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Abstract

This article presents a detailed description and implementation of the Scale Invariant Feature
Transform (SIFT), a popular image matching algorithm. This work contributes to a detailed
dissection of SIFT’s complex chain of transformations and to a careful presentation of each of
its design parameters. A companion online demonstration allows the reader to use SIFT and
individually set each parameter to analyze its impact on the algorithm results.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.
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1 General Description

The scale invariant feature transform, SIFT [17], extracts a set of descriptors from an image. The
extracted descriptors are invariant to image translation, rotation and scaling (zoom-out). SIFT
descriptors have also proved to be robust to a wide family of image transformations, such as slight
changes of viewpoint, noise, blur, contrast changes, scene deformation, while remaining discriminative
enough for matching purposes.

The seminal paper introducing SIFT in 1999 [16] has sparked an explosion of competitors.
SURF [2], Harris and Hessian based detectors [19], MOPS [3], ASIFT [28] and SFOP [8], with
methods using binary descriptors such as BRISK [13] and ORB [24], are just a few of the successful
variants. These add to the numerous non multi-scale detectors such as the Harris-Stephens detec-
tor [10], SUSAN [25], the Förstner detector [7], the morphological corner detector [1] and the machine
learning based FAST [23] and AGAST [18].

The SIFT algorithm consists of two successive and independent operations: the detection of
interesting points (i.e. keypoints) and the extraction of a descriptor associated to each of them.
Since these descriptors are robust, they are usually used for matching pairs of images. Object
recognition and video stabilization are other popular application examples. Although the descriptors
comparison is not strictly speaking a step of the SIFT method, we have included it in our description
for the sake of completeness.
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Anatomy of the SIFT Method

The algorithm principle. SIFT detects a series of keypoints from a multiscale image represen-
tation. This multiscale representation consists of a family of increasingly blurred images. Each
keypoint is a blob-like structure whose center position (x, y) and characteristic scale σ are accurately
located. SIFT computes the dominant orientation θ over a region surrounding each one of these
keypoints. For each keypoint, the quadruple (x, y, σ, θ) defines the center, size and orientation of a
normalized patch where the SIFT descriptor is computed. As a result of this normalization, SIFT
keypoint descriptors are in theory invariant to any translation, rotation and scale change. The de-
scriptor encodes the spatial gradient distribution around a keypoint by a 128-dimensional vector.
This feature vector is generally used to match keypoints extracted from different images.

The algorithmic chain. In order to attain scale invariance, SIFT is built on the Gaussian scale-
space, a multiscale image representation simulating the family of all possible zoom-outs through
increasingly blurred versions of the input image (see [27] for a gentle introduction to the subject). In
this popular multiscale framework, the Gaussian convolution acts as an approximation of the optical
blur, and the Gaussian kernel approximates the camera’s point spread function. Thus, the Gaussian
scale-space can be interpreted as a family of images, each of them corresponding to a different zoom
factor. The Gaussian scale-space representation is presented in Section 2.

To attain translation, rotation and scale invariance, the extracted keypoints must be related to
structures that are unambiguously located, both in scale and position. This excludes image corners
and edges since they cannot be precisely localized both in scale and space. Image blobs or more
complex local structures characterized by their position and size, are therefore the most suitable
structures for SIFT.

Detecting and locating keypoints consists in computing the 3d extrema of a differential operator
applied to the scale-space. The differential operator used in the SIFT algorithm is the difference
of Gaussians (DoG), presented in Section 3.1. The extraction of 3d continuous extrema consists
of two steps: first, the DoG representation is scanned for 3d discrete extrema. This gives a first
coarse location of the extrema, which are then refined to subpixel precision using a local quadratic
model. The extraction of 3d extrema is detailed in Section 3.2. Since there are many phenomena
that can lead to the detection of unstable keypoints, SIFT incorporates a cascade of tests to discard
the less reliable ones. Only those that are precisely located and sufficiently contrasted are retained.
Section 3.3 discuses two different discarding steps: the rejection of 3d extrema with small DoG value
and the rejection of keypoint candidates laying on edges.

SIFT invariance to rotation is obtained by assigning to each keypoint a reference orientation.
This reference is computed from the gradient orientation over a keypoint neighborhood. This step
is detailed in Section 4.1. Finally the spatial distribution of the gradient inside an oriented patch
is encoded to produce the SIFT keypoint descriptor. The design of the SIFT keypoint descriptor is
described in Section 4.2. This ends the algorithmic chain defining the SIFT algorithm. Additionally,
Section 5 illustrates how SIFT descriptors can be used to find local matches between pairs of images.
The method presented here is the matching procedure described in the original paper by D. Lowe [16].

This complex chain of transformations is governed by a large number of design parameters.
Section 6 summarizes them and provides an analysis of their respective influence. Table 1 presents
the details of the adopted notation while the consecutive steps of the SIFT algorithm are summarized
in Table 2.

2 The Gaussian Scale-Space

The Gaussian scale-space representation is a family of increasingly blurred images. This blurring
process simulates the loss of detail produced when a scene is photographed from farther and farther
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u Images, defined on the continuous domain (x, y) = x ∈ R2

u Digital images, defined in a rectangular grid (m,n) ∈ {0, . . . ,M−1}×{0, . . . , N−1}

v Gaussian scale-space, defined on continuous domain (σ,x) ∈ R+ × R2

v Digital Gaussian scale-space, list of octaves v = (vo), o = 1, . . . , noct

Each octave vo is defined on a discrete grid (s,m, n) ∈ {0, . . . , nspo+2}×{0, . . . ,Mo−1}×{0, . . . , No−1}

w Difference of Gaussians (DoG), defined on continuous domain (σ,x) ∈ R+ × R2

w Digital difference of Gaussians (DoG), list of octaves w = (wo), o = 1, . . . , noct

Each octave wo is defined on a discrete grid (s,m, n) ∈ {0, . . . , nspo+1}×{0, . . . ,Mo−1}×{0, . . . , No−1}

ω DoG value after 3d extremum subpixel refinement

∂xv Scale-space gradient along x (∂yv along y), defined on continuous domain (σ,x) ∈ R+ × R2

∂mv Digital scale-space gradient along x (∂nv along y), list of octaves (∂mv = (∂mvo), o = 1, . . . , noct)
Each octave ∂mvo is defined on a discrete grid (s,m, n) ∈ {2, . . . , nspo}×{1, . . . ,Mo−2}×{1, . . . , No−2}

Gρ Continuous Gaussian convolution of standard deviation ρ

Gρ Digital Gaussian convolution of standard deviation ρ (see (4))

S2 Subsampling operator by a factor 2, (S2u)(m,n) = u(2m, 2n)

Iδ Digital bilinear interpolator by a factor 1/δ (see Algorithm 2).

Table 1: Summary of the notation used in the article.

(i.e. when the zoom-out factor increases). The scale-space, therefore, provides SIFT with scale
invariance as it can be interpreted as the simulation of a set of snapshots of a given scene taken at
different distances. In what follows we detail the construction of the SIFT scale-space.

2.1 Gaussian Blurring

Consider a continuous image u(x) defined for every x = (x, y) ∈ R2. The continuous Gaussian
smoothing is defined as the convolution

Gσu(x) :=

∫
Gσ(x′)u(x− x′)dx′,

where Gσ(x) = 1
2πσ2 e

− |x|
2

2σ2 is the Gaussian kernel parameterized by its standard deviation σ ∈ R+.
The Gaussian smoothing operator satisfies a semi-group relation,

Gσ2(Gσ1u)(x) = G√
σ2
1+σ

2
2
u(x). (1)

We call Gaussian scale-space of u the three-dimensional (3d) function

v : (σ,x) 7→ Gσu(x). (2)

In the case of digital images there is some ambiguity on how to define a discrete counterpart to the
continuous Gaussian smoothing operator [9, 22]. In the present work as in Lowe’s original work, the
digital Gaussian smoothing is implemented as a discrete convolution with samples of a truncated
Gaussian kernel.
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Stage Description

1.

Compute the Gaussian scale-space
in: u image
out:v scale-space

2.

Compute the Difference of Gaussians (DoG)
in: v scale-space
out: w DoG

3.

Find candidate keypoints (3d discrete extrema of DoG)
in: w DoG
out: {(xd, yd, σd)} list of discrete extrema (position and scale)

4.

Refine candidate keypoints location with sub-pixel precision
in: w DoG and {(xd, yd, σd)} list of discrete extrema
out: {(x, y, σ)} list of interpolated extrema

5.

Filter unstable keypoints due to noise
in: w DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

6.

Filter unstable keypoints laying on edges
in: w DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

7.

Assign a reference orientation to each keypoint
in: (∂mv, ∂nv) scale-space gradient and {(x, y, σ)} list of keypoints
out: {(x, y, σ, θ)} list of oriented keypoints

8.

Build the keypoints descriptor
in: (∂mv, ∂nv) scale-space gradient and {(x, y, σ, θ)} list of keypoints
out: {(x, y, σ, θ, f)} list of described keypoints

Table 2: Summary of the SIFT algorithm.

Digital Gaussian smoothing. Let gσ be the one-dimensional digital kernel obtained by sampling
a truncated Gaussian function of standard deviation σ,

gσ(k) = Ke−
k2

2σ2 , −d4σe ≤ k ≤ d4σe, k ∈ Z (3)

where d·e denotes the ceil function and K is set so that
∑

gσ(k) = 1. Let Gσ denote the digital
Gaussian convolution of parameter σ and u be a digital image of size M × N . Its digital Gaussian
smoothing, denoted by Gσu, is computed via a separable two-dimensional (2d) discrete convolution

Gσu(k, l) :=

d4σe∑
k′=−d4σe

gσ(k′)

d4σe∑
l′=−d4σe

gσ(l′) ū(k − k′, l − l′), (4)

where ū denotes the extension of u to Z2 via symmetrization with respect to −1/2, namely,

ū(k, l) = u(sM(k), sN(l)) with sM(k) = min(k mod 2M, 2M − 1− k mod 2M).

For the range of values of σ considered in the described algorithm (i.e. σ ≥ 0.7), the digital
Gaussian smoothing operator approximately satisfies a semi-group relation with an error below 10−4

for pixel intensity values ranging from 0 to 1 [22]. Applying successively two digital Gaussian smooth-
ings of parameters σ1 and σ2 is approximately equal to applying one digital Gaussian smoothing of
parameter

√
σ2
1 + σ2

2,
Gσ2(Gσ1u) = G√

σ2
1+σ

2
2
u. (5)
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2.2 Digital Gaussian Scale-Space

As previously introduced, the Gaussian scale-space v : (x, σ) 7→ Gσu(x) is a family of increasingly
blurred images, where the scale-space position (x, σ) refers to the pixel x in the image generated
with blur σ. In what follows, we detail how to compute the digital scale-space, a discrete counterpart
of the continuous Gaussian scale-space.

We will call digital scale-space a family of digital images relative to a discrete set of blur levels
and different sampling rates, all of them derived from an input image uin with assumed blur level σin.
This family is split into subfamilies of images sharing a common sampling rate. Since in the original
SIFT algorithm the sampling rate is iteratively decreased by a factor of two, these subfamilies are
called octaves.

Let noct be the total number of octaves in the digital scale-space, o ∈ {1, . . . , noct} be the index of
each octave, and δo its inter-pixel distance. We will adopt as a convention that the input image uin

inter-pixel distance is δin = 1. Thus, an inter-pixel distance δ = 0.5 corresponds to a 2× upsampling
of this image while a 2× subsampling results in an inter-pixel distance δ = 2. Let nspo be the
number of scales per octave (the default value is nspo = 3). Each octave o contains the images vos for
s = 1, . . . , nspo, each of them with a different blur level σos . The blur level in the digital scale-space
is measured taking as unit length the inter-sample distance in the sampling grid of the input image
uin (i.e. δin = 1). The adopted configuration is illustrated in Figure 1.

Figure 1: Convention adopted for the sampling grid of the digital scale-space v. The blur level is
considered with respect to the sampling grid of the input image. The parameters are set to their
default value, namely σmin = 0.8, nspo = 3, noct = 8, σin = 0.5.

The digital scale-space also includes three additional images per octave, vo0,v
o
nspo+1,v

o
nspo+2. The

rationale for this will become clear later.

The construction of the digital scale-space begins with the computation of a seed image denoted
by v1

0. This image will have a blur level σ1
0 = σmin, which is the minimum blur level considered, and
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inter pixel distance δ0 = δmin. It is computed from uin by

v1
0 = G 1

δmin

√
σ2
min−σ

2
in
Iδmin

uin, (6)

where Iδmin
is the digital bilinear interpolator by a factor 1/δmin (see Algorithm 1) and Gσ is the

digital Gaussian convolution already defined. The entire digital scale-space is derived from this seed
image. The default value δmin = 0.5 implies an initial 2× interpolation. The blur level of the seed
image, relative to the input image sampling grid, is set as default to σmin = 0.8.

The second and posterior scale-space images s = 1, . . . , nspo + 2 at each octave o are computed
recursively according to

vos = Gρ[(s−1)→s]v
o
s−1, (7)

where
ρ[(s−1)→s] =

σmin

δmin

√
22s/nspo − 22(s−1)/nspo .

The first images (i.e. s = 0) of the octaves o = 2, . . . , no are computed as

vo0 = S2v
o−1
nspo

, (8)

where S2 denotes the subsampling operator by a factor of 2, (S2u)(m,n) = u(2m, 2n). This procedure
produces a family of images (vos), o = 1, . . . , noct and s = 0, . . . , nspo + 2, having inter-pixel distance

δo = δmin2o−1 (9)

and blur level

σos =
δo
δmin

σmin2
s/nspo . (10)

Consequently, the simulated blurs follow a geometric progression. The scale-space construction
process is summarized in Algorithm 1. The digital scale-space construction is thus defined by five
parameters:

- the number of octaves noct,

- the number of scales per octave nspo,

- the sampling distance δmin of the first image of the scale-space v1
0,

- the blur level σmin of the first image of the scale-space v1
0, and

- σin the assumed blur level in the input image uin.

The diagram in Figure 2 depicts the digital scale-space architecture in terms of the sampling rates
and blur levels. Each point symbolizes a scale-space image vos having inter-pixel distance δo and blur
level σos . The featured configuration is produced from the default parameter values of the Lowe SIFT
algorithm: σmin = 0.8, δmin = 0.5, nspo = 3, and σin = 0.5. The number of octaves noct is upper
limited by the number of possible subsamplings. Figure 3 shows an example of the digital scale-space
images generated with the given configuration.

3 Keypoint Definition

Precisely detecting interesting image features is a challenging problem. The keypoint features are
defined in SIFT as the extrema of the normalized Laplacian scale-space σ2∆v [14]. A Laplacian
extremum is unequivocally characterized by its scale-space coordinates (σ,x) where x refers to its
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(a) Scale-space construction

0.5 0.8 1.01 1.27 1.6 2.02 2.54 3.2 4.03 5.08 6.4 8.06 10.16 12.8 16.13 20.32 25.6 32.25 40.64

0.5

1

2

4

8

(b) Scale-space default configuration

Figure 2: (a) The succession of subsamplings and Gaussian convolutions that results in the SIFT
scale-space. The first image at each octave vo0 is obtained via subsampling, with the exception of
the first octave first image v0

0 that is generated by a bilinear interpolation followed by a Gaussian
convolution. (b) An illustration of the digital scale-space in its default configuration. The digital
scale-space v is composed of images vos for o = 1, . . . , noct and s = 0, . . . , nspo + 2. All images are
computed directly or indirectly from uin (in blue). Each image is characterized by its blur level and
its inter-pixel distance, respectively noted by σ and δ. The scale-space is split into octaves: sets of
images sharing a common sampling rate. Each octave is composed of nspo scales (in red) and other
three auxiliary scales (in gray). The depicted configuration features noct = 5 octaves and corresponds
to the following parameter settings: nspo = 3, σmin = 0.8. The assumed blur level of the input image
is σin = 0.5.

center spatial position and σ relates to its size (scale). As will be presented in Section 4, the covariance
of the extremum (σ,x) induces the invariance to translation and scale of its associated descriptor.

Instead of computing the Laplacian of the image scale space, SIFT uses a difference of Gaussians
operator (DoG), first introduced by Burt and Adelson [4] and Crowley and Stern [6]. Let v be
a Gaussian scale-space and κ > 1. The difference of Gaussians (DoG) of ratio κ is defined by
w : (σ,x) 7→ v(κσ,x)− v(σ,x). The DoG operator takes advantage of the link between the Gaussian
kernel and the heat equation to approximately compute the normalized Laplacian σ2∆v. Indeed,
from a set of simulated blurs following a geometric progression of ratio κ, the heat equation is
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v1
1

δ1 = 0.5
σ1
1 = 1.0

v2
2

δ2 = 1.0
σ2
2 = 2.5

v3
2

δ3 = 2.0
σ3
2 = 5.1

v4
2

δ4 = 4.0
σ4
2 = 10.2

v5
3

δ5 = 8.0
σ5
3 = 25.6

v5
5

δ5 = 8.0
σ5
5 = 40.6

Figure 3: Crops of a subset of images extracted from the Gaussian scale-space of an example image.
The scale-space parameters are set to nspo = 3, σmin = 0.8, and the assumed input image blur level
σin = 0.5. Image pixels are represented by a square of side δo for better visualization.

approximated by

σ∆v =
∂v

∂σ
≈ v(κσ,x)− v(σ,x)

κσ − σ
=

w(σ,x)

(κ− 1)σ
. (11)

Thus, we have w(σ,x) ≈ (κ− 1)σ2∆v(σ,x).
The SIFT keypoints of an image are defined as the 3d extrema of the difference of Gaussians

(DoG). Since we deal with digital images, the continuous 3d extrema of the DoG cannot be directly
computed. Thus, the discrete extrema of the digital DoG are first detected and then their positions
are refined. The detected points are finally validated to discard possible unstable and false detections
due to noise. Hence, the detection of SIFT keypoints involves the following steps:

1. compute the digital DoG;

2. scan the digital DoG for 3d discrete extrema;

3. refine position and scale of these candidates via a quadratic interpolation;

4. discard unstable candidates such as uncontrasted candidates or candidates laying on edges.

We detail each one of these steps in what follows.

3.1 Scale-Space Analysis: Difference of Gaussians

The digital DoG w is built from the digital scale-space v. For each octave o = 1, . . . , noct and for
each image wo

s with s = 0, . . . , nspo + 1

wo
s(m,n) = vos+1(m,n)− vos(m,n)
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Algorithm 1: Computation of the digital Gaussian scale-space
Input: uin, input digital image of M ×N pixels.
Output: (vos), digital scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.

vos is a digital image of size Mo ×No, blur level σos (Equation (10)) and inter-pixel distance
δo = δmin2o−1, with Mo = b δmin

δo
Mc and No = b δmin

δo
Nc. The samples of vos are denoted by vos(m,n).

Parameters: - noct, number of octaves.
- nspo, number of scales per octave.
- σmin, blur level in the seed image.
- δmin, inter-sample distance in the seed image.
- σin, assumed blur level in the input image.

//Compute the first octave

//Compute the seed image v1
0

//1.Interpolate the original image (Bilinear interpolation, see Algorithm 2)
u′ ← bilinear interpolation(uin, δmin)
// 2. Blur the interpolated image (Gaussian blur, see Equation (4))
v1
0 = G 1

δmin

√
σ2
min−σ2

in

u′

// Compute the other images in the first octave

for s = 1, . . . , nspo + 2 do
v1
s = Gρ[(s−1)→s]v

1
s−1

// Compute subsequent octaves

for o = 2, . . . , noct do
// Compute the first image in the octave by subsampling

for m = 0, . . . ,Mo − 1 and n = 0, . . . , No − 1 do
vo0(m,n)← vo−1nspo

(2m, 2n)

// Compute the other images in octave o
for s = 1, . . . , nspo + 2 do

vos = Gρ[(s−1)→s]v
o
s−1

Algorithm 2: Bilinear interpolation of an image
Input: u, digital image, M ×N pixels. The samples are denoted by u(m,n).
Output: u′, digital image, M ′ ×N ′ pixels with M ′ = bMδ′ c and N ′ = bNδ′ c.
Parameter: δ′ < 1, inter-pixel distance of the output image.
for m′ = 0, . . . ,M ′ − 1 and n′ = 0, . . . , N ′ − 1 do

x← δ′m′ y ← δ′n′

u′(m′, n′)← (x− bxc) (y − byc) ū(bxc+ 1, byc+ 1) + (1 + bxc − x) (y − byc) ū(bxc, byc+ 1)

+ (x− bxc) (1 + byc − y) ū(bxc+ 1, byc) + (1 + bxc − x) (1 + byc − y) ū(bxc, byc)

ū denotes the extension of u to Z2 via symmetrization with respect to −0.5: ū(k, l) = u(sM (k), sN (l)) with
sN (k) = min(k mod 2M, 2M − 1− k mod 2M).
note: b·c denotes the floor function.

with m = 0, . . . ,Mo − 1, n = 0, . . . , No − 1. The image wo
s will be attributed the blur level σos .

This computation is illustrated in Figure 4 and summarized in Algorithm 3. See how, in the digital
scale-space, the computation of the auxiliary image vonspo+2 is required for computing the DoG ap-
proximation wo

nspo+1. Figure 5 illustrates the DoG scale-space w relative to the previously introduced
Gaussian scale-space v. Figure 6 shows images of an example of DoG scale-space.
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Figure 4: The difference of Gaussians operator is computed by subtracting pairs of contiguous scale-
space images. The procedure is not centered: the difference between the images at scales κσ and σ
is attributed a blur level σ.

Figure 5: The DoG scale-space. The difference of Gaussians acts as an approximation of the nor-
malized Laplacian σ2∆. The difference wo

s = vos+1 − vos is relative to the blur level σos . Each octave
contains nspo images plus two auxiliary images (in black).

3.2 Extraction of Candidate Keypoints

Continuous 3d extrema of the digital DoG are calculated in two successive steps. The 3d discrete
extrema are first extracted from (wo

s) with pixel precision, then their location are refined through
interpolation of the digital DoG by using a quadratic model. In what follows, samples vos(m,n) and
wo
s(m,n) are noted respectively vos,m,n and wo

s,m,n for better readability.

Detection of DoG 3D discrete extrema. Each sample wo
s,m,n of the DoG scale-space, with

s = 1, . . . , nspo, o = 1, . . . , noct, m = 1, . . . ,Mo − 2, n = 1, . . . , No − 2 (which excludes the image
borders and the auxiliary images) is compared to its neighbors to detect the 3d discrete maxima and
minima (the number of neighbors is 26 = 3 × 3 × 3 − 1). Algorithm 4 summarizes the extraction
of 3d extrema from the digital DoG. These comparisons are possible thanks to the auxiliary images
wo

0, wo
nspo+1 calculated for each octave o. This scanning process is nevertheless a rudimentary way to

detect candidate points. It is sensitive to noise, produces unstable detections, and the information it
provides regarding the location and scale may be flawed since it is constrained to the sampling grid.
To amend these shortcomings, this preliminary step is followed by an interpolation that refines the
localization of the extrema and by a cascade of filters that discard unreliable detections.

Keypoint position refinement. The location of the discrete extrema is constrained to the sam-
pling grid (defined by the octave o). This coarse localization hinders a rigorous covariance property
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w1
1

δ1 = 0.5
σ1
1 = 1.0

w2
2

δ2 = 1.0
σ2
2 = 2.5

w3
2

δ3 = 2.0
σ3
2 = 5.1

w4
2

δ4 = 4.0
σ4
2 = 10.2

w5
1

δ5 = 8.0
σ5
1 = 16.1

w5
3

δ5 = 8.0
σ5
3 = 25.6

Figure 6: Crops of a subset of images extracted from the DoG scale-space of an example image. The
DoG operator is an approximation of the normalized Laplacian operator σ2∆v. The DoG scale-space
parameters used in this example are the default: nspo = 3, σmin = 0.8, σin = 0.5. Image pixels are
represented by a square of side δo for better visualization.

of the set of keypoints and subsequently is an obstacle to the full scale and translation invariance of
the corresponding descriptor. SIFT refines the position and scale of each candidate keypoint using
a local interpolation model.

We denote by ωos,m,n(α) the quadratic function at sample point (s,m, n) in the octave o, given
by

ωos,m,n(α) = wo
s,m,n +αT ḡos,m,n +

1

2
αT H̄o

s,m,nα, (12)

where α = (α1, α2, α3)
T ∈ [−1/2, 1/2]3; ḡos,m,n and H̄o

s,m,n denote respectively the 3d gradient and
Hessian at (s,m, n) in the octave o, computed with a finite difference scheme as follows

ḡos,m,n =

(wo
s+1,m,n −wo

s−1,m,n)/2
(wo

s,m+1,n −wo
s,m−1,n)/2

(wo
s,m,n+1 −wo

s,m,n−1)/2

 , H̄o
s,m,n =

h11 h12 h13
h12 h22 h23
h13 h23 h33

 (13)

with

h11 = wo
s+1,m,n + wo

s−1,m,n − 2wo
s,m,n, h12 = (wo

s+1,m+1,n −wo
s+1,m−1,n −wo

s−1,m+1,n + wo
s−1,m−1,n)/4,

h22 = wo
s,m+1,n + wo

s,m−1,n − 2wo
s,m,n, h13 = (wo

s+1,m,n+1 −wo
s+1,m,n−1 −wo

s−1,m,n+1 + wo
s−1,m,n−1)/4,

h33 = wo
s,m,n+1 + wo

s,m,n−1 − 2wo
s,m,n, h23 = (wo

s,m+1,n+1 −wo
s,m+1,n−1 −wo

s,m−1,n+1 + wo
s,m−1,n−1)/4.
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This quadratic function is an approximation of the second order Taylor development of the underlying
continuous function (where its derivatives are approximated by finite difference schemes).

In order to refine the position of a discrete extremum (se,me, ne) at octave oe SIFT proceeds as
follows.

1. Initialize (s,m, n) by the discrete coordinates of the extremum (se,me, ne).

2. Compute the continuous extrema of ωos,m,n by solving ∇ωos,m,n(α) = 0 (see Algorithm 7). This
yields

α∗ = −
(
H̄o
s,m,n

)−1
ḡos,m,n. (14)

3. If max(|α∗1|, |α∗2|, |α∗3|) ≤ 0.5 (i.e. the extremum of the quadratic function lies in its domain of
validity) the extremum is accepted. According to the scale-space architecture (see (10) and (9)),
the corresponding keypoint coordinates are

(σ, x, y) =

(
δoe
δmin

σmin2(α∗1+s)/nspo , δoe(α
∗
2+m) , δoe(α

∗
3+n)

)
. (15)

4. If α∗ falls outside the domain of validity, the interpolation is rejected and another one is carried
out. Update (s,m, n) to the closest discrete value to (s,m, n) +α∗ and repeat from (2).

This process is repeated up to five times or until the interpolation is validated. If after five iterations
the result is still not validated, the candidate keypoint is discarded. In practice, the validity domain
is defined by max(|α∗1|, |α∗2|, |α∗3|) < 0.6 to avoid possible numerical instabilities due to the fact that
the piecewise interpolation model is not continuous. See Algorithm 6 for details.

According to the local interpolation model (12), the value of the DoG interpolated extremum is

ω := ωos,m,n(α∗) = wo
s,m,n + (α∗)T ḡos,m,n +

1

2
(α∗)T H̄o

s,m,nα
∗

= wo
s,m,n +

1

2
(α∗)T ḡos,m,n. (16)

This value will be used to discard uncontrasted keypoints.

3.3 Filtering Unstable Keypoints

Discarding Low Contrasted Extrema

Image noise will typically produce several spurious DoG extrema. Such extrema are unstable and are
not linked to any particular structure in the image. SIFT attempts to eliminate these false detections
by discarding candidate keypoints with a DoG value ω below a threshold CDoG (see Algorithm 8),

if |ω| < CDoG then discard the candidate keypoint.

Since the DoG function approximates (κ − 1)σ2∆v, where κ is a function of the number of scales
per octave nspo, the value of threshold CDoG should depend on nspo (default value CDoG = 0.015

for nspo = 3). The threshold applied in the provided source-code is C̃DoG = 2
1/nspo−1
21/3−1 CDoG, with

CDoG relative to nspo =3. This guarantees that the applied threshold is independent of the sampling
configuration. Before the refinement of the extrema, and to avoid unnecessary computations, a less
conservative threshold at 80% of CDoG is applied to the discrete 3d extrema (see Algorithm 5),

if |wo
s,m,n| < 0.8× CDoG then discard the discrete 3d extremum.
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Discarding candidate keypoints on edges

Candidate keypoints lying on edges are difficult to precisely locate. This is a direct consequence of
the fact that an edge is invariant to translations along its principal axis. Such detections do not
help define covariant keypoints and should be discarded. The 2d Hessian of the DoG provides a
characterization of those undesirable keypoint candidates. Edges present a large principal curvature
orthogonal to the edge and a small one along the edge. In terms of the eigenvalues of the Hessian
matrix, the presence of an edge amounts to a big ratio between the largest eigenvalue λmax and the
smallest one λmin.

The Hessian matrix of the DoG is computed at the nearest grid sample using a finite difference
scheme:

Ho
s,m,n =

[
h11 h12
h12 h22

]
, (17)

where

h11 = wo
s,m+1,n + wo

s,m−1,n − 2wo
s,m,n, h22 = wo

s,m,n+1 + wo
s,m,n−1 − 2wo

s,m,n,

h12 = h21 = (wo
s,m+1,n+1 −wo

s,m+1,n−1 −wo
s,m−1,n+1 + wo

s,m−1,n−1)/4.

The SIFT algorithm discards keypoint candidates whose eigenvalue ratio r := λmax/λmin is more
than a certain threshold Cedge (the default value is Cedge = 10). Since only this ratio is relevant, the
eigenvalues computation can be avoided. The ratio of the Hessian matrix determinant and its trace
are related to r by

edgeness(Ho
s,m,n) =

tr(Ho
s,m,n)2

det(Ho
s,m,n)

=
(λmax + λmin)2

λmaxλmin

=
(r + 1)2

r
. (18)

Thus, the filtering of keypoint candidates on edges consists in the following test:

if edgeness(Ho
s,m,n) >

(Cedge + 1)2

Cedge

then discard candidate keypoint.

Note that Ho
s,m,n is the bottom-right 2 × 2 sub-matrix of H̄o

s,m,n (13) previously computed for the
keypoint interpolation. Algorithm 9 summarizes how keypoints on edges are discarded.

3.4 Pseudocodes

Algorithm 3: Computation of the difference of Gaussians scale-space (DoG)

Input: (vos), digital Gaussian scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.
Output: (wo

s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

for o = 1, . . . , noct and s = 0, . . . , nspo + 1 do

for m = 0, . . . ,Mo − 1 and n = 0, . . . , No − 1 do

wo
s(m,n) = vos+1(m,n)− vos(m,n)
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Algorithm 4: Scanning for 3d discrete extrema of the DoG scale-space
Input: (wo

s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.
The samples of digital image wo

s are denoted by wo
s,m,n.

Output: LA = {(o, s,m, n)}, list of the DoG 3d discrete extrema.

for o = 1, . . . , noct do
for s = 1, . . . , nspo , m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2 do

if sample wo
s,m,n is larger or smaller than all of its 33 − 1 = 26 neighbors then

Add discrete extremum (o, s,m, n) to LA

Algorithm 5: Discarding low contrasted candidate keypoints (conservative test)

Inputs: - (wo
s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

- LA = {(o, s,m, n)}, list of DoG 3d discrete extrema.

Output: LA’ = {(o, s,m, n)}, filtered list of DoG 3d discrete extrema.
Parameter: CDoG threshold.

for each DoG 3d discrete extremum (o, s,m, n) in LA do

if |wo
s,m,n| ≥ 0.8× CDoG then

Add discrete extremum (o, s,m, n) to LA’

Algorithm 6: Keypoints interpolation
Inputs: - LA’ = {(o, s,m, n)}, list of DoG 3d discrete extrema.

- (wo
s), digital DoG scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

Output: LB = {(o, s,m, n, x, y, σ,ω)}, list of candidate keypoints.

for each DoG 3d discrete extremum (oe, se,me, ne) in LA do
(s,m, n)← (se,me, ne) // initialize interpolation location

repeat

// Compute the extrema location and value of the local quadratic function (see
Algorithm 7)
(α∗,ω)← quadratic interpolation(oe, s,m, n)

// Compute the corresponding absolute coordinates

(σ, x, y) =
(
δoe
δmin

σmin2(α
∗
1+s)/nspo , δoe(α

∗
2+m) , δoe(α

∗
3+n)

)
.

// Update the interpolating position

(s,m, n)← ([s+ α∗1], [m+ α∗2], [n+ α∗3])

until max(|α∗1|, |α∗2|, |α∗3|) < 0.6 or after 5 unsuccessful tries.

if max(|α∗1|, |α∗2|, |α∗3|) < 0.6 then

Add candidate keypoint (oe, s,m, n, σ, x, y,ω) to LB

note: [·] denotes the round function.
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Algorithm 7: Quadratic interpolation on a discrete DoG sample
Inputs: - (wo

s), digital DoG scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 1.
- (o, s,m, n), coordinates of the DoG 3d discrete extremum.

Outputs: - α∗, offset from the center of the interpolated 3d extremum.
- ω, value of the interpolated 3d extremum.

Compute ḡos,m,n and H̄o
s,m,n //DoG 3d gradient and Hessian by Equation (13)

Compute α∗ = −
(
H̄o
s,m,n

)−1
ḡos,m,n

Compute ω = wo
s,m,n − 1

2 (ḡos,m,n)T
(
H̄o
s,m,n

)−1
ḡos,m,n

Algorithm 8: Discarding low contrasted candidate keypoints
Input: LB = {(o, s,m, n, σ, x, y,ω)}, list of candidate keypoints.
Output: LB’ = {(o, s,m, n, σ, x, y,ω)}, reduced list of candidate keypoints.
Parameter: CDoG threshold.

for each candidate keypoint (σ, x, y,ω) in LB do

if |ω| ≥ CDoG then

Add candidate keypoint (σ, x, y,ω) to LB’.

Algorithm 9: Discarding candidate keypoints on edges
Inputs: - (wo

s), DoG scale-space.
- LB’ = {(o, s,m, n, σ, x, y,ω)}, list of candidate keypoints.

Output: LC = {(o, s,m, n, σ, x, y,ω)}, list of the SIFT keypoints.
Parameter: Cedge, threshold over the ratio between first and second Hessian eigenvalues.

for each candidate keypoint (o, s,m, n, σ, x, y,ω) in LB’ do
Compute Ho

s,m,n by (17) // 2d Hessian

Compute
tr(Hos,m,n)

2

det(Hos,m,n)
// edgeness

if
tr(Hos,m,n)

2

det(Hos,m,n)
<

(Cedge+1)2

Cedge
then

Add candidate keypoint (o, s,m, n, σ, x, y,ω) to LC.

4 Keypoint Description

In the literature, rotation invariant descriptors fall into two categories. On the one side, those based
on properties of the image that are already rotation-invariant and on the other side, descriptors
based on a normalization with respect to a reference orientation. The SIFT descriptor is based on
a normalization. The local dominant gradient angle is computed and used as a reference orienta-
tion. Then, the local gradient distribution is normalized with respect to this reference direction (see
Figure 7).

The SIFT descriptor is built from the normalized image gradient orientation in the form of
quantized histograms. In what follows, we describe how the reference orientation specific to each
keypoint is defined and computed.
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Figure 7: The description of a keypoint detected at scale σ (the radius of the blue circle) involves the
analysis of the image gradient distribution around the keypoint in two radial Gaussian neighborhoods
with different sizes. The first local analysis aims at attributing a reference orientation to the
keypoint (the blue arrow). It is performed over a Gaussian window of standard deviation λoriσ (the
radius of the green circle). The width of the contributing samples patch Pori (green square) is 6λoriσ.
The figure shows the default case λori = 1.5. The second analysis aims at building the descriptor.
It is performed over a Gaussian window of standard deviation λdescrσ (the radius of the red circle)
within a square patch Pdescr (the red square) of approximate width 2λdescrσ. The figure features the
default settings: λdescr = 6, with a Gaussian window of standard deviation 6σ and a patch Pdescr of
width 12σ.

4.1 Keypoint Reference Orientation

A dominant gradient orientation over a keypoint neighborhood is used as its reference orientation.
This allows for orientation normalization and hence rotation-invariance of the resulting descriptor
(see Figure 7). Computing this reference orientation involves three steps:

A. accumulation of the local distribution of the gradient angle within a normalized patch in an
orientation histogram;

B. smoothing of the orientation histogram;

C. extraction of one or more reference orientations from the smoothed histogram.

A. Orientation histogram accumulation. Given a keypoint (x, y, σ), the patch to be analyzed
is extracted from the image of the scale-space vos, whose scale σos is nearest to σ. This normalized
patch, denoted by Pori, is the set of pixels (m,n) of vos satisfying

max(|δom− x|, |δon− y|) ≤ 3λoriσ. (19)

Keypoints whose distance to the image borders is less than 3λoriσ are discarded since the patch Pori is
not totally included in the image. The orientation histogram h from which the dominant orientation
is found covers the range [0, 2π]. It is composed of nbins bins with centers θk = 2πk/nbins. Each pixel
(m,n) in Pori will contribute to the histogram with a total weight of corim,n, which is the product of the
gradient norm and a Gaussian weight of standard deviation λoriσ (default value λori = 1.5) reducing
the contribution of distant pixels.

corim,n = e
− ‖(mδo,nδo)−(x,y)‖2

2(λoriσ)
2

∥∥(∂mvos,m,n, ∂nv
o
s,m,n

)∥∥ . (20)

This contribution is assigned to the nearest bin, namely the bin of index

borim,n =
[nbins

2π

(
arctan2

(
∂mvos,m,n, ∂nv

o
s,m,n

))]
. (21)
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where [·] denotes the round function and arctan2 is the two-argument inverse tangent function2 with
range in [0, 2π]. The gradient components of the scale-space image vso are computed through a finite
difference scheme

∂mvos,m,n =
1

2

(
vos,m+1,n − vos,m−1,n

)
, ∂nv

o
s,m,n =

1

2

(
vos,m,n+1 − vos,m,n−1

)
, (22)

for m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2.

B. Smoothing the histogram. After being accumulated, the orientation histogram is smoothed
by applying six times a circular convolution with the three-tap box filter [1, 1, 1]/3.

C. Extraction of reference orientation(s). The keypoint reference orientations are taken among
the local maxima positions of the smoothed histogram. More precisely, the reference orientations are
the positions of local maxima larger than t times the global maximum (default value t = 0.8). Let
k ∈ {1, . . . , nbins} be the index of a bin such that hk > hk− , hk > hk+ , where k− = (k − 1) mod nbins

and k+ = (k + 1) mod nbins and such that hk ≥ tmax(h). This bin is centered at orientation θk =
2π(k−1)/nbins. The corresponding keypoint reference orientation θref is computed from the maximum
position of the quadratic function that interpolates the values hk− , hk, hk+ ,

θref = θk +
π

nbins

(
hk− − hk+

hk− − 2hk + hk+

)
. (23)

Each one of the extracted reference orientations leads to the computation of one local descriptor
of a keypoint neighborhood. The number of descriptors may consequently exceed the number of
keypoints. Figure 8 illustrates how a reference orientation is attibuted to a keypoint.

Figure 8: Reference orientation attribution. The normalized patch Pori (normalized to scale and
translation) width is 6λoriσkey. The gradient magnitude is weighted by a Gaussian window of standard
deviation λoriσkey. The gradient orientations are accumulated into an orientation histogram h which
is subsequently smoothed.

2The two-argument inverse tangent, unlike the single argument one, determines the appropriate quadrant of
the computed angle thanks to the extra information about the signs of the inputs: arctan2(x, y) = arctan(x/y) +
π
2 sign(y)(1− sign(x)).
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4.2 Keypoint Normalized Descriptor

The SIFT descriptor encodes the local spatial distribution of the gradient orientation on a particular
neighborhood. SIFT descriptors can be computed anywhere, even densely over the entire image or its
scale-space [15, 11]. In the original SIFT method, however, descriptors are computed for all detected
keypoints over its normalized neighborhood, making them invariant to translations, rotations and
zoom-outs. Given a detected keypoint, the normalized neighborhood consists of a square patch
centered at the keypoint and aligned with the reference orientation.

The descriptor consists of a set of weighted histograms of the gradient orientation computed on
different regions of the normalized square patch.

The normalized patch. For each keypoint (xkey, ykey, σkey, θkey), a normalized patch is isolated
from the Gaussian scale-space image relative to the nearest discrete scale (o, s) to scale σkey, namely
vos. A sample (m,n) in vos, of coordinates (xm,n, ym,n) = (mδo, nδo) with respect to the sam-
pling grid of the input image, has normalized coordinates (x̂m,n, ŷm,n) with respect to the keypoint
(xkey, ykey, σkey, θkey),

x̂m,n = ((mδo − xkey) cos θkey + (nδo − ykey) sin θkey) /σkey,

ŷm,n = (−(mδo − xkey) sin θkey + (nδo − ykey) cos θkey) /σkey. (24)

The normalized patch denoted by Pdescr is the set of samples (m,n) of vos with normalized coordinates
(x̂m,n, ŷm,n) satisfying

max(|x̂m,n|, |ŷm,n|) ≤ λdescr. (25)

Keypoints whose distance to the image borders is less than
√

2λdescrσ are discarded to guaranty
that the patch Pdescr is included in the image. Note that no image re-sampling is performed. Each
sample (m,n) is characterized by the gradient orientation normalized with respect to the keypoint
orientation θkey,

θ̂m,n = arctan2
(
∂mvos,m,n, ∂nv

o
s,m,n

)
− θkey mod 2π, (26)

and its total contribution cdescrm,n . The total contribution is the product of the gradient norm and a
Gaussian weight (with standard deviation λdescrσkey) reducing the contribution of distant pixels,

cdescrm,n = e
− ‖(mδ

o,nδo)−(x,y)‖2

2(λdescrσ)
2

∥∥(∂mvos,m,n, ∂nv
o
s,m,n

)∥∥ . (27)

The array of orientation histograms. The gradient orientation of each pixel in the normalized
patch Pdescr is accumulated into an array of nhist×nhist orientation histograms (default value nhist =
4). Each of these histograms, denoted by hi,j for (i, j) ∈ {1, . . . , nhist}2, has an associated position
with respect to the keypoint (xkey, ykey, σkey, θkey), given by

x̂i =

(
i− 1 + nhist

2

)
2λdescr
nhist

, ŷj =

(
j − 1 + nhist

2

)
2λdescr
nhist

.

Each histogram hi,j consists of nori bins hi,jk with k ∈ {1, . . . , nori}, centered at θ̂k = 2π(k − 1)/nori

(default value nori = 8). Each sample (m,n) in the normalized patch Pdescr contributes to the
nearest histograms (up to four histograms). Its total contribution cdescrm,n is split bilinearly over the
nearest histograms depending on the distances to each of them (see Figure 10). In the same way,
the contribution within each histogram is subsequently split linearly between the two nearest bins.
This results, for the sample (m,n), in the following updates.
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For every (i, j, k) ∈ {1, . . . , nhist}2 × {1, . . . , nori} such that

|x̂i − x̂m,n| ≤
2λdescr
nhist

, |ŷj − ŷm,n| ≤
2λdescr
nhist

and |θ̂k − θ̂m,n mod 2π| ≤ 2π

nori

,

the histogram hi,jk is updated by

hi,jk ← hi,jk +

(
1− nhist

2λdescr

∣∣x̂i − x̂m,n∣∣)(1− nhist
2λdescr

∣∣ŷj − ŷm,n∣∣)(1− nori
2π

∣∣∣θk − θ̂m,n mod 2π
∣∣∣) cdescrm,n . (28)

Figure 9: SIFT descriptor construction. No explicit re-sampling of the described normalized patch
is performed. The normalized patch Pdescr is partitioned into a set of nhist×nhist subpatches (default
value nhist = 4). Each sample (m,n) inside Pdescr, located at (mδo, nδo), contributes by an amount
that is a function of their normalized coordinates (x̂m,n, ŷm,n) (see (24)). Each sub-patch Pdescr

(i,j) is

centered at (x̂i, ŷj).

The SIFT feature vector. The accumulated array of histograms is encoded into a vector feature f
of length nhist × nhist × nori, as follows

f(i−1)nhistnori+(j−1)nori+k = hi,jk ,

where i = 1, . . . , nhist, j = 1, . . . , nhist and k = 1, . . . , nori. The components of the feature vector f
are saturated to a maximum value of 20% of its Euclidean norm, i.e. fk ← min (fk, 0.2‖f‖). The
saturation of the feature vector components seeks to reduce the impact of non-linear illumination
changes, such as saturated regions.

The vector is finally renormalized so as to have ‖f‖2 = 512 and quantized to 8 bit integers as
follows: fk ← min (bfkc, 255). The quantization aims at accelerating the computation of distances
between different feature vectors3. Figure 9 and Figure 11 illustrate how a SIFT feature vector is
attibuted to an oriented keypoint.

3 The executable provided by D.Lowe http://www.cs.ubc.ca/~lowe/keypoints/, retrieved on September 11th,
2014) uses a different coordinate system (see source code’s README.txt for details).
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Figure 10: Illustration of the spatial contribution of a sample inside the patch Pdescr. The sample
(m,n) contributes to the weighted histograms (2, 2) (green), (2, 3) (orange), (3, 2) (blue) and (3, 3)
(pink). The contribution cdescrm,n is split over four pairs of bins according to (28).

Figure 11: The image on top shows the nhist × nhist array sub-patches relative to a keypoint;
the corresponding nori bins histograms are rearranged into a 1D-vector ~v (bottom). This vector is
subsequently thresholded and normalized so that the Euclidean norm equals 512 for each descriptor.
The dimension of the feature vector in this example is 128, relative to parameter nhist = 4, nori = 8
(default values).

4.3 Pseudocodes

Algorithm 10: Computation of the 2d gradient at each image of the scale-space
Input: (vos), digital Gaussian scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.
Outputs: - (∂mvos,m,n), scale-space gradient along x, o = 1, . . . , noct and s = 1, . . . , nspo.

- (∂nv
o
s,m,n), scale-space gradient along y, o = 1, . . . , noct and s = 1, . . . , nspo.

for o = 1, . . . , noct and s = 1, . . . , nspo do
for m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2 do

∂mvos,m,n = (vos,m+1,n − vos,m−1,n)/2
∂nv

o
s,m,n = (vos,m,n+1 − vos,m,n−1)/2
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Algorithm 11: Computing the keypoint reference orientation
Inputs: - LC = {(okey, skey, xkey, ykey, σkey,ω)}, list of keypoints.

- (∂mvos,m,n), scale-space gradient along x, o = 1, . . . , noct and s = 1, . . . , nspo.
- (∂nv

o
s,m,n), scale-space gradient along y, o = 1, . . . , noct and s = 1, . . . , nspo.

Parameters: - λori. The patch Pori is 6λoriσkey wide for a keypoint of scale σkey.
The Gaussian window has a standard deviation of λoriσkey.

- nbins, number of bins in the orientation histogram h.
- t, threshold for secondary reference orientations.

Output: LD = {(o, s′,m′, n′, x, y, σ,ω, θ)} list of oriented keypoints.

Temporary: hk, orientation histogram, k = 1, . . . , nbins and with hk covering [ 2π(k−3/2)nbins
; 2π(k−1/2)

nbins
].

for each keypoint (okey, skey, xkey, ykey, σkey,ω) in LC do

// Check if the keypoint is distant enough from the image borders

if 3λoriσkey ≤ xkey ≤ h− 3λoriσkey and 3λoriσkey ≤ ykey ≤ w − 3λoriσkey then

// Initialize the orientation histogram h
for 1 ≤ k ≤ nbins do hk ← 0

// Accumulate samples from the normalized patch Pori (Equation (19).
for m = [(xkey − 3λoriσkey

)
/δokey

]
, . . . , [(xkey + 3λoriσkey

)
/δokey

]
do

for n = [( ykey − 3λoriσkey
)
/δokey

]
, . . . , [( ykey + 3λoriσkey

)
/δokey

]
do

// Compute the sample contribution

corim,n = e
−
‖(mδokey ,nδokey )−(xkey,ykey)‖2

2(λoriσkey)2
∥∥(∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)∥∥
// Compute the corresponding bin index

borim,n =
[
nbins

2π

(
arctan2

(
∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)
mod 2π

)]
// Update the histogram

hborim,n ← hborim,n + corim,n

// Smooth h
Apply six times a circular convolution with filter [1, 1, 1]/3 to h.

// Extract the reference orientations

for 1 ≤ k ≤ nbins do
if hk > hk− , hk > hk+ and hk ≥ tmax(h) then

// Compute the reference orientation θkey

θkey = θk + π
nbins

(
hk−−hk+

hk−−2hk+hk+

)
note: [·] denotes the round function and arctan2 denotes the two-argument inverse tangent.

390



Anatomy of the SIFT Method

Algorithm 12: Construction of the keypoint descriptor
Inputs: - LD = {(okey, skey, xkey, ykey, σkey, θkey)} list of keypoints.

- (∂mvos,m,n), scale-space gradient along x.
- (∂nv

o
s,m,n), scale-space gradient along y (see Algorithm 10).

Output: LE = {(okey, skey, xkey, ykey, σkey, θkey, f)} list of keypoints with feature vector f .
Parameters: - nhist. The descriptor is an array of nhist × nhist orientation histograms.

- nori, number of bins in the orientation histograms.
Feature vectors f have a length of nhist × nhist × nori
- λdescr.

The Gaussian window has a standard deviation of λdescrσkey.
The patch Pdescr is 2λdescr

nhist+1
nhist

σkey wide.

Temporary: hi,jk , array of orientation weighted histograms, (i, j) ∈ {1, . . . , nhist} and k ∈ {1, . . . , nori}

for each keypoint (okey, skey, xkey, ykey, σkey, θkey) in LD do

// Check if the keypoint is distant enough from the image borders

if
√

2λdescrσkey ≤ xkey ≤ h−
√

2λdescrσkey and
√

2λdescrσkey ≤ ykey ≤ w −
√

2λdescrσkey then

// Initialize the array of weighted histograms

for 1 ≤ i ≤ nhist , 1 ≤ j ≤ nhist and 1 ≤ k ≤ nori do hi,jk ← 0

// Accumulate samples of normalized patch Pdescr in the array histograms

(Equation (25))

for m =
[(
xkey −

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
, . . . ,

[(
xkey +

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
do

for n =
[(
ykey −

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
, . . . ,

[(
ykey +

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
do

// Compute normalized coordinates (Equation (24)).
x̂m,n =

(
(mδokey − xkey) cos θkey + (nδokey − ykey) sin θkey

)
/σkey

ŷm,n =
(
−(mδokey − xkey) sin θkey + (nδokey − ykey) cos θkey

)
/σkey

// Verify if the sample (m,n) is inside the normalized patch Pdescr.

if max(|x̂m,n|, |ŷm,n|) < λdescr
nhist+1
nhist

then

// Compute normalized gradient orientation.

θ̂m,n = arctan2
(
∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)
− θkey mod 2π

// Compute the total contribution of the sample (m,n)

cdescrm,n = e
−
‖(mδokey ,nδokey )−(xkey,ykey)‖2

2(λdescrσkey)2
∥∥(∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)∥∥
// Update the nearest histograms and the nearest bins (Equation (28)).
for (i, j) ∈ {1, . . . , nhist}2 such that

∣∣x̂i − x̂m,n∣∣ ≤ 2λdescr

nhist
and

∣∣ŷj − ŷm,n∣∣ ≤ 2λdescr

nhist
do

for k ∈ {1, . . . , nori} such that
∣∣∣θ̂k − θ̂m,n mod 2π

∣∣∣ < 2π
nori

do

hi,jk ← hi,jk +(
1− nhist

2λdescr
|x̂m,n−x̂i|

)(
1− nhist

2λdescr
|ŷm,n − ŷj |

)(
1− nori

2π |θ̂m,n−θ̂
k mod 2π|

)
cdescrm,n

// Build the feature vector f from the array of weighted histograms.

for 1 ≤ i ≤ nhist , 1 ≤ j ≤ nhist and 1 ≤ k ≤ nori do
f(i−1)nhistnori+(j−1)nori+k = hi,jk

for 1 ≤ l ≤ nhist × nhist × nori do
fl ← min (fl, 0.2‖f‖) /*normalize and threshold f*/
compute the l2 norm fl ← min (b512fl/‖f‖c, 255) /*quantize to 8 bit integers*/

Add (x, y, σ, θ, f) to LE
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5 Matching

The classical purpose of detecting and describing keypoints is to find matches (pairs of keypoints)
between images. In the absence of extra knowledge on the problem, for instance in the form of
geometric constraints, a matching procedure generally consists of two steps: the pairing of similar
keypoints from respective images and the selection of those that are reliable. In what follows, we
present the matching method described in the original article by D. Lowe [17]. Let LA and LB be
the set of descriptors associated to the keypoints detected in images uA and uB. The matching is
done by considering every descriptor associated to the list LA and finding one possible match in list
LB. The first descriptor fa ∈ LA is paired to the descriptor f b ∈ LB that minimizes the Euclidean
distance between descriptors,

f b = arg min
f∈LB

‖f − fa‖2.

Pairing a keypoint with descriptor fa requires then to compute distances to all descriptors in LB. A
pair is considered reliable only if its absolute distance is below a certain threshold Cmatch

absolute. Otherwise
it is discarded.

To avoid dependence to an absolute distance, the SIFT method uses the second nearest neighbor
to define what constitutes a reliable match. SIFT applies an adaptive thresholding ‖fa− f b

′‖Cmatch
relative,

where fb′ is the second nearest neighbor,

f b
′
= arg min

f∈LB\{fb}
‖f − fa‖2.

This is detailed in Algorithm 13. The major drawback of using a relative threshold is that it omits
detections for keypoints associated to a repeated structure in the image. Indeed, in that case, the
distance to the nearest and the second nearest descriptor would be comparable. More sophisticated
techniques have been developed to allow robust matching of images with repeated structures [20].

This matching algorithm runs in time c·NA ·NB, where NA and NB are the number of keypoints in
images uA and uB respectively, and c is a constant proportional to the time that takes to compare two
SIFT features. This is prohibitively slow for images of moderate size, although keypoint matching is
highly parallelizable. A better solution is to use more compact descriptors [26] that reduce the cost
of distance computation (and thus reduce the value of c). Among the proposed solutions we can find
more compact SIFT-like descriptors [2, 12] or binary descriptors [5, 24, 21] which take advantage of
the fast computation of the Hamming distance between two binary vectors.

Algorithm 13: Matching keypoints

Inputs: - LA = {(xa, ya, σa, θa, fa)} keypoints and descriptors relative to image uA.
- LB = {

(
xb, yb, σb, θb, f b

)
} keypoints and descriptors relative to image uB .

Output: M =
{

(xa, ya, σa, θa, fa) ,
(
xb, yb, σb, θb, f b

)}
list of matches with positions.

Parameter: Cmatch
relative relative threshold

for each descriptor fa in LA do

Find f b and f b
′
, nearest and second nearest neighbors of fa:

for each descriptor f in LB do
Compute distance d(fa, f)

Select pairs satisfying a relative threshold.
if d(fa, f b) < Cmatch

relative d(fa, f b
′
) then

Add pair (fa, f b) to M
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6 Summary of Parameters

The online demo provided with this publication examines in detail the behavior of each stage of the
SIFT algorithm. In what follows, we summarize all the parameters that can be adjusted in the demo.

Digital scale-space configuration and keypoints detection

Parameter Default value Description

σmin 0.8 blur level of v1
0 (seed image)

δmin 0.5 the sampling distance in image v1
0 (corresponds to a 2× interpolation)

σin 0.5 assumed blur level in uin (input image)
noct 8 number of octaves (limited by the image size )) blog2(min(w, h)/δmin/12) + 1c
nspo 3 number of scales per octave

CDoG 0.015 threshold over the DoG response (value relative to nspo = 3)

Cedge 10 threshold over the ratio of principal curvatures (edgeness).

Table 3: Parameters of the scale-space discretization and detection of SIFT keypoints.

The structure of the digital scale-space is unequivocally characterized by four structural param-
eters: noct, nspo, σmin, δmin and by the blur level in the input image σin. The associated online demo
allows the user to change these values. They can be tuned to satisfy specific requirements4. For
example, increasing the number of scales per octave nspo and the initial interpolation factor δmin

increases the number of detections. On the other hand, reducing them results in a faster algorithm.
The image structures that are potentially detected by SIFT have a scale ranging from σmin to

σmin2noct . Therefore, it may seem natural to choose the lowest possible value of σmin (i.e. σmin = σin).
However, depending on the input image sharpness, low scale detections may be the result of aliasing
artifacts and should be avoided. Thus, a sound setting of parameter σmin should take into account
the image blur level σin and the possible presence of image aliasing.

The DoG thresholding, controlled by CDoG, was conceived to filter detections due to noise. With
that aim in view, CDoG should depend on the input image signal to noise ratio. It is however beyond
the scope of this publication to analyze the soundness of such an approach. We will only point
out that the reduction of CDoG increases the number of detected keypoints. Recall that the DoG
approximates (21/nspo − 1)σ2∆v, its values depend on the number of scales per octave nspo. The

threshold applied in the provided source-code is C̃DoG = 2
1/nspo−1
21/3−1 CDoG, with CDoG relative to nspo =3.

The threshold Cedge, applied to discard keypoints laying on edges, has in practice a negligible
impact on the algorithm performance. Indeed, many candidate keypoints laying on edges were
previously discarded during the extrema refinement.

Computation of the SIFT descriptor

The provided demo shows the computation of the keypoint reference orientation, and also the con-
struction of the feature vector for any detected keypoint.

The parameter λori controls how local the computation of the reference orientation is. Localizing
the gradient analysis generally results in an increased number of orientation references. Indeed,
the orientation histogram generated from an isotropic structure is almost flat and therefore has

4The number of computed octaves is upper limited to ensure that images in the last octave are at least 12 × 12
pixels.

393



Ives Rey-Otero, Mauricio Delbracio

Parameter Default value Description

nbins 36 number of bins in the gradient orientation histogram

λori 1.5 sets how local the analysis of the gradient distribution is:

- Gaussian window of standard deviation λoriσ

- patch width 6λoriσ

t 0.80 threshold for considering local maxima in the gradient orientation histogram

nhist 4 number of histograms in the normalized patch is (nhist × nhist)
nori 8 number of bins in the descriptor histograms

the feature vectors dimension is nhist × nhist × nori
λdescr 6 sets how local the descriptor is:

- Gaussian window of standard deviation λdescrσ

- descriptor patch width 2λdescrσ

Table 4: Parameters of the computation of the SIFT feature vectors.

many local maxima. Another algorithm design parameter, not included in Table 4 because of its
insignificant impact, is the level of smoothing applied to the histogram (Nconv = 6).

The size of the normalized patch used for computing the SIFT descriptor is governed by λdescr. A
larger patch will produce a more discriminative descriptor but will be less robust to scene deformation.
The number of histograms nhist × nhist and the number of bins nori can be set to make the feature
vector more compact. These architectural parameters govern the trade off between robustness and
discrimination.

Matching of SIFT feature vectors

The SIFT algorithm consists of the detection of image keypoints and their description. The demo
provides additionally two naive algorithms to match SIFT features. The first one applies an absolute
threshold on the distance to the nearest keypoint feature to define if a match is reliable. The second
one applies a relative threshold that depends on the distance to the second nearest keypoint feature.

Increasing the absolute threshold Cmatch
absolute evidently reduces the number of matches. In a relative

threshold scenario, increasing the threshold Cmatch
relative results in an increased number of matches. In

particular, pairs corresponding to repeated structures in the image will be less likely to be omitted.
However, this may lead to an increased number of false matches.

Parameter Default value Description

Cmatch
absolute 250 to 300 threshold on the distance to the nearest neighbor

Cmatch
relative 0.6 relative threshold between nearest and second nearest neighbors

Table 5: Parameters of the SIFT matching algorithm.
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