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Abstract

The goal of the flutter shutter is to make uniform motion blur invertible, by a “fluttering”
shutter that opens and closes on a sequence of well chosen sub-intervals of the exposure time
interval. In other words, the photon flux is modulated according to a well chosen sequence called
flutter shutter code. This article provides a numerical method that computes optimal flutter
shutter codes in terms of mean square error (MSE). We assume that the observed objects follow
a known (or learned) random velocity distribution. In this paper, Gaussian and uniform velocity
distributions are considered. Snapshots are also optimized taking the velocity distribution into
account. For each velocity distribution, the gain of the optimal flutter shutter code with respect
to the optimal snapshot in terms of MSE is computed. This symmetric optimization of the
flutter shutter and of the snapshot allows to compare on an equal footing both solutions, i.e.
camera designs. Optimal flutter shutter codes are demonstrated to improve substantially the
MSE compared to classic (patented or not) codes. A numerical method that permits to perform
a reverse engineering of any existing (patented or not) flutter shutter codes is also described
and an implementation is given. In this case we give the underlying velocity distribution from
which a given optimal flutter shutter code comes from. The combination of these two numerical
methods furnishes a comprehensive study of the optimization of a flutter shutter that includes
a forward and a backward numerical solution.

Source Code

The C++ source code, version 2.0, is available from the article web page1. The documentation is
included in the archive. Basic compilation and usage instructions are included in the README.txt
file. The demo permits to compute optimal flutter shutter codes for (truncated) Gaussian and
uniform probability velocity distribution. It computes the optimal snapshot, as well. In this
case the demo provides the ideal exposure time, taking the velocity model into account. It also
computes the gain in terms of MSE of the flutter shutter compared to the optimal snapshot. This
comparison permits to decide the viability of the flutter shutter apparatus for any application.

1https://doi.org/10.5201/ipol.2015.108
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The Flutter Shutter Code Calculator

1 Introduction

Digital cameras are devices that count the number of photons emitted by the observed landscape
during a time span called exposure time. Due to the nature of photon emission the photon count is
a Poisson random variable. This means that the more photons counted the least noisy the produced
image is. If the scene being photographed moves during the exposition process, or if the scene is still
but the camera moves, the resulting images are degraded by motion blur. As soon as the support of
a uniform motion blur kernel exceeds two pixels the blur is not invertible2. Thus, when the camera
and the landscape are in relative motion the aperture time of a classic camera must be reduced
to guarantee an invertible motion blur kernel. A passive camera cannot artificially increase the
photon count. Consequently, the image quality of a snapshot is limited. Obtaining longer exposure
time without the effects of the motion blur can therefore be seen as one of the core problems of
photography.
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Figure 1: On the left panel: simulated observed (blurry and noisy) image using the Agrawal, Raskar
et al. code published in [1]. The blur interval length is 52 pixels. Notice the stroboscopic effect of
the flutter shutter apparatus. On the middle panel: the reconstructed image obtained by direct
deconvolution. These images come from a peer-reviewed flutter shutter camera simulator [13]. On
the right panel: the velocity probability density for which the Agrawal, Raskar et al. “near-optimal
code” [11, p. 799] and patent application [12] is optimal. The x-axis is the motion (in signed pixels)
and the y-axis represents the logarithm of the probability density (logp1 ` ρpvqq). The probability
that v “ 0 is overwhelming -recall that the y-axis is log scaled- and is small but nonzero for a
(relatively) broad range of velocities.

A revolutionary alternative to classic photography was proposed in [1, 2, 3, 10, 12]. In [1, 2, 3,
10, 12] Agrawal, Raskar et al. attach to the camera a flutter shutter to get an invertible motion blur
kernel. Numerically, the flutter shutter is described by a binary shutter sequence called flutter shutter
code. This code gives the sub-interval of the exposure time where the photon flux is interrupted.
The striking new fact is that if the flutter shutter code is well chosen, invertibility can be guaranteed
for arbitrarily severe uniform motion blur as illustrated in Figure 1. As a byproduct, the exposure
time can be as long as desired: many more photons are sensed by the camera. Viewed in that
perspective, the flutter shutter looks like a magic solution that should equip all cameras. Yet, does
that mean that one can decrease indefinitely the MSE by an increased exposure time, at no cost from

2The uniform motion model implies that the relative camera scene motion has a constant speed and follows a
straight line.
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the motion blur side? The answer is negative, as proved in [14] by Tendero et al. More precisely,
given a landscape that moves in uniform translation at a known velocity v the gain in terms of MSE
with respect to an optimal snapshot cannot exceed a 1.17 factor. This 1.17 factor is significant but
clearly not overwhelming.

In [15] Tendero et al. propose a mathematical framework that permits to optimize flutter shutter
cameras beyond this bound in many realistic cases. This is possible provided the random velocity
distribution of objects in the scene is known. Compared to [14] the setup is changed: the velocity
is no more a known constant. Instead, in [15] the motion follows a random velocity distribution.
Depending on this velocity distribution, the gain can be significant. Conversely, their theory permits
to analyze a posteriori any existing flutter shutter strategy or code. A formula permits to decide if
any existing code is optimal or not for some random velocity distribution. If the considered flutter
shutter code is optimal, a formula permits to perform a reverse engineering of the code. Indeed, the
formula reveals the probability density for which the given flutter shutter code is optimal.

This paper provides the implementation of the theory developed by Tendero et al. in [15]. Two
velocity models are considered: truncated Gaussian and uniform distribution. For each, it computes
the optimal codes, the optimal snapshot and compares the MSE of both solutions. In addition, this
paper provides the implementation of the reverse engineering algorithm that, given a flutter code,
computes the velocity distribution for which it is optimal. A glossary of notations is available in the
Appendix (page 251).

2 The Flutter Shutter Formalism [14]

This section gives the whole flutter shutter formalism as it was developed by Tendero et al. in [14].
The exposition is self-contained.

2.1 Analog and Numerical Flutter Shutter Methods

Following the flutter shutter literature we assume that the relative camera scene motion is uniform.
This implies that the relative camera-landscape motion can be associated with a one dimensional box
kernel. The support of this kernel increases linearly with the exposure time ∆t and the velocity v P R

of the motion. If the exposure time is too long and the blur support exceeds two pixels, then the blur
is no more invertible. In that case, the restoration process is an ill-posed problem [4]. The flutter
shutter [1, 2, 3, 12, 10] (coded exposure) permits to ensure an invertible motion kernel for arbitrarily
severe uniform motion blur. There are two different acquisition tools that implement a flutter shutter
with a moving sensor (or landscape). The flutter shutter function can be implemented as an optical
(temporally changing) filter. This filter controls the percentage of incoming photons allowed to travel
to the sensor. The filtering function is generally assumed to be piecewise constant [1, 2, 3, 10, 12]
with a flutter shutter code pαkqkPt0,...,L´1u, where L is the length of the code. This setup, which
corresponds to the initial technology of the inventors, is called analog flutter shutter.

A more flexible set up, the flutter shutter, is a mere temporal filter. In a nutshell, the camera
takes a burst of L images. The k-th elementary image is assigned a numerical gain αk P R. The
observed image is obtained as the weighted sum of elementary images with weights pαkqkPt0,...,L´1u.
According to [6, 9] an image sensor can have a duty ratio of nearly 100% (the duty ratio is the
ratio of light integration time over readout, storage, reset times - that is the percentage of useful
time). Thus, a sensor can integrate light without interruption. This means that the numerical flutter
shutter, as it is described below, i.e. without “dead time” between two consecutive gains αk, is doable
from a technological point of view. Notice that in both cases we have a flutter shutter code, but the
formulas for the resulting image are not exactly the same, as illustrated in Table 1.
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Type of Numerical flutter shutter Analog flutter shutter
flutter shutter

flutter shutter
function αptq

αptq “
L´1ÿ

k“0

αk1rk∆t,pk`1q∆tqptq αptq “
L´1ÿ

k“0

αk1rk∆t,pk`1q∆tqptq

(with αk P R and ∆t ą 0) (with αk P r0, 1s and ∆t ą 0)

Continuous flutter αptq P L2pRq αptq P L1pRq, αptq P r0, 1s
shutter gain
function αptq

Observed samples
obspnq

obspnq„
L´1ÿ

k“0

αkP

˜ż pk`1q∆t

k∆t

upn ´ vtqdt
¸

obspnq „ P
`
1
v
pα

`
¨
v

˘
˚ uqpnq

˘

E pobspnqq
`
1
v
α

`
¨
v

˘
˚ u

˘
pnq 1

v
pα

`
¨
v

˘
˚ uqpnq

(observed)

varpobspnqq
`
1
v
α2

`
¨
v

˘
˚ u

˘
pnq 1

v
pα

`
¨
v

˘
˚ uqpnq

(observed)

Inverse filter γ̂pξq 1r´π,πspξq
α̂pξvq

1r´π,πspξq
α̂pξvq

Epûestpξqq ûpξq1r´π,πspξq ûpξq1r´π,πspξq
(deconvolved)

MSE
(deconvolved)

1

2π

ż

R

}α}2
L2pRq}u}L1pRq

|α̂pξvq|2 1r´π,πspξqdξ 1

2π

ż

R

}α}L1pRq}u}L1pRq

|α̂pξvq|2 1r´π,πspξqdξ

Table 1: This table summarizes the main formulas on numerical and analog flutter shutters. The
first column describes the structure of the flutter shutter, the second describes the analog flutter
shutter. The notation f̂ denotes the standard Fourier transform on R, and f̌ the inverse Fourier
transform on R. The notation Ppλq denotes a Poisson random variable with intensity λ. See also
Section 2.1.

The whole flutter shutter study is usually performed as though the image were a one-dimensional
signal, recorded on a line in the direction of the camera-landscape motion. Indeed, the motion blur
is one-dimensional and the whole convolution and deconvolution model is applied on each line of
the image. From the mathematical viewpoint, the flutter shutter reduces to the 1D convolution of
a flutter shutter function α with the one dimensional stochastic observed landscape. The expected
value at position x of this stochastic landscape will be denoted by upxq. In all statements, this ideal
(noiseless) landscape u is assumed to have finite energy: u P L1pRq XL2pRq and r´π, πs band limited
(thanks to the combined camera and sensor frequency cut-off). Therefore, u is well sampled at a
unit rate.

The whole formalism of the flutter shutter is summarized in Table 1. Its first row indicates the
kind of implementable flutter shutter function, depending on the flutter shutter type and with a
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discrete code. Formally, the flutter shutter function is

αptq “
L´1ÿ

k“0

αk1rk∆t,pk`1q∆tqptq, (1)

where ∆t ą 0. From (1) we have

α̂pξq “ ∆tsinc

ˆ
ξ∆t

2π

˙ L´1ÿ

k“0

αke
´ipk` 1

2qξ∆t. (2)

Hereinafter f̂pξq denotes the classic continuous Fourier transform on R and f̌ the inverse Fourier
transform on R, see (xx). (Hereinafter Latin numerals refer to formulae in the glossary, page 251.)
For an analog flutter shutter we have αk P r0, 1s while for a flutter shutter we have αk P R.

In the second row, for a sake of commodity in calculations, the flutter shutter formalism is
extended to deal with time continuous as well as piecewise constant (coming from a code) flutter
shutter functions. The flutter shutter function is αptq, meaning that the gain can change continuously
with time. This extension is actually feasible (see [14] for the rigorous mathematical proof).

The third row of the table gives the exact formula of the observed samples. The notation X „ Y

means that the random variables X and Y have the same law. The notation Ppλq denotes a Poisson
random variable with intensity λ, see also (vii). For the analog flutter shutter, the observed digital
image at pixel n is a Poisson noise with intensity 1

v

`
α

`
¨
v

˘
˚ u

˘
pnq. This parameter is nothing but the

convolution (see (x) for the definition) of the landscape u with the (rescaled) flutter shutter function
α. In other words, obspnq the sample at position n P Z, has law obspnq „ P

`
1
v

`
α

`
¨
v

˘
˚ u

˘
pnq

˘
. For

the flutter shutter, the formula is obspnq „ řL´1

k“0 αkP

´şpk`1q∆t

k∆t
upn ´ vtqdt

¯
. It can only be stated

with a discrete flutter shutter code. Indeed, we have a linear combination of weighted acquired
images, and each one is a (Poisson) random variable. In both cases the observed samples obspnq are
obtained for n P Z.

As explicit in the fourth row, the expected value of the (observed) image is

E pobspnqq “
ˆ
1

v
α

´ ¨
v

¯
˚ u

˙
pnq,

for both kind of flutter shutter. It is nothing but the convolution of the landscape u with the
flutter shutter function α. However, there is a significant difference in the fifth row. The variance
of the observed value at a pixel n is varpobspnqq “

`
1
v
α2

`
¨
v

˘
˚ u

˘
pnq for the flutter shutter. In other

words, the variance of the observed value at a pixel n depends on the square of the flutter shutter
function α for the flutter shutter. The variance of the observed value at a pixel n is varpobspnqq “`
1
v
α

`
¨
v

˘
˚ u

˘
pnq. In other words, dependency is linear for the analog flutter shutter. The fourth and

fifth rows are immediately obtained from the third by expectation and variance calculations.
The sixth row gives the inverse filter to be applied to the observed samples in order to deconvolve

the observed image. The inverse filter is designed to give back, in expectation, the ideal landscape
u. Thus, the inverse filter is

γ̂pξq “ 1r´π,πspξq
α̂pξvq , (3)

for both kind of flutter shutter. Indeed, both kind of flutter shutter have the same expectation (see
row four of Table 1). This inverse filter is nothing but the inverse of the Fourier transform of the
convolution kernel, 1

v

`
α

`
¨
v

˘
˚ sinc

˘
pnq. (See (xxi) for the definition of the sinc function.) The sinc

function ensures that it is applied only on the r´π, πs frequencies. Indeed, u is assumed to be r´π, πs
band-limited.
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The seventh row gives the expected value of the deconvolved image. We have Epûestpξqq “
ûpξq1r´π,πspξq, for both kind of flutter shutter. We recall that the inverse filter was designed to give
back the ideal landscape (in expectation).

The last row gives the main two formulas proved in [14], namely the MSE (or variance) of the
restored signal. For the flutter shutter we have

MSEnumericalpdeconvolvedq “ }u}L1pRq

2π

ż

R

}α}2
L2pRq

|α̂pξvq|21r´π,πspξqdξ. (4)

For the analog flutter shutter we have

MSEanalogpdeconvolvedq “ }u}L1pRq

2π

ż

R

}α}L1pRq

|α̂pξvq|21r´π,πspξqdξ. (5)

Note that u intervenes in the above formulas as a mere multiplication factor by the constant }u}L1pRq.
Thus, optimizing a flutter shutter amounts to find flutter shutter functions α that minimize Equa-
tion (4) or (5), which are different for the analog and numerical flutter shutter.

With these formulas it is easily checked that if a flutter shutter function 0 ď αptq ď 1 is im-
plementable on both kinds of flutter shutters, the MSE of the analog flutter shutter is bigger than
the MSE of the numerical flutter shutter. Indeed these conditions on αptq imply α2ptq ď αptq and
therefore }α}2

L2pRq ď }α}L1pRq. Notice that the MSE of the flutter shutter does not change by changing
α for λα if λ ‰ 0. This is not true for the analog flutter shutter, where for evident physical reasons,
0 ď αptq ď 1 and (e.g.) α

2
has a higher MSE than α.

3 Optimal Flutter Shutter Codes Computation [15]

This section gives the formalism used to compute optimal codes as it is developed in [15] by Tendero
et al. Nevertheless, the exposition is self-contained.

Let ρpvq be a probability density for the camera-landscape velocities v. Note that this is equivalent
to assuming a probability density on motion blur supports measured in pixel(s). However, the
discussion is easier when considering the velocities. We assume that ρpvq “ 0 for any v such that |v| ą
|vmax| and that the probability density ρpvq is known. As we have just seen in Section 2.1, minimizing

the MSE amounts to minimizing
ş
R

}α}2
L2pRq

}u}
L1pRq1r´π,πspξq

|α̂pξvq|2
dξ with respect to the flutter shutter function

α P L2pRq. Dropping the multiplicative constant
}u}

L1pRq

2π
and after a change of variable, this is

equivalent to minimizing, for a fixed velocity v, the functional Evpα̂q “ }α̂}2
L2pRq

ş
R

1r´π|v|,π|v|spξqdξ

|v| |α̂|2pξq
.

Thus, taking the velocity distribution ρpvq into account, a flutter shutter function α P L2pRq leading
to the lowest MSE is obtained by minimizing

Epα̂q “
ż

R

Evpα̂qρpvqdv “ }α̂}2L2pRq

ż

R

1

|α̂pξq|2
ˆż

R

ρpvq1r´|v|π,|v|πspξq
|v| dv

˙
dξ, (6)

where we used Fubini’s theorem. Then, from (6), consider the function

wpξq :“
ż

R

ρpvq1r´|v|π,|v|πspξq
|v| dv “

ż

Rzr ´|ξ|
π

,
|ξ|
π

s

ρpvq ` ρp´vq
2|v| dv, (7)

that will be useful for the rest of this paper. From (7), we deduce that w is even, that w ě 0 and
that wpξq “ 0 for any ξ P R such that |ξ| ě |vmax|π. In addition, from (7), we deduce that

ż

R

|wpξq|dξ “
ż

R

2|v|πρpvq
|v| dv “ 2π.
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Thus, w P L1pRq and is compactly supported, so that 4
?
w P L1pRq X L2pRq. With the help of the

function w we can finally formulate the energy that minimizes (6) in a closed form.

Definition 1 Given a velocity probability density ρ we call optimal flutter shutter gain function for
ρ any function α P LpRq2 that minimizes

Epα̂q “ }α̂}2L2pRq

ż 8

´8

wpξq
|α̂|2pξqdξ, (8)

where w is linked to ρ by (7).

The energy (8) is invariant to arbitrary translations and scalings of α, i.e. satisfies EpC1α̂p¨qe´iC2¨q “
Epα̂q, for any constants C1 P Rzt0u and C2 P R. Therefore, minimizers of (8) among functions
α̂ P L2pRq are not unique, as soon as there is one. We have

Theorem 1 (Optimal time-continuous flutter shutter gain functions)
Let ρ be a probability density supported on r´|vmax|, |vmax|s and consider w obtained from ρ by (7).
A flutter shutter gain function α P L2pRq is optimal in terms of MSE (8) if and only if, for some
C ą 0, α̂ satisfies |α̂| “ C 4

?
w on the support of w, and α̂ “ 0 outside the support of w.

Given a code length L we need to compute a flutter shutter gain function of the form (1) in order to
deduce a feasible flutter shutter from the above solution.

Theorem 2 (Optimal flutter shutter codes in terms of MSE)
Let ρ, w as in Theorem 1 and ∆t be such that |vmax|∆t ď 1. Consider a sequence pαkqk P ℓ2pZq and
the L2pRq piecewise constant flutter shutter gain function uniquely associated with pαkqk,

αptq “
ÿ

kPZ

αk1rk∆t,pk`1q∆tqptq, (9)

where ∆t ą 0. A sequence pαkqk P ℓ2pZq is optimal with respect to the MSE (8) if and only if pαkqk
satisfies

ˇ̌ř
kPZ

αke
´ikξ

ˇ̌
“ C

4
b
wp ξ

∆
tqb

sincp ξ

2π q for some fixed C ą 0 and for any ξ P r´π, πs.
In addition, the real values αk, for k P Z, explicitly given by

αk “ 1

2π

ż π|vmax|∆t

´π|vmax|∆t

4

b
wp ξ

∆t
q cos pksq

b
sinc

`
ξ

2π

˘ dξ “ 1

π

ż π|vmax|∆t

0

4

b
wp ξ

∆t
q cos pksq

b
sinc

`
ξ

2π

˘ dξ, (10)

define an optimal flutter shutter gain function α P L2pRq with respect to the energy (8), among all
real-valued functions in L2pRq of the form (9).

Remark 1 From (7) we have that wpξq “
ş
Rzr ´|ξ|

π
,

|ξ|
π

s
ρpvq`ρp´vq

2|v|
dv. We deduce that optimal flutter

shutter gain functions α P L2pRq only depend on the even part of ρ. Indeed, the choice of a positive
direction for the velocities v is arbitrary and does not change the MSE. Therefore, from Theorem 2
we deduce that optimal codes depend only on the motion magnitudes distribution.

The coefficients αk of the optimal flutter shutter code are real. However, they are not neces-

sarily positive (nor the ideal flutter shutter function }4?wptq). This implies that, in general, the
code cannot be implemented with an analog flutter shutter. Note that w

`
¨
∆t

˘
is supported on

r´π|vmax|∆t, π|vmax|∆ts.
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Remark 2 In the sequel we shall compute optimal codes for an uniform and a (truncated) Gaussian
motion model. Note that to compute the ak defined in (10) we can drop any multiplicative constants.
Indeed, the MSE of a flutter shutter defined in (4) is invariant by changing flutter shutter gain
function α to λα for any λ P Rzt0u. This means that one does not need to normalize ρpvq so thatş
R
ρpvqdv “ 1, and that one can normalize the code coefficients αk so that (e.g.)

ş
R
αptqdt “ 1. In

the sequel we shall consider a (truncated) Gaussian motion model of the form

ρpvq91r´4σN ,4σN s exp

ˆ ´v2

2σ2
N

˙
, (11)

where 9 means proportional to, σN ą 0 and a uniform motion model of the form

ρpvq “ 1

2|vmax|1r´|vmax|,|vmax|spvq, (12)

where vmax ‰ 0. When ρ is given by (11), from (7) we have

wpξq “
ż 4σN

0

exp

ˆ ´v2

2σ2
N

˙
1r´|v|π,|v|πspξq

|v| dv. (13)

When ρ is given by (12), from (7) we have

wpξq “
ż |vmax|

0

1r´|v|π,|v|πspξq
|v| dv, (14)

up to a multiplicative constant. The functions in (13) and (14) have singularities at ξ “ 0. However,
w P L1pRq (see page 240). Therefore, in the sequel, to avoid numerical issues we propose to evaluate

ż 4σN

ε

exp

ˆ ´v2

2σ2
N

˙
1r´|v|π,|v|πspξq

|v| dv (15)

instead of (13) and ż |vmax|

ε

1r´|v|π,|v|πspξq
|v| dv (16)

instead of (14). Hence, combining (10) and (15) we deduce that

αk “
ż 4πσN∆t

0

4

cş4σN

ε
exp

´
´v2

2σ2
N

¯
1r´|v|π,|v|πsp ξ

∆tq
|v|

dv cos pkξq
b
sinc

`
ξ

2π

˘ dξ, (17)

up to a multiplicative constant, when ρpvq is given by (11). When ρpvq is given by (12), combining (10)
and (16) we obtain

αk “
ż π|vmax|∆t

0

4

c
ş|vmax|

ε

1r´|v|π,|v|πsp ξ

∆tq
|v|

dv cos pkξq
b
sinc

`
ξ

2π

˘ dξ, (18)

up to a multiplicative constant. We recall that the MSE (4) is invariant to non zero multiplicative
constants. Therefore, the ak defined in (17) and (18) can be normalized so that, e.g.

ş
αptqdt “ 1.
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Remark 3 The same scheme is applied to snapshots. This is needed to compare on an equal footing
the optimal flutter shutter and the optimal snapshot. The optimal snapshot minimizes (6) among
flutter shutter functions of the form of αptq “ 1r0,T sptq. Therefore, combining (2) and (6)-(7) we
deduce that we need to minimize with respect to T the following functional

ż

R

ż π

´π

1

T sinc2
`
ξvT

2π

˘dξρpvqdv. (19)

Combining (xxi) and (19), assuming that ρ is even, supported on r´|vmax|, |vmax|s and dropping the
multiplicative constant 4 we have

EpT q “
ż |vmax|

0

ż π

0

1

T sinc2
`
ξvT

2π

˘ρpvqdξdv. (20)

Note that as soon as ρ is even it is equivalent to minimize (19) or (20) and that ρ is even for the two
examples considered in this paper. In addition, snapshots are invertible as soon as |vmax|T ă 2 [14].
Indeed, the energy EpT q defined in Equation (20) is infinite for T ě 2

|v max|
. It is also easy to see

that EpT q TÑ0ÝÝÝÑ `8. Therefore, the optimum T ˚, if it exists, satisfies T ˚ P p0, 2
|v max|

q. In [15] it is

proven that (19) is strictly convex. Since (19) is finite on p0, 2
|v max|

q we deduce that it admits exactly

one minimizer. Hence, (20) also has exactly one minimizer. However, no analytical formula have
been obtained that links the minimizer of E and the velocity distribution ρ. Thus, in the sequel the
minimizer is computed numerically for T P pε, 1.999

|vmax|
q where ε ą 0.

Gain evaluation The gain in terms of RMSE depends on the velocity v. Thus, it is useful for
the analysis to define Gpvq the gain at velocity v of the optimal flutter shutter with respect to the
optimal snapshot in terms of RMSE. From (4) the MSE of a snapshot with exposure time T ˚ is

MSEsnapshotpvq “ }u}L1pRq

2π

ż π

´π

1

T sinc2
`
ξvT

2π

˘dξ “ }u}L1pRq

π

ż π

0

1

T sinc2
`
ξvT

2π

˘dξ. (21)

Similarly, from (4) we deduce that

MSEflutterpvq “ }u}L1pRq

π

ż π

0

}α}2
L2pRq

|α̂pξvq|2dξ. (22)

Therefore, from (21) and (22), Gpvq the gain at velocity v of the optimal flutter shutter with respect
to the optimal snapshot in terms of RMSE, is

Gpvq “

gfffe

şπ
0

1

T˚sinc2
´
ξvT˚

2π

¯dξ

şπ
0

}α}2
L2pRq

|α̂pξvq|2
dξ

, (23)

where v is in the support r´|vmax|, |vmax|s of the velocity distribution ρ , and T ˚ is the exposure time
of the optimal snapshot. The optimal exposure time of the snapshot T ˚ is defined from Equation (20).
Recall that a piecewise constant flutter shutter gain function α has the generic form of (1). Moreover,
its time-step is ∆t and ∆t ‰ T ˚ in general. The coefficients αk of the flutter shutter code are explicitly
given by (17) and (18). The average gain of the flutter shutter in terms of RMSE with respect to
the optimal snapshot is defined by
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µ :“
ż

R

Gpvqρpvqdv, (24)

and the associated standard deviation is

σ :“

dż

R

ˇ̌
ˇ̌Gpvq ´

ż

R

Gpuqρpuqdu
ˇ̌
ˇ̌
2

ρpvqdv. (25)

Remark 4 From (23) we deduce the gain is invariant by changing α to λα for any λ P R
˚. This

means that we can without loss of generality normalize α, }4?w so that, e.g.
ş
R
αpxqdx “ 1 and

ş
R

}4?wpxqdx “ 1. In addition, from (21) we deduce that Gp0q “
d

π

T˚

π}α}2
L2pRq

|α̂p0q|2

.

4 The Reverse Path: from Classic Codes to Their Underly-

ing Motion [15]

By the formulae of the previous section we are now able to check if a flutter shutter gain function α P
L2pRq, is optimal for some velocity distribution, and to compute its underlying velocity distribution.
Remark 1 implies that from a given optimal flutter shutter gain function α P L2pRq associated with

some unknown probability density ρ, one can only recover the even part of ρ namely ρp¨q`ρp´¨q
2

. Indeed,
the optimal flutter shutter gain functions α P L2pRq only depend on the even part of ρ. Consequently,
throughout this section we shall assume that ρ is even.

Theorem 3 (An optimality test for flutter shutter codes and a formula for their un-
derlying velocity distribution)
Assume that α P L2pRq has the form of (9) and that |vmax|∆t ď 1. Then α is optimal in the sense

of (8) only if p0, π
∆t

s Q ξ ÞÑ |α̂pξq|4

|sincp ξ∆t

2π q|2 is non-increasing. Moreover, if p0, π
∆t

s Q ξ ÞÑ |α̂pξq|4

|sincp ξ∆t

2π q|2 is

non-increasing then

ρpvq “ ´v

2
w1pπvq “ ´vC

2

˜
|α̂pξq|4

ˇ̌
sinc

`
ξ∆t

2π

˘ˇ̌2

¸1

pπvq, for v P r´1

∆t
,
1

∆t
szt0u, (26)

where C is a positive constant, w is given by (7) and the derivatives in (26) are in the distribution
sense, if ρ is just in L1pRq.

Note that for any discrete α of the form αptq “ řL´1

k“0 αk1rk∆t,pk`1q∆tqptq we have α P L2pRq and
therefore Theorem 3 applies. Moreover, Theorem 3 gives a direct algorithm that computes ρ. This
numerical method is detailed in Algorithm 2.

Remark 5 As we shall see in Section 6.2 most classic codes do not strictly satisfy the conditions
of Theorem 3. Fortunately, for these codes the set where |α̂| is increasing has small measure. In
addition |α̂| is small on this set. Thus, we can apply Algorithm 2 by modifying only slightly α (or
w) by replacing (26) by

ρpvq “ ´ v

2π
w1pπvq1t´vw1pπvqě0upvq, for v ‰ 0, (27)

and normalizing ρ so that
ş
ρ “ 1.

243



Y. Tendero

5 Algorithms

This section gives the numerical methods related to sections 3 and 4. Algorithm 1 implements the
theory recalled in Section 3 that computes optimal flutter shutter codes and snapshots. Algorithm 2
implements the formulas of Section 4 that permit the reverse engineering of flutter shutter codes.

The goal of Algorithm 1 is to evaluate numerically the advantages of the flutter shutter method
compared to the optimal snapshot. Therefore, one of the main questions is the evaluation of the trade-
off: increase of the exposure time versus gain of the flutter shutter, in terms of RMSE, compared to
an optimal snapshot. From Theorem 2 we deduce that optimal flutter shutter gain functions α˚ are
supported on R. Thus, we propose to approximate α˚ by a finitely supported function. Therefore, we
propose 1) to truncate the sum in Theorem 2 and 2) to choose the code length L and ∆t so that the
total exposure time L∆t of the flutter shutter is a given factor of the exposure time c of the snapshot.
Indeed, this allows us to evaluate the gain of the flutter shutter method keeping into account the
increased exposure time. In a nutshell, this setup allows us to evaluate, numerically, the efficiency
of the flutter shutter. The quality of the proposed approximation can be evaluated qualitatively in
figures 2 and 4.

The input parameters of Algorithm 1 are: 1) a motion model ρ, 2) a code length L, 3) an
exposure time factor c. Its outputs are text files. They contain the optimal flutter shutter code
and the gain evaluation (see page 242). The Algorithm 1 consists of six steps. Step 1 computes
the optimal snapshot as it is defined by Equation (19). Step 2 computes the time step ∆t of the
flutter shutter function defined in Equation (9). Step 3 implements formulas (17) and (18) that give
the flutter shutter code coefficients. Numerical details related to the integral computation are given
in Algorithm 3. Step 4 consists in writing some useful results in a text file. Step 5 implements
formula (23) and writes the result in a text file. Step 6 deals with formula (24) and, again, saves the
produced result in a text file.

Recall that Algorithm 2 computes the velocity distribution for which a given flutter shutter code
is optimal. The input consists in a flutter shutter code. It computes the flutter shutter function α

defined in Equation (9), with a normalized ∆t :“ 1. Its output is a text file that contains ρpvq the
estimated velocity distribution. Algorithm 2 consists of five steps. Step 1 computes α̂pξq (see (2)).
Step 2 estimates the function w defined in Equation (7). Step 3 estimates the derivative of w. Step 4
implements Theorem 3 with the variant given by (27), i.e. estimates the velocity distribution ρpvq
for which the input code is optimal. Step 5 consists in a normalization and writing the result in a
text file.

The next paragraph details the numerical methods used in step 3 of Algorithm 1.

Numerical evaluation of an integral by the Simpson method Let f be the function to
integrate on an interval ra, bs. Assume that ra, bs is split in n even subintervals. The Simpson
method consists [5, p. 206] in the approximation

ż b

a

fpxqdx « h

3

¨
˝fpx0q ` 2

n
2

´1ÿ

j“1

fpx2jq ` 4

n
2ÿ

j“1

fpx2j´1q ` fpxnq

˛
‚,

where h “ b´a
n

and xj “ a ` jh for j P t0, . . . , n ´ 1u (thus x0 “ a and xn “ b). This formula leads
to the pseudo code given in Algorithm 3.

244



The Flutter Shutter Code Calculator

Algorithm 1: Pseudo-code computing optimal flutter shutter codes.

input : 1) velocity model: either ρpvq91r´4σ,4σs exp
´

´v2

2σ2
N

¯
or ρpvq “ 1

2|vmax|
1r´|vmax|,|vmax|spvq,

where σN ą 0 and vmax are parameters, 2) code length L, 3) exposure time factor c.
output: Text files containing: the code coefficients αk for k P t´roundpL

2
q, . . . , roundpL

2
q ´ 1u,

Fourier transform of α (see (2)), ideal Fourier transform w (see (7)), gain Gpvq
(see (23)), average gain (see (24)) and associated standard deviation (see (25)).

1. compute T ˚ the exposure time of the optimal snapshot on average using (20), i.e.

T ˚ “ argminT

˜ż |vmax|

0

ż π

0

1

T sinc2
`
ξvT

2π

˘ρpvqdξdv
¸
.

Note that for both motion models ρ is even and compactly supported. Therefore,
Equation (20) is valid. The minimum is calculated by scanning on values of T P r 0.02

|vmax|
, 1.999

|vmax|
s

(see Remark 3 for a justification of these bounds) at a precision of 0.02
|vmax|

. The numerical
evaluation of the integrals is detailed in Algorithm 3, the precision parameter is fixed at
ǫ “ 0.001. Lastly, notice that it is not necessary to normalize ρ to ensure that

ş
R
ρpvqdv “ 1.

Indeed, argmins do not depend on nonzero multiplicative factors. This step is implemented in
optimal snapshot.cpp;

2. compute ∆t “ cT˚

L
, the time step of the flutter shutter. This is done in demo fluttercode.cpp

line 150;

3. compute the code coefficients αk for k P t´roundpL
2

q, . . . , roundpL
2

q ´ 1u. We use (17) for the
(truncated) Gaussian model and (18) for the uniform motion model. As discussed in
Remark 2 we evaluate (15) for the (truncated) Gaussian model (with ε “ σN

1000
) and (16) for

the uniform motion model (with ε “ |vmax|
1000

). The numerical evaluation of the integral is
detailed in Algorithm 3. The precision parameter is fixed at ǫ “ 0.001. Without loss of
generality the code coefficients are normalized so that

ş
αptqdt “ 1. See Remark 4 for the

justification.

4. compute and write the code coefficients αk for k P t´roundpL
2

q, . . . , roundpL
2

q ´ 1u, the
(modulus) of the Fourier transform of the flutter shutter function (see (2), this is
implemented in gain evaluation.cpp files) and the ideal Fourier transform 4

a
wpξq in their

corresponding text files. Note that 4
a
wpξq is normalized, see Remark 4 for the justification.

This step is implemented in demo fluttercode.cpp lines 180-249;

5. write the gain Gpvq defined in (23) in the appropriate text file. Integrals are evaluated by
Riemann sums over 1000 points. This is implemented in gain evaluation.cpp. Write the
results to text files (see demo fluttercode.cpp lines 250-324);

6. compute the average gain µ (24) and the associated standard deviation σ (25). Integrals are
evaluated by Riemann sums over 1000 points. This is implemented in gain evaluation.cpp.
Write the results to text files (see demo fluttercode.cpp lines 250-324).
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Algorithm 2: Pseudo-code estimating the velocity distribution associated with a given code.

input : a flutter shutter code pαkqkPt0,...,L´1u, flag for logarithmic scale.
output: underlying probability density ρ for which the code is optimal

1. compute |α̂pξq| (see (2)). We recall that we normalize the time step, i.e. ∆t “ 1. This is
implemented in routines.cpp;

2. compute the function w defined in (7) by wpξq “
ˆ

|α̂pξq|4

|sincp ξ∆t

2π q|2
˙

pξq (see Theorem 3). This is

implemented in routines.cpp;

3. estimate w1pξq by w1pξq « wpξ`ǫq´wpξq
ǫ

(ǫ “ 2
1001

in the proposed implementation) using
wpξq “ |α̂pξq|4. This is implemented in routines.cpp. Write it in a text file. This is
implemented in demo flutter density.cpp;

4. compute ρpvq using (27) for v P r´1, 1szt0u (see Remark 5). Note that we can omit the 1
2π

multiplicative factor in (27), see step 5. This is implemented in demo flutter density.cpp;

5. normalize so
ş
R
ρpvqdv “ 1, write the result in text file. If logarithmic scale write

logp1 ` ρp¨qq instead. This is implemented in demo flutter density.cpp;

Algorithm 3: Pseudo code: integral evaluation by the Simpson method (see, e.g. [5, p. 206]).

input : a, b, ǫ ą 0 (precision), function f

output: tn the numerical approximation of
şb
a
fpxqdx

initialization: h Ð b´a
2
;

s1 Ð fpaq ` fpbq;
s2 Ð 0;
s4 Ð fpa ` hq;
tn Ð h s1`4s4

3
;

ta “ tnp1 ` 2ǫq;
zh Ð 2;
while|ta ´ tn| ą ǫ|tn| ta Ð tn;1

zh Ð 2zh;2

h Ð h
2
;3

s2 Ð s2 ` s4;4

s4 Ð 0;5

j Ð 1;6

whilej ď zh s4 Ð s4 ` fpa ` jhq;7

j Ð j ` 2;8

tn Ð h s1`2s2`4s4
3

.9

6 Numerical Experiments

Section 6.1 gives the optimal flutter shutter codes and computes the gain of the optimal flutter
shutter with respect to the optimal snapshot for two natural velocity distributions: a (truncated)
Gaussian velocity model and an uniform velocity model. The Gaussian velocity model is explicitly
given by (11). The corresponding numerical method is described in Algorithm 1. Section 6.2 gives
the reverse engineering of classic flutter shutter codes in the literature. The corresponding numerical
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method is described in Algorithm 2.

6.1 Simulations on Optimized Codes

The goal of this section is to numerically explore two natural velocity distributions. For each velocity
distribution, we give the corresponding optimal codes. For each velocity distribution, we compare
their efficiency in terms of RMSE with respect to the optimal snapshot. This corresponds to the
comparison on an equal footing of two alternative solutions: the optimal snapshot and the optimal
flutter shutter.

Recall that the parameters of a flutter shutter are: 1) L the length of the code pαkqkPt0,...,L´1u,
2) the velocity motion model ρpvq and 3) the time step ∆t of the flutter shutter function α. The
parameter for the optimal snapshot is only the velocity model ρpvq. The optimal snapshot provides
T ˚ the optimal aperture time for a standard camera, i.e. without using a flutter shutter. In order
to ease the comparison with the Agrawal et al. code [1, 3, 8, 10, 12], all experiments are made with
L “ 52. Indeed, in [1, 3, 8, 10, 12] the authors chose L “ 52.

Two velocity motion models are considered and compared: truncated Gaussian (in Section 6.1.1),
and uniform velocity distribution model (in Section 6.1.2). The time step of the flutter shutter is
chosen such that L∆t the total exposure time of the flutter shutter defined by the maximal support
of the flutter shutter function α is an integer factor c of T ˚ the aperture time of the optimal snapshot.
In other words, we have L∆t “ cT ˚ where c P N

`. This allows an easy comparison of the flutter
shutter and of the snapshot. Indeed, the potential gain of the flutter shutter in terms of RMSE is?
c because it integrates on a time span c times larger than the optimal snapshot.
The codes of figures 2 and 4 show the finitely supported and piecewise constant flutter shutter

gain functions. These experiments permit to compare the two strategies using a finite exposure time
which is mandatory for a practical solution. Recall that in [14] Tendero et al. prove that if the
velocity v0 is known, i.e, ρpvq “ δv0pvq, the optimal code comes from a zoomed sinc function. In
addition, the optimal snapshot has an exposure time T ˚ tuned so that |v0|T ˚ « 1.0909 (see [14] for
the mathematical proof). Moreover, the gain of the flutter shutter in terms of RMSE with respect to
this optimal snapshot is of a 1.17 factor [14]. Hereafter the gains in terms of RMSE should also be
compared with this 1.17 bound that corresponds to optimize the worst case scenario in a practical
situation, i.e. the maximal velocity observed. Notice that ceteris paribus a scale change of the velocity
model results in a scale change of the function wpξq and in a zoom of the code. An equivalent result
holds for the optimal snapshot.

6.1.1 Optimal Codes, Gaussian Velocity Model

This section provides the optimal codes for a truncated Gaussian N p0, 1
4
q velocity motion model, i.e.

from (11)

ρpvq91r´1,1s exp

ˆ ´v2

2p1
4
q2

˙
. (28)

Optimal flutter shutter codes are explicitly depicted in figures 2(a) and 2(c). The Fourier trans-
forms of the corresponding flutter shutter functions are given in figures 2(b) and 2(d). On those
two graphs, the green curves show the actual function 4

a
wpξq which remains unchanged in the two

experiments since it only depends on the velocity motion model (see Equation (7)). For comparison
purpose, we also depict in red the finitely supported approximation of 4

a
wpξq by the flutter shutter

code. In fact, the main change between the topmost plots of Figure 2 and the lower counterparts is
the exposure time factor c. For the figures 2(a) and 2(b) we have c “ 5 while for the figures 2(c)
and 2(d) we have c “ 10. Note that in these experiments we have set 52∆t “ cT ˚, so that the
discretization step is adapted to the value of c. Looking at the two values of c, one notices that the
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support of the flutter shutter function doubles between the top and bottom part of Figure 2. It is
also clear that the approximation is slightly better for the larger exposure factor c “ 10 shown at
the bottom part of Figure 2. This is no surprise. Indeed, since wpξq has compact support, the ideal

time continuous flutter shutter function 4awpξq is supported on R.
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Figure 2: Codes obtained for a truncated Gaussian velocity density explicitly given in (28). On
the left panel: top (respectively bottom): the flutter shutter code coefficients αk, using an exposure
time 5 (respectively 10) times larger than for the optimal snapshot. On the right panel: (in red) the
modulus of their corresponding Fourier transform, and the Fourier transform of the optimal time
continuous flutter shutter function 4

a
wpξq defined in Equation (7) in green. The convergence is quite

good, even for small exposure time factors.

Figure 3 provides the comparison with the optimal snapshot in terms of RMSE. For any velocity
v in the support of the velocity motion model, the red curves of Figure 3 show the gain Gpvq defined
in Equation (23) as a function of the velocity v. The left panel of Figure 3 corresponds to an exposure
factor c “ 5, i.e. the flutter shutter integrates five times longer than the optimal snapshot. The right
panel of Figure 3 corresponds to c “ 10. Recall that the function Gpvq measures the gain of the
flutter shutter compared to the optimal snapshot in terms of RMSE. The dotted blue curve provides
the probability of the velocity according to the velocity distribution. Thus, we can check that the
optimization permits to concentrate the gain in terms of RMSE on most probable velocities. For
higher but less likely velocities v the optimized flutter shutter performs worse than the snapshot, i.e.
its RMSE is higher than the RMSE of the optimal snapshot. The green line shows the average of
Gpvq taking the velocity motion model ρ into account, as it is defined in Equation (24).

248



The Flutter Shutter Code Calculator

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

G
a
in

 f
a
c
to

r

Velocity v

Legend
Gain factor G(v)
Average gain factor
Velocity Distribution
"Gain=1 line". Above this line: the flutter beats the snapshot in terms of RMSE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

G
a
in

 f
a
c
to

r

Velocity v

Legend
Gain factor G(v)
Average gain factor
Velocity Distribution
"Gain=1 line". Above this line: the flutter beats the snapshot in terms of RMSE.

Figure 3: In red: the gain Gpvq in terms of RMSE (defined by Equation (23)) of the optimal flutter
shutter code with respect to the optimal snapshot for the truncated Gaussian velocity distribution.
On the left panel (respectively right panel) for exposure times factor of 5 (respectively 10). The
dotted blue curve represents the probability density of the truncated Gaussian velocity distribution.
The green curves show the average gain µ as it is defined in Equation (24). The optimization permits
to concentrate the gain on most probable velocities, as expected. On average the gain is substantial
compared to the bound of [14] that optimizes the maximal velocity (worst case).

Table 2 provides both the average gain defined by Equation (24) and its associated standard
deviation defined by Equation (25). It permits to measure “how risky” the optimization is, i.e. how
the gain will vary when one observes velocities according to the motion model explicitly given in (28).
Notice that the asymptotic bound of [14] is beaten by approximately 50%.

Exposure time factor c 5 10
Code length L 52 52

Average gain µ (24) 1.2556 1.2722
Standard deviation σ (25) 0.1706 0.1996

Table 2: Average gain of the optimized flutter shutter compared to the optimal snapshot, assuming
a truncated Gaussian velocity distribution explicitly given in (28). As guessed from Figure 3 the
gain is substantial and the increase is of approximately 50% compared to the asymptotic of [14].

6.1.2 Optimal Codes, Uniform Motion Model

This section provides the optimal codes for a Ur´1, 1s velocity motion model, i.e.

ρpvq “ 1

2
1r´1,1spvq. (29)

The setup is exactly the same as in Section 6.1.1. Optimal flutter shutter codes are explicitly
depicted in figures 4(a) and 4(c). The Fourier transforms of the corresponding flutter shutter func-
tions are given in figures 4(b) and 4(d). For the figures 4(a) and 4(b) we have c “ 5 while for the
figures 4(c) and 4(d) we have c “ 10, as in Section 6.1.1.

Figure 5 provides the comparison with the optimal snapshot in terms of RMSE. The dotted blue
curve provides the probability of the velocity according to the velocity distribution. The green line
shows the average of Gpvq (defined in Equation (23)) taking the velocity motion model ρ into account,
as it is defined in Equation (24).

Table 3 provides both the average gain defined by Equation (24) and its associated standard
deviation defined by Equation (25), as in Section 6.1.1. The gain is negligible.
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Figure 4: Codes αk obtained assuming a uniform density for the velocities explicitly given in (29).
On the left panel: top (respectively bottom panel): the flutter shutter code coefficients αk, using an
exposure time 5 (respectively 10) times larger than for the optimal snapshot. On the right panel: (in
red) the modulus of their corresponding Fourier transform, and the Fourier transform of the optimal
time continuous flutter shutter function 4

a
wpξq defined in Equation (7) in green.

Exposure time factor 5 10
Code length L 52 52

Average gain µ (24) 1.0702 1.0715
Standard deviation σ (25) 0.0415 0.0531

Table 3: Average gain of the optimized flutter shutter compared to the snapshot, assuming a uniform
density for the velocities explicitly given in (29). As could already be guessed from Figure 5, this
gain is not significant.

6.2 A Reverse Engineering of Classic Flutter Shutter Codes

This section provides the underlying velocity distribution ρ of classic flutter shutter codes of the
literature. However, Algorithm 2 is applicable to any flutter shutter code. Algorithm 2 with the
variant given by Equation (27) is used. We normalize ∆t in the definition of the flutter shutter gain
function (1). This means that the velocities are expressed in pixel per ∆t s. (See also Remark 5.)
Thus, the range of the x-axis of figures 6, 7 and 8 is r´1, 1s.

We proceed first to the reverse engineering of the Agrawal et al. flutter shutter code [11, p. 799]
and patent application [12] on the panel of Figure 6(a). Note that the y-axis of 6(a) is log scaled.
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Figure 5: In red: the gain Gpvq in terms of RMSE (defined by Equation (23)) of the optimal flutter
shutter code with respect to the optimal snapshot for the uniform velocity distribution explicitly
given in (29). On the left panel (respectively right panel) for exposure times factor of 5 (respectively
10). The dotted blue curve represents the probability density ρpvq “ 1

2
1r´1,1spvq of the uniform

velocity distribution. The green curves show the average gain µ as it is defined in Equation (24).

This distribution means that there is a high probability that the scene is still and that more or
less uniformly distributed velocity motions occur on a certain interval of velocities. However, this is
an unlikely model for a camera motion, due to the strange fluctuations of the velocity distribution.
The velocity distribution of another flutter shutter code of Agrawal et al. [3, p. 7] is given on the
right panel side of Figure 6(b). It is not more convincing than the previous one since it is just more
concentrated on small velocities.

The reverse engineering of the Agrawal et al. flutter shutter codes published in [2, p. 2566]
(respectively in [1, p. 5]) is shown in Figure 7(a) (respectively in Figure 7(b)).

Another example is the McCloskey code [7, p. 321], shown on the left panel of Figure 8(a). The
same scheme can be applied to the “standardized” snapshot, i.e. αptq “ 1r0,1sptq to estimate the
underlying probability density of a classic camera. This example is given in Figure 8(b) where we
deduce that it is optimal for relatively broad intervals centered at approximately |v| “ 1. Among
the velocity densities of figures 6(a), 6(b), 7(a), 7(b), 8(a) or 8(b) the velocity distribution of the
snapshot shown in Figure 8(b) is the most convincing one.

It is most probable that the velocity distribution of flutter shutter codes optimized using an
arbitrary criterion, e.g. a fixed sum of the code coefficients will look like the ones depicted in fig-
ures 6(a), 6(b), 7(a), 7(b) or 8(a). Thus, one cannot expect them to have more realistic velocity
distributions than the codes of these figures.

Appendix: Main Notations and Formulae

(i) t time variable

(ii) ∆t ą 0 length of a time interval

(iii) x P R spatial variable

(iv) 9 means “is proportional to”

(v) X „ Y means that the random variables X and Y have the same law

(vi) PpAq probability of an event A
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(d)

Figure 6: On figures 6(a) and 6(b): the velocity probability densities ρ associated with Agrawal,
Raskar et al. codes. X-axis: the velocity (in signed pixels per ∆t)), y-axis: the logarithm of the
velocity probability densities (logp1 ` ρpvqq). On the left panel: the code published in [11, p. 799]
and patent application [12]. On the right panel: the code published in [3, p. 7]. It corresponds
to an attempt to optimize both the MSE and the a posteriori velocity estimation. These velocity
densities are unlikely models for a camera motion, due to the strange fluctuations of the velocity
distributions. In addition, both codes have a very large probability concentrated around v “ 0
(even when log scaled). On figures 6(c) and 6(d) the estimation of the w1 function. (Recall that w is
defined in (7).) X-axis: x, y-axis the estimated w1pxq from the flutter shutter code coefficients. Recall
that Theorem 3 relies on this estimation. As discussed in Remark 5 Algorithm 2 implements (27).
Therefore, figures 6(c) and 6(d) permit to see where the w increases. As announced the measure of
the set where w increases is very small.

(vii) Ppλq Poisson random variable with intensity λ ą 0. Thus, if X „ Ppλq we have PpX “ kq “ λk expp´λq
k!

(viii) E pXq expected value of a random variable X

(ix) varpXq variance of a random variable X

(x) Let f, g P L1pRqYL2pRq, then f ˚g denotes convolution of two functions pf ˚gqpxq “
ş`8

´8 fpyqgpx´yqdy

(xi) u ideal (noiseless) observable landscape just before sampling. Assumption: u P L1pRqXL2pRq, r´π, πs
band-limited

(xii) obspnq, n P Z observation of the landscape at a pixel supported on rn ´ 1
2
, n ` 1

2
s
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(d)

Figure 7: The velocity probability densities ρ associated with Agrawal, Raskar et al. codes. X-axis:
the velocity (in signed pixels per ∆t)), y-axis: the logarithm of the velocity probability densities
(logp1 ` ρpvqq). On the left panel: the code published in [2, p. 2566]. On the right panel: the code
published in [1, p. 5]. On figures 7(c) and 7(d) the estimation of the w1 function. (Recall that w is
defined in (7).) X-axis: x, y-axis the estimated w1pxq from the flutter shutter code coefficients. Recall
that Theorem 3 relies on this estimation. As discussed in Remark 5 Algorithm 2 implements (27).
Therefore, figures 7(c) and 7(d) permit to see where w increases.

(xiii) v relative velocity between the scene and the camera (unit: pixels per ∆t)

(xiv) αptq piecewise constant or time continuous gain control function for the analog flutter shutter and
numerical flutter shutter methods

(xv) ρpvq probability distribution for the relative camera-scene velocities. Assumption: ρpvq “ 0 for any v

such that |v| ą |vmax|

(xvi) wpxq ě 0 weight function associated with the probability distribution ρ

(xvii) α˚ optimal flutter shutter function

(xviii) }f}L1pRq “
ş

|fpxq|dx, }f}L2pRq “
bş

|fpxq|2dx

(xix) 1ra,bs indicator function of an interval ra, bs

(xx) Let f, g P L1pRq Y L2pRq, then

Fpfqpξq :“ f̂pξq :“

ż 8

´8
fpxqe´ixξdx
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Figure 8: On the left panel: the velocity probability density ρ associated with the McCloskey code [7,
p. 321]. X-axis: the velocity (in signed pixels per ∆t), y-axis: the logarithm of the distribution
(logp1 ` ρpvqq). It has a high probability of not moving and two small charges for two relatively
small but non zero velocities. On the right panel: the probability density of velocities associated
with a “standardized” snapshot with aperture function 1r0,1s. On the x-axis: the velocity (in signed
pixels per ∆t). On the y-axis (not log scaled) the corresponding probability density. This snapshot
is optimized a priori for objects moving at velocity |v| « 1. This bimodal density is quite natural
for, e.g. a traffic surveillance camera. On figures 8(c) and 8(d) the estimation of the w1 function.
(Recall that w is defined in (7).) X-axis: x, y-axis the estimated w1pxq from the flutter shutter code
coefficients. Recall that Theorem 3 relies on this estimation. As discussed in Remark 5 Algorithm 2
implements (27). Therefore, figures 8(c) and 8(d) permit to see where w increases.

F
´1pFpfqqpxq :“ ~Fpfqpxq “ fpxq “

1

2π

ż 8

´8
Fpfqpξqeixξdξ

Moreover Fpf ˚ gqpξq “ FpfqpξqFpgqpξq and (Plancherel)

ż 8

´8
|fpxq|2dx “ }f}2L2pRq “

1

2π

ż 8

´8
|Fpfq|2pξqdξ “

1

2π
}Fpfq}2L2pRq

(xxi) sincpxq “ sinpπxq
πx

“ 1
2π
Fp1r´π,πsqpxq “ F´1p1r´π,πsqpxq
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Hervé Bry, Flickr CC-BY-NC-SA (http://www.flickr.com/photos/setaou/2162752903/.)

References

[1] A. Agrawal and R. Raskar, Resolving Objects at Higher Resolution from a Single Motion-
blurred Image, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2007, pp. 1–8. http://dx.doi.org/10.1109/CVPR.2007.383030.

[2] , Optimal single image capture for motion deblurring, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 2560–2567. http://dx.doi.
org/10.1109/CVPRW.2009.5206546.

[3] A. Agrawal and Y. Xu, Coded exposure deblurring: Optimized codes for PSF estimation and
invertibility, in Proceddings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009, pp. 2066–2073. http://dx.doi.org/10.1109/CVPRW.2009.5206685.

[4] G. Boracchi and A. Foi, Uniform Motion Blur in Poissonian Noise: Blur/Noise Tradeoff,
IEEE Transactions on Image Processing, 20 (2011), pp. 592–598. http://dx.doi.org/10.

1109/TIP.2010.2062196.

[5] R.L. Burden and J.D. Faires, Numerical Analysis, no. vol. 1 in Numerical Analysis,
Brooks/Cole, 2001.

[6] H. Kozuka, Image sensor, Oct. 29 2002. US Patent 6,473,538.

[7] S. McCloskey, Velocity-Dependent Shutter Sequences for Motion Deblurring, in Proceedings
of the Springer-Verlag European Conference on Computer Vision (ECCV), 2010, pp. 309–322.
http://dx.doi.org/10.1007/978-3-642-15567-3_23.

[8] S. McCloskey, J. Jelinek, and K.W. Au, Method and system for determining shutter
fluttering sequence, Apr. 9 2009. US Patent 12/421,296.

[9] K. Nakamura, H. Ohzu, and I. Ueno, Image sensor in which reading and resetting are
simultaneously performed, Nov. 16 1993. US Patent 5,262,870.

[10] R. Raskar, Method and apparatus for deblurring images, July 13 2010. US Patent 7,756,407.

[11] R. Raskar, A. Agrawal, and J. Tumblin, Coded exposure photography: motion deblurring
using fluttered shutter, ACM Transactions on Graphics (TOG), 25 (2006), pp. 795–804. http:
//dx.doi.org/10.1145/1141911.1141957.

255



Y. Tendero

[12] R. Raskar, J. Tumblin, and A. Agrawal, Method for deblurring images using optimized
temporal coding patterns, Aug. 25 2009. US Patent 7,580,620.

[13] Y. Tendero, The Flutter Shutter Camera Simulator, Image Processing On Line, 2 (2012),
pp. 225–242. http://dx.doi.org/10.5201/ipol.2012.t-fscs.

[14] Y. Tendero and J.-M. Morel, The Flutter Shutter Paradox, SIAM Journal on Imaging
Sciences, 6 (2013), pp. 813–847. http://dx.doi.org/10.1137/120880665.

[15] , A Theory of Optimal Flutter Shutter For Probabilistic Velocity Models, Submitted, UCLA
CAM Report 13-80, (2014), p. 36.

256


	Introduction
	The Flutter Shutter Formalism flutter1
	Analog and Numerical Flutter Shutter Methods

	Optimal Flutter Shutter Codes Computation flutter2
	The Reverse Path: from Classic Codes to Their Underlying Motion  flutter2
	Algorithms
	Numerical Experiments
	Simulations on Optimized Codes 
	Optimal Codes, Gaussian Velocity Model
	Optimal Codes, Uniform Motion Model

	A Reverse Engineering of Classic Flutter Shutter Codes


