
Published in Image Processing On Line on 2014–09–01.
Submitted on 2013–02–12, accepted on 2013–04–19.
ISSN 2105–1232 c© 2014 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2014.68

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

A Streaming Distance Transform Algorithm for

Neighborhood-Sequence Distances

Nicolas Normand1, Robin Strand2, Pierre Evenou1, Aurore Arlicot1

1 LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597, France
Nicolas.Normand@polytech.univ-nantes.fr
Pierre.Evenou@polytech.univ-nantes.fr
Aurore.Arlicot@polytech.univ-nantes.fr

2 Centre for Image Analysis, Uppsala University, Sweden
http://www.cb.uu.se/~robin

robin@cb.uu.se

Communicated by Bertrand Kerautret Demo edited by Bertrand Kerautret

Abstract

We describe an algorithm that computes a “translated” 2D Neighborhood-Sequence Distance
Transform (DT) using a look up table approach. It requires a single raster scan of the input
image and produces one line of output for every line of input. The neighborhood sequence
is specified either by providing one period of some integer periodic sequence or by providing
the rate of appearance of neighborhoods. The full algorithm optionally derives the regular
(centered) DT from the “translated” DT, providing the result image on the fly, with a minimal
delay, before the input image is fully processed. Its efficiency can benefit all applications that
use neighborhood-sequence distances, particularly when pipelined processing architectures are
involved, or when the size of objects in the source image is limited.

Source Code

A C++ implementation of this algorithm and the on-line demo are accessible at the IPOL web
page of this article1.

Keywords: discrete distance; neighborhood-sequence distance; distance transform; Lambek-
Moser inverse

1https://doi.org/10.5201/ipol.2014.68

Nicolas Normand, Robin Strand, Pierre Evenou, Aurore Arlicot, A Streaming Distance Transform Algorithm for Neighborhood-

Sequence Distances, Image Processing On Line, 4 (2014), pp. 196–203. https://doi.org/10.5201/ipol.2014.68

A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances

(a) (b)

Figure 1: Neighborhoods of the NS-distance transforms. (a), and (b) are respectively the type 1 and
2 neighborhoods, N1 and N2.

1 Overview

Among discrete distances defined between points of Z2 many of them are path-based distances: the
distance between two points is the length of the shortest path that connects the points. A path
P from p to q is a sequence of points

{

p0 = p, p1, . . . , pn = q
}

where each displacement between
successive points, −−−→pi−1pi, belongs to a set of neighbors N and its length is the number of displace-
ments, n. Simple distances use a single type of neighborhood, namely the 1-neighborhood N1 =
{

(0, 0) ; (±1, 0) ; (0,±1)
}

(see Figure 1(a)) or 2-neighborhood N2 =
{

(0, 0) ; (±1, 0) ; (0,±1) ; (±1,±1)
}

(see Figure 1(b)). These two distances are known as city-block, or d4, and chessboard, or d8. d4
and d8 are highly rotation dependent and have been generalized to combine both (or more) neigh-
borhoods, either simultaneously using different weights (weighted, or chamfer, distances), either by
changing the neighborhood depending on the travelled distance (neighborhood-sequence, or NS, dis-
tances). For NS-distances, used in the following, the neighborhood used at a given step of the path
is driven by B, a sequence of 1 and 2: −−−→pi−1pi ∈ NB(i). For example, the octagonal distance uses
alternatively the 1-neighborhood and the 2-neighborhood, corresponding to the 2-periodic sequence
B = (1, 2, 1, 2, . . .). The city-block and chessboard distances are special cases of NS-distances with
sequences B = (1, . . .) and B = (2, . . .), respectively. Several authors have proposed optimized
sequences in order to minimize the rotational dependency of these distances. Due to the limited
number of allowed steps and weights in the paths, a 3× 3 neighborhood around each point is enough
to extract reversible representations of objects, that can be used for, e.g., skeletonization, object
decomposition, and resolution pyramids. For details, see [4] and the references therein.

Path-based distances naturally lead to propagation-based algorithms where the value at each
pixel is derived from the values of its neighbors. In order to propagate the distance information in
all directions, sequential algorithms need several scans of the image (typically two reversed-scans for
chamfer distances, three different-order scans for NS-distances). Due to these different scans with
different orders, DT algorithms need to keep a full image in memory.

The first algorithm proposed here computes an asymmetric generalized distance transform, with
translated disks, using a single scan of the image. Input image pixels are processed on the fly and
then discarded, so the needed memory is very low (about three lines of the image). The neighborhood
sequence can be specified either by the rate of 2-neighbors or by a list of n neighborhoods for n-
periodic sequences.

A second algorithm is given to recover the centered, NS-distance transform. Its memory needs
are a little higher because it has to relocate the disk centers according to their radii. However
the general data flow is in the same raster scan order as the translated distance transform so both
algorithms can be chained and the result pixels are given with minimal delay, before the input image
is fully processed. Their efficiency can benefit all applications with discrete distances, particularly
when pipelined processing architectures are involved, when the size of objects in the source image is
limited or when the size is very large (or even infinite) in one direction.

197

Nicolas Normand, Robin Strand, Pierre Evenou, Aurore Arlicot

1.1 Notations

The distance transform (DTX) of the binary image X maps each pixel to its distance from the
background (white) pixels:

DTX : Z2 → N

p 7→ min
{

d(q, p) : q ∈ Z
2 \X

}

.
(1)

Figure 3(b) displays the distance transform of a simple image for the octagonal distance.
Alternatively, DTX(p) can be interpreted in terms of the radius of largest disks included in X:

DTX(p) = max
{

r : Ď(p, r − 1) ⊂ X
}

, (2)

or, equivalently:
DTX(p) ≥ r ⇐⇒ Ď(p, r − 1) ⊂ X . (3)

where Ď(p, r) is the reflection of the disk D(p, r) through its center p. D(p, r) (resp. Ď(p, r)) is the
set of points at a distance from (resp. to) p not greater than r:

D(p, r) =
{

q : d(p, q) ≤ r
}

Ď(p, r) =
{

q : d(q, p) ≤ r
}

.

If d is a distance (hence symmetric), D(p, r) and Ď(p, r) are equal. However, the distinction
is important for asymmetric distances used in the following. Disks of NS-distances, including the
simple distances d4 and d8, are iteratively produced by Minkowski sums:

D(p, r) =

{

{

p
}

r = 0

D(p, r − 1)⊕NB(r) r > 0
. (4)

Reflected disks Ď(p, r) are similarly produced with the reflections of neighborhoods through the
origin, ŇB(r). We recall that the Minkowski sum of two sets is the set of sums of pairs of elements,
one from each set:

X ⊕ Y =
{

x+ y : x ∈ X, y ∈ Y
}

.

In the following, we denote by DTX the distance transform of the set of points (or image) X
and DT′

X its asymmetric counterpart. In the same way, N and N ′ are the centered and translated
neighborhoods, d and d′, the regular distance and its asymmetric version. N ′ is equal to N up
to a translation

−→
t such that the first point of N ′ in raster scan is the origin O = (0, 0). The

reflected translated neighorhood Ň ′ is said to be in forward scan condition as well as the disks it
generates. With N1 =

{

(0, 0) ; (±1, 0) ; (0,±1)
}

and N2 =
{

(0, 0) ; (±1, 0) ; (0,±1) ; (±1,±1)
}

, we

have the translation vectors
−→
t1 = (0, 1) and

−→
t2 = (1, 1). The translated neighborhoods are then

N ′
1 =

{

(0, 0) ; (−1, 1) ; (0, 1) ; (1, 1) ; (0, 2)
}

(5)

N ′
2 =

{

(0, 0) ; (1, 0) ; (2, 0) ; (0, 1) ; (1, 1) ; (2, 1) ; (0, 2) ; (1, 2) ; (2, 2)
}

. (6)

N ′
1 and N ′

2 are depicted in Figure 2(a) and 2(b).
It was shown that the following equation holds for every DT′ (symmetric or not) and every point

p [3]:

DT′
X(p) =

{

0 if p 6∈ X

min
{

Ĉ−→v (DT
′
X(p−

−→v)),−→v ∈ Z
2
}

otherwise
. (7)

198

A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances

(a) (b) (c) (d) (e) (f)

Figure 2: Neighborhoods used for the translated NS-distance transform. (a), and (b) are respectively
the type 1 and 2 translated neighborhoods, N ′

1 and N ′
2. (c), (d) and (e) are respectively N ′

1 \ N
′
2,

N ′
2 \ N

′
1 and N ′

1 ∩ N
′
2, each set associated to a different sequence of displacement costs. (f) is the

whole set of neighbors, N ′
1 ∪N

′
2, used for the translated NS-DT.

Here, Ĉ−→v (r) = ĉ−→v (r) + r and ĉ−→v (r) represents the cost of the displacement in direction −→v when the
distance already travelled is r (with the assumption that Ĉ−→v never decreases [3]). In other words,
Ĉ−→v (r) is the total length of a path formed by adding the displacement −→v to a path of length r.
For Minkowski-based distances, Ĉ−→v (r) is simply the least distance value s greater than r where the
displacement −→v is included in the neighborhood:

Ĉ−→v = min
{

s : s > r,−→v ∈ NB(s)

}

.

The pseudo-distance presented here is strongly linked to the properties of non-decreasing integer
sequences studied by Lambek and Moser and the method intensively uses their properties to iterate
through sequence values.

The theoretical foundations of the distance used here was published in [2]. A version of these
algorithms were the neighborhoods are further decomposed was described in [3].

2 Algorithm

2.1 Lambek-Moser Inverse of an Integer Sequence

Let the function f define a non-decreasing sequence of integers (f(1), f(2), . . .). The inverse sequence
of f , denoted by f †, is a non-decreasing sequence of integers defined by [1]:

f(m) < n ⇐⇒ f †(n) 6< m . (8)

f †(n) can be viewed as the count of values in the sequence f that are less than n, or the last index
of a value less than n in f :

f †(n) = max
{

m : f(m) < n
}

or 0 if f(1) ≥ n or ∞ if ∀m, f(m) < n .

f †(f(m) + 1) is then the last index of a value less than or equal to f(m) and f †(f(m) + 1) + 1 the
first index of a value greater than f(m), i.e., the first index after m where f increases:

f †(f(m) + 1) + 1 = n ⇐⇒ ∀j < n, f(j) ≤ f(m) and f(n) > f(m) . (9)

2.2 Translated Distance Transform

The algorithm described in this section computes the translated distance transform of the set of
points X.

DT′
X(p) = min

{

d′(q, p) : q ∈ Z
2 \X

}

= max
{

r : Ď′(p, r − 1) ⊂ X
}

,
(10)

199

Nicolas Normand, Robin Strand, Pierre Evenou, Aurore Arlicot

where disks D′(p, r) are translated versions of D(p, r) in forward scan condition, D′(p +
−−→
t(r), r) =

D(p, r), for some radius-dependent translation vector
−−→
t(r).

DT′
X(p) ≥ r ⇐⇒ Ď′(p, r − 1) ⊂ X . (11)

Given a sequence of neighborhoods B, ∀i > 0, B(i) ∈
{

1 ; 2
}

, we define jB(i), j ∈
{

1 ; 2
}

, as the
number of times the value j occurs in B(1) . . . B(i). Since the distance disks are Minkowski-based,
Ĉ−→v (r) is the index of the first appearance of −→v after r. If −→v only belongs to neighborhood j, it is
clear that this index corresponds to the first index where jB(i) increases after r and Ĉ−→v (r) is then
j
†
B(jB(r) + 1) + 1, according to equation (9). However, if −→v belongs to both neighborhoods, then its
next appearance after r is always r + 1. We compute the cost of displacement in direction −→v when
the distance r has already been travelled as:

Ĉ−→v (r) =



















Ĉ1
−→v
(r) = 1

†
B(1B(r) + 1) + 1 if −→v ∈ N ′

1 and −→v 6∈ N ′
2

Ĉ2
−→v
(r) = 2

†
B(2B(r) + 1) + 1 if −→v 6∈ N ′

1 and −→v ∈ N ′
2

Ĉ12
−→v
(r) = r + 1 if −→v ∈ N ′

1 and −→v ∈ N ′
2

∞ otherwise

,

where f † denotes the Lambek-Moser inverse of the non-decreasing integer sequence f . When B is
a l-periodic sequence, so is ĉ−→v (r) − r = Ĉ−→v (r) − r. The inverse Lambek-Moser sequences need
only to be computed over a period and the result is an array of values of ĉ−→v (r). The cost of this
pre-computation is O(l), linear with the period of the sequence l, then Ĉ−→v (r) is computed in O(1)
by looking up in a table of values of ĉ−→v (r) and adding r. When B is given by the occurrence rate
τ of the value 2: B(r) = ⌊τr⌋ − ⌊τ(r − 1)⌋, then Ĉ−→v (r) is computed on the fly, in O(1), without
precomputation. Here, ⌊•⌋ denotes the floor function.

Algorithm 1 propagates distance transform values with a single raster scan of the image.

Algorithm 1: Generalized asymmetric distance transform

input : X, a set of points
input : N ′, neighborhood in forward scan condition
input : Ĉ−→v , minimal absolute displacement costs
ouput: DT′

X , generalized distance transform of X
1 foreach p in DT domain, in raster scan do

2 if p /∈ X then

3 DT′
X(p)← 0

4 end

5 else

6 l ←∞
7 foreach −→v in N ′ do

8 l ← min
{

l ; Ĉ−→v (DT
′
X(p−

−→v))
}

9 end

10 DT′
X(p)← l

11 end

12 end

2.3 Centering the Distance Transform

The two neighborhoods are translated by vectors
−→
t1 = (0, 1) and

−→
t2 = (1, 1). The disk of radius r,

produced by the sequence B, is translated by (0, 1) as many times 1 appears in the r− 1 first terms

200

A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances

of B, i.e. 1B(r−1) and by (1, 1) as many times 2 appears in the r−1 first terms of B, i.e. 2B(r−1).

Thus,
−−→
t(r) = 1B(r)

−→
t1 + 2B(r)

−→
t2 = (2B(r),1B(r) + 2B(r)) = (2B(r), r).

A link between the translated and the centered distance maps derives from equations (3) and (11):

DTX(p) ≥ r ⇐⇒ D(p, r − 1) ⊆ X

⇐⇒ D′(p+
−−−−−→
t(r − 1), r − 1) ⊆ X

⇐⇒ DT′
X(p+

−−−−−→
t(r − 1)) ≥ r . (12)

Consequently:

DTX(p) = r ⇐⇒ DT′
X(p+

−−→
t(r)) ≤ r ≤ DT′

X(p+
−−−−−→
t(r − 1)) . (13)

Centering the distance transform for pixel p involves reading the values of DT′
X(p +

−−→
t(r)) and

DT′
X(p +

−−−−−→
t(r − 1)), i.e., a pair of pixels, in the asymmetric distance transform, separated by

−−→
t(r) −

−−−−−→
t(r − 1) =

−−→
tB(r). In order to recenter the whole distance transform, all pairs of pixels (p, p +

−→
t1)

and (p, p +
−→
t2) have to be scanned. In this phase, no further information propagation is involved

so the order in which these pairs are considered is irrelevant. Algorithm 2 takes the result of the
translated distance transform DT′ and produces the centered distance transform DT. In the code
archive, Algorithm 2 is implemented with a raster scan. It keeps a few rows of DT in memory while
they are progressively completed by the algorithm (lines 9 to 11). The exact count of needed rows of
DT depends on the maximal value of DT′ on the currently processed row (due to the test in line 9).
The algorithm visits exactly once each pixel in the input image DT′

X as well as each pixel in the
result image DTX .

3 Implementation

The current implementation in C++ language works as a row image filter. It reads the input image
either in pbm or png format from its standard input and writes the result to its standard output in
pgm or png format. When only Algorithm 1 is used, a row of the translated distance transform is
output each time a row of the input image is given. When combined with Algorithm 2, each row of
the centered distance transform is output as soon as all its pixel values are valid, depending on the
current maximal radius encountered in the input image.

3.1 Requirements

LUTBasedNSDistanceTransform currently uses netpbm and libpng for image I/O. Both libraries
provide functions able to read images one row at a time. All source files are included in the archive
accessible at the IPOL web page of this article2.

3.2 Usage

LUTBasedNSDistanceTransform [-f filename] [-c] [-t (pgm|png)] \

(-4|-8|-r <num/den >|-s <sequence >)

3.2.1 Options

2https://doi.org/10.5201/ipol.2014.68

201

Nicolas Normand, Robin Strand, Pierre Evenou, Aurore Arlicot

Algorithm 2: Computation of the centered distance transform DT from the generalized asym-
metric distance transform DT′ produced by 1. In lines 8 and 11, jB refers either to 1B or 2B

depending on the value of j.

input : DT′
X , translated distance map of X

ouput: DTX , centered distance map of X
1 foreach p in DT′ domain do

2 if DT′
X(p) = 0 then

3 DTX(p)← 0
4 end

5 else

6 foreach j ∈
{

1 ; 2
}

do

7 r ← max
{

1;DT′(p+
−→
tj)

}

// Least r such that r ≥ DT′(p−
−→
tj) and B(r) = j

8 r ← j
†
B(jB(r)) + 1

9 while r ≤ DT′(p) do

10 DTX

(

p−
−−−−−→
t(r − 1)

)

← r
// Next r such that B(r) = j

11 r ← j
†
B(jB(r) + 1) + 1

12 end

13 end

14 end

15 end

-4 Use the city block distance.

-8 Use the chessboard distance.

-s sequence One period of the sequence of neighborhoods given as a list of 1

and 2 separated by " " or ",". Space characters must be escaped

from the shell.

-r num/den Ratio of neighborhood 2 given as the rational number num/den

(with den >= num >= 0 and den > 0).

-c Center the distance transform (the default is an asymmetric

distance transform).

-f filename Read from file "filename" instead of stdin.

-l Flush output after each produced row.

-t format Select output image format (pgm or png).

3.2.2 Examples

Regular octagonal distance transform (those commands produce the image displayed in Figure 3(b)):

"./ LUTBasedNSDistanceTransform -r 1/2 -c < image.pbm" or

"./ LUTBasedNSDistanceTransform -s ’1 2’ -c < image.pbm"

Translated octagonal distance transform (those commands produce the image displayed in Fig-
ure 3(a)):

"./ LUTBasedNSDistanceTransform -r 1/2 < image.pbm" or

"./ LUTBasedNSDistanceTransform -s ’1 2’ < image.pbm"

Manhattan distance transform (∀i, B(i) = 1), also known as d4, city-block:

"./ LUTBasedNSDistanceTransform -4 -c < image.pbm" or

"./ LUTBasedNSDistanceTransform -r 0/1 -c < image.pbm" or

"./ LUTBasedNSDistanceTransform -s ’1’ -c < image.pbm"

202

A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances

Chessboard distance transform (∀i, B(i) = 2), also known as d8:

"./ LUTBasedNSDistanceTransform -8 -c < image.pbm" or

"./ LUTBasedNSDistanceTransform -r 1/1 -c < image.pbm" or

"./ LUTBasedNSDistanceTransform -s ’2’ -c < image.pbm"

4 Examples

The two following images show a translated distance transform as produced by Algorithm 1, and the
centered distance transform produced by Algorithm 2.

1 1 1 1

1 1 1 1 1 1 1

1 1 1 2 2 2 2 1 1

1 1 2 2 2 2 2 2 2 1

1 2 2 2 2 2 3 3 2 1

1 2 2 2 3 3 3

2 2 4

1 1 1 1

1 1 2 2 2 2 1

1 2 2 2 3 3 2 2 1

1 2 2 2 2 3 4 3 2 1

1 2 1 1 2 2 3 2 2 1

1 1 1 2 2 2 1

1 1 1

(a) Translated (b) Centered

Figure 3: Result of distance transform algorithms for the octagonal distance (obtained with param-
eters -r 1/2 or -s ’1 2’).

References

[1] J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, The
American Mathematical Monthly, 61 (1954), pp. 454–458. http://dx.doi.org/10.2307/

2308078.

[2] N. Normand, R. Strand, P. Evenou, and A. Arlicot, Path-based distance with varying

weights and neighborhood sequences, in Discrete Geometry for Computer Imagery, vol. 6607 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 199–210. http://dx.
doi.org/10.1007/978-3-642-19867-0_17.

[3] , Minimal-delay distance transform for neighborhood-sequence distances in 2D and 3D, Com-
puter Vision and Image Understanding, 117 (2013), pp. 409–417. http://dx.doi.org/10.1016/
j.cviu.2012.08.015.

[4] R. Strand, Sparse object representations by digital distance functions, in Discrete Geometry for
Computer Imagery, vol. 6607 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2011, pp. 211–222. http://dx.doi.org/10.1007/978-3-642-19867-0_18.

203

	Overview
	Notations

	Algorithm
	Lambek-Moser Inverse of an Integer Sequence
	Translated Distance Transform
	Centering the Distance Transform

	Implementation
	Requirements
	Usage
	Options
	Examples

	Examples

