adaboost is not allowed to see at the training phase.
Hence in Algorithm 10 at line 10, a conservative choice is made as to how one assesses the error rates:
the higher false positive rate obtained from training and validation is used to evaluate how well the
algorithm has learned to distinguish faces from non-faces. The false negative rate is assessed in the
same way.

It should be kept in mind that Adaboost by itself does not favor either error rate: it aims to
reduce both simultaneously rather than one at the expense of the other. To allow flexibility, one
additional control s ∈ [−1, 1] is introduced to shift the classifier

fTs (·) = sign
[ T∑
t=1

αt
(
ht(·) + s

)]
, (4)

so that a strictly positive s makes the classifier more inclined to predict a face and vice versa.
To enforce an efficient resource allocation, the committee size should be small in the first few

layers and then grow gradually so that a large number of easy negative patterns can be eliminated
with little computational effort (see Figure 5).

Appending a layer to the cascade means that the algorithm has learned to reject a few new
negative patterns previously viewed as difficult, all the while keeping more or less the same positive
training pool. To build the next layer, more negative examples are thus required to make the training
process meaningful. To replace the detected negatives, we run the cascade on a large set of gray
images with no human face and collect their false positive windows. The same procedure is used for
constructing and replenishing the validation set (see Algorithm 7). Since only 24×24 sized examples
can be used in the training phase, those bigger false positives are down-sampled (Algorithm 8) and
recycled using Algorithm 9.

Assume that at layer l, a committee of Tl weak classifiers is formed along with a shift s so that the
classifier’s performance on training and validation set can be measured. Let us denote the achieved
false positive and false negative rate by γ̂l and β̂l. Depending on their relation with the targets γl
and βl, four cases are presented:

1. If the layer training target is fulfilled (Algorithm 10 line 11: γ̂l ≤ γl and β̂l ≤ βl), the algorithm
moves on to training the next layer if necessary.
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Algorithm 7 Detecting faces with an Adaboost trained cascade classifier

1: Input: an M × N grayscale image I and an L-layer cascade of shifted classifiers trained using
Algorithm 10

2: Parameter: a window scale multiplier c
3: Output: P , the set of windows declared positive by the cascade
4: Set P = {[i, i+ e− 1]× [j, j + e− 1] ⊂ I : e = J24cκK, κ ∈ N}
5: for l = 1 to L do
6: for every window in P do
7: Remove the windowed image’s mean and compute its standard deviation.
8: if the standard deviation is bigger than 1 then
9: divide the image by this standard deviation and compute its features required by the

shifted classifier at layer l with Algorithm 3
10: if the cascade’s l-th layer predicts negative then
11: discard this window from P
12: end if
13: else
14: discard this window from P
15: end if
16: end for
17: end for
18: Return P

Algorithm 8 Downsampling a square image

1: Input: an e× e image I (e > 24)
2: Output: a downsampled image O of dimension 24× 24
3: Blur I using a Gaussian kernel with standard deviation σ = 0.6

√
( e
24

)2 − 1
4: Allocate a matrix O of dimension 24× 24
5: for i = 0 to 23 do
6: for j = 0 to 23 do
7: Compute the scaled coordinates ĩ← e−1

25
(i+ 1), j̃ ← e−1

25
(j + 1)

8: Set ĩmax ← min(J̃iK + 1, e − 1), ĩmin ← max(0, J̃iK), j̃max ← min(Jj̃K + 1, e − 1), j̃min ←
max(0, Jj̃K)

9: Set O(i, j) = 1
4

[
I (̃imax, j̃max) + I (̃imin, j̃max) + I (̃imin, j̃min) + I (̃imax, j̃min)

]
10: end for
11: end for
12: Return O
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Algorithm 9 Collecting false positive examples for training a cascade’s (L+ 1)-th layer

1: Input: a set of grayscale images with no human faces and an L-layer cascade of shifted classifiers

2: Parameter: a window scale multiplier c
3: Output: a set of false positive examples V
4: for every grayscale image do
5: Run Algorithm 7 to get all of its false positives Q
6: for every windowed image in Q do
7: if the window size is bigger than 24× 24 then
8: downsample this subimage using Algorithm 8 and run Algorithm 7 on it
9: if the downsampled image remains positive then

10: accept this false positive to V
11: end if
12: else
13: accept this false positive to V
14: end if
15: end for
16: end for
17: Return V

2. If there is room to improve the detection rate (Algorithm 10 line 13: γ̂l ≤ γl and β̂l > βl), s is
increased by u, a prefixed unit.

3. If there is room to improve the false positive rate (Algorithm 10 line 20: γ̂l > γl and β̂l ≤ βl),
s is decreased by u.

4. If both error rates fall short of the target (Algorithm 10 line 27: γ̂l > γl and β̂l > βl), the
algorithm, if the current committee does not exceed a prefixed layer specific size limit, trains
one more member to add to the committee.

Special attention should be paid here: the algorithm could alternate between case 2 and 3 and create
a dead loop. A solution is to halve the unit u every time it happens until u becomes smaller than
10−5. When it happens, one more round of training at this layer is recommended.

As mentioned earlier, to prevent a committee from growing too big, the algorithm stops refining
its associated layer after a layer dependent size limit is breached (Algorithm 10 line 28). In this case,
the shift s is set to the smallest value that satisfies the false negative requirement. A harder learning
case is thus deferred to the next layer. This strategy works because Adaboost’s inability to meet
the training target can often be explained by the fact that a classifier trained on a limited number
of examples might not generalize well on the validation set. However, those hard negative patterns
should ultimately appear and be learned if the training goes on, albeit one bit at a time.

To analyze how well the cascade does, let us assume that at layer l, Adaboost can deliver a
classifier fTll,sl with false positive γl and detection rate 1− βl. In probabilistic terms, it means

P(fTll,sl(X) = 1|Y = 1) ≥ 1− βl and P(fTll,sl(X) = 1|Y = −1) ≤ γl,

where by abuse of notation we keep P to denote the probability on some image space. If Algorithm 10
halts at the end of L iterations, the decision rule is

fcascade(X) = 2
( L∏
l=1

1
f
Tl
l,sl

(X)=1
− 1

2

)
.
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Algorithm 10 Attentional Cascade
1: Input: n training positives, m validation positives, two sets of gray images with no human faces to

draw training and validation negatives, desired overall false positive rate γo, and targeted layer false
positive and detection rate γl and 1− βl.

2: Parameter: maximum committee size at layer l: Nl = min(10l + 10, 200).
3: Output: a cascade of committees.
4: Set the attained overall false positive rate γ̂o ← 1 and layer count l← 0.
5: Randomly draw 10n negative training examples and m negative validation examples.
6: while γ̂o > γo do
7: u← 10−2, l← l + 1, sl ← 0, and Tl ← 1.
8: Run Algorithm 6 on the training set to produce a classifier fTll = sign

[∑Tl
t=1 αtht

]
.

9: Run the sl-shifted classifier fTll,sl = sign
[∑Tl

t=1 αt
(
ht + sl

)]
, on both the training and validation set to

obtain the empirical and generalized false positive (resp. false negative) rate γe and γg (resp. βe and
βg).

10: γ̂l ← max(γe, γg) and β̂l ← max(βe, βg).

11: if γ̂l ≤ γl and 1− β̂l ≥ 1− βl then
12: γ̂o ← γ̂o × γ̂l.
13: else if γ̂l ≤ γl, 1− β̂l < 1− βl and u > 10−5 (there is room to improve the detection rate) then
14: sl ← sl + u.
15: if the trajectory of sl is not monotone then
16: u← u/2.
17: sl ← sl − u.
18: end if
19: Go to line 9.
20: else if γ̂l > γl, 1− β̂l ≥ 1− βl and u > 10−5 (there is room to improve the false positive rate) then
21: sl ← sl − u.
22: if the trajectory of sl is not monotone then
23: u← u/2.
24: sl ← sl + u.
25: end if
26: Go to line 9.
27: else
28: if Tl > Nl then
29: sl ← −1
30: while 1− β̂l < 0.99 do
31: Run line 9 and 10.
32: end while
33: γ̂o ← γ̂o × γ̂l.
34: else
35: Tl ← Tl + 1 (Train one more member to add to the committee.)
36: Go to line 8.
37: end if
38: end if
39: Remove the false negatives and true negatives detected by the current cascade

fcascade(X) = 2
( l∏
p=1

1
f
Tp
p,sp (X)=1

− 1

2

)
.

Use this cascade with Algorithm 9 to draw some false positives so that there are n training negatives
and m validation negatives for the next round.

40: end while

41: Return the cascade.
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A window is thus declared positive if and only if all its component layers hold the same opinion

P(fcascade(X) = 1|Y = −1)

=P(
L⋂
l=1

{fTll,sl(X) = 1}|Y = −1)

=P(fTLL,sL(X) = 1|
L−1⋂
l=1

{fTll,sl(X) = 1} and Y = −1)P(
L−1⋂
l=1

{fTll,sl(X) = 1}|Y = −1)

≤γlP(
L−1⋂
l=1

{fTll,sl(X) = 1}|Y = −1)

≤γLl .

Likewise, the overall detection rate can be estimated as follows

P(fcascade(X) = 1|Y = 1)

=P(
L⋂
l=1

{fTll,sl(X) = 1}|Y = 1)

=P(fTLL,sL(X) = 1|
L−1⋂
l=1

{fTll,sl(X) = 1} and Y = 1)P(
L−1⋂
l=1

{fTll,sl(X) = 1}|Y = 1)

≥(1− βl)P(
L−1⋂
l=1

{fTll,sl(X) = 1}|Y = 1)

≥(1− βl)L.

In other words, if the empirically obtained rates are any indication, a faceless window will have a
probability higher than 1−γl to be labeled as such at each layer, which effectively directs the cascade
classifier’s attention on those more likely to have a face (see Figure 6).

2.4 Dataset and Experiments

A few words on the actual cascade training carried out on a 8-core Linux machine with 48G memory.
We first downloaded 2897 different images without human faces from [4, 9, 5], National Oceanic and
Atmospheric Administration (NOAA) Photo Library2 and European Southern Observatory3. They
were divided into two sets containing 2451 and 446 images respectively for training and validation.
1000 training and 1000 validation positive examples from an online source4 were used. The training
process lasted for around 24 hours before producing a 31-layer cascade. It took this long because it
became harder to get 2000 false positives (1000 for training and 1000 for validation) using Algorithm 9
with a more discriminative cascade: the algorithm needed to examine more images before it could
come across enough good examples. The targeted false positive and false negative rate for each layer
were set to 0.5 and 0.995 respectively and Figure 7 shows how the accumulated false positive rate as
defined at line 12 and 33 of Algorithm 10 evolves together with the committee size. The fact that
the later layers required more intensive training also contributed to a long training phase.

2http://www.photolib.noaa.gov/
3http://www.eso.org/public/images/
4http://www.cs.wustl.edu/~pless/559/Projects/faceProject.html
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 5: A selection of negative training examples at round 21 (a) (b) (c) (d) (e) (f), round 26 (g)
(h) (i) (j) (k) (l), round 27 (m) (n) (o) (p) (q) (r), round 28 (s) (t) (u) (v) (w) (x). Observe how the
negative training examples become increasingly difficult to discriminate from real faces.

3 Post-Processing

Figure 6(d) and Figure 8(a) show that the same face can be detected multiple times by a correctly
trained cascade. This should come as no surprise as the positive examples (see Figure 3(a)) do
allow a certain flexibility in pose and expression. On the contrary, many false positives do not enjoy
this stability, despite the fact that taken out of context, some of them do look like a face (also see
Figure 5). This observation lends support to the following detection confidence based heuristics for
further reducing false positives and cleaning up the detected result (see Algorithm 11):

1. A detected window contains a face if and only if a sufficient number of other adjacent detected
windows of the same size confirm it. To require windows of exactly the same size is not stringent
because the test window sizes are quantified (see Algorithm 7 line 2). In this implementation,
the window size multiplier is 1.5. Two e×e detected windows are said to be adjacent if and only
if between the upper left corners of these two windows there is a path formed by the upper left
corners of some detected windows of the same size. This condition is easily checked with the
connected component algorithm5 [8]. The number of test windows detecting a face is presumed
to grow linearly with its size. This suggests the quotient of the cardinality of a connected
component of adjacent windows by their common size e as an adequate confidence measure.

5We obtained a version from http://alumni.media.mit.edu/~rahimi/connected/.
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(a) (b)

(c) (d)

Figure 6: How the trained cascade performs with (a) 16 layers, (b) 21 layers, (c) 26 layers and (d)
31 layers: the more layers, the less false positives.

This quotient is then compared to the scale invariant threshold empirically set at 3/24, which
means that to confirm the detection of a face of size 24× 24, three adjacent detected windows
are sufficient.

2. It is possible for the remaining detected windows to overlap after the previous test. In this
case, we distinguish two scenarios (Algorithm 11 line 15–25):

(a) If the smaller window’s center is outside the bigger one, keep both.

(b) Keep the one with higher detection confidence otherwise.

Finally, to make the detector slightly more rotation-invariant, in this implementation, we de-
cided to run Algorithm 7 three times, once on the input image, once on a clockwise rotated image
and once on an anti-clockwise rotated image before post-processing all the detected windows (see
Algorithm 12). In addition, when available, color also conveys valuable information to help further
eliminate false positives. Hence in the current implementation, after the robustness test, an op-
tion is offered as to whether color images should be post-processed with this additional step (see
Algorithm 13). If so, a detected window is declared positive only if it passes both tests.
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Algorithm 11 Post-Processing

1: Input: a set G windows declared positive on an M ×N grayscale image
2: Parameter: minimum detection confidence threshold r
3: Output: a reduced set of positive windows P
4: Create an M ×N matrix E filled with zeros.
5: for each window w ∈ G do
6: Take w’s upper left corner coordinates (i, j) and its size e and set E(i, j)← e
7: end for
8: Run a connected component algorithm on E.
9: for each component C formed by |C| detected windows of dimension eC × eC do

10: if its detection confidence |C|e−1C > r then
11: send one representing window to P
12: end if
13: end for
14: Sort the elements in P in ascending order of window size.
15: for window i = 1 to |P| do
16: for window j = i+ 1 to |P| do
17: if window j remains in P and the center of window i is inside of window j then
18: if window i has a higher detection confidence than window j then
19: remove window j from P
20: else
21: remove window i from P and break from the inner loop
22: end if
23: end if
24: end for
25: end for
26: Return P .

Algorithm 12 Face detection with image rotation

1: Input: an M ×N grayscale image I
2: Parameter: rotation θ
3: Output: a set of detected windows P
4: Rotate the image about its center by θ and −θ to have Iθ and I−θ
5: Run Algorithm 7 on I, Iθ and I−θ to obtain three detected window sets P , Pθ and P−θ respectively

6: for each detected window w in Pθ do
7: Get w’s upper left corner’s coordinates (iw, jw) and its size ew
8: Rotate (iw, jw) about Iθ’s center by −θ to get (̃iw, j̃w)
9: Quantify the new coordinates ĩw ← min(max(0, J̃iwK),M−1) and j̃w ← min(max(0, Jj̃wK), N−

1)
10: if there is no ew × ew window located at (̃iw, j̃w) in P then
11: Add it to P
12: end if
13: end for
14: Replace θ by −θ and go through lines 6–13 again
15: Return P
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(a) (b)

Figure 7: (a) Though occasionally stagnant, the accumulated false positive rate declines pretty fast
with the number of layers. (b) As the learning task becomes more difficult as the cascade has more
layers, more weak learners per layer are called upon. (In our experiments, the number of weak
learners cannot exceed 201 per layer.)

Algorithm 13 Skin Test

1: Input: an N ×N color image I
2: Output: return whether I has enough skin like pixels
3: Set a counter c← 0
4: for each pixel in I do
5: if the intensities of its green and blue channel are lower than that of its red channel then
6: c← c+ 1
7: end if
8: end for
9: if c/N2 > 0.4 then

10: Return true
11: else
12: Return false
13: end if

A Appendix

This section explains, from a mathematical perspective, how and why Adaboost (Algorithm 6) works.
We define the exponential loss

∀(x, y) ∈ Rd × {−1, 1}, L(y, f(x)) = exp(−yf(x)),

where the classifier f : Rd 7→ R takes the form of a linear combination of weak classifiers

f(·) =
T∑
t=1

αtht(·),

with T ∈ N, min1≤t≤T αt > 0 and ∀t, ht(·) ∈ {−1, 1}. Naturally, the overall objective is

min
ht,αt≥0

n∑
i=1

wi(1)L(yi,
T∑
t=1

αtht(xi)), (5)
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(a)

(b)

Figure 8: The suggested post-processing procedure further eliminates a number of false positives and
beautifies the detected result using a 31 layer cascade.

with some initial probabilistic weight wi(1). A greedy approach is deployed to deduce the optimal
classifiers ht and weights αt one after another, although there is no guarantee that the objective (5)
is minimized. Given (αs, hs)1≤s<t, let Zt+1 be the weighted exponential loss attained by a t-member
committee and we seek to minimize it through (ht, αt)

Zt+1 := min
ht,αt≥0

n∑
i=1

wi(1)e−yi
∑t

s=1 αshs(xi)
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= min
ht,αt≥0

n∑
i=1

Di(t)e
−αtyiht(xi)

= min
ht,αt≥0

n∑
i=1

Di(t)e
−αt1yiht(xi)=1 +

n∑
i=1

Di(t)e
αt1yiht(xi)=−1

= min
ht,αt≥0

e−αt

n∑
i=1

Di(t) + (eαt − e−αt)
n∑
i=1

Di(t)1yiht(xi)=−1

=Zt min
ht,αt≥0

e−αt + (eαt − e−αt)
n∑
i=1

Di(t)

Zt
1yiht(xi)=−1,

Therefore the optimization of Zt+1 can be carried out in two stages: first, because of αt’s assumed
positivity, we minimize the weighted error using a base learning algorithm, a decision stump for
instance

εt := min
h
Z−1t

n∑
i=1

Di(t)1yih(xi)=−1,

ht := argmin
h

Z−1t

n∑
i=1

Di(t)1yih(xi)=−1.

In case of multiple minimizers, take ht to be any of them. Next choose

αt =
1

2
ln

1− εt
εt

= argmin
α>0

e−α + (eα − e−α)εt.

Hence εt < 0.5 is necessary, which imposes a minimal condition on the training set and the base
learning algorithm. Also obtained is

Zt+1 = 2Zt
√
εt(1− εt) ≤ Zt,

a recursive relation asserting the decreasing behavior of the exponential risk. Weight change thus
depends on whether an observation is misclassified

wi(t+ 1) =
Di(t+ 1)

Zt+1

=
Di(t)e

−yiαtht(xi)

2Zt
√
εt(1− εt)

=
wi(t)

2

(
1ht(xi)=yi

1

1− εt
+ 1ht(xi) 6=yi

1

εt

)
.

The final boosted classifier is thus a weighted committee

f(·) := sign
[ T∑
t=1

αtht(·)
]
.
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Image Credits

by The Heart Truth, Flickr6 CC-BY-SA-2.0.

The USC-SIPI7 Image Database.
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