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Abstract

Visual correspondence is the key for 3D reconstruction in binocular stereovision. Local methods
perform block-matching to compute the disparity, or apparent motion, of pixels between images.
The simplest approach computes the distance of patches, usually square windows, and assumes
that all pixels in the patch have the same disparity. A prominent artifact of the method is the
“foreground fattening effect” near depth discontinuities. In order to find a more appropriate
support, Yoon and Kweon introduced the use of weights based on color similarity and spatial
distance, analogous to those used in the bilateral filter. This paper presents the theory of this
method and the implementation we have developed. Moreover, some variants are discussed and
improvements are used in the final implementation. Several examples and tests are presented
and the parameters and performance of the method are analyzed.

Source Code

The C++ implementation for this algorithm is available in the IPOL web page of this article1.
Compilation and usage instructions are included in the README.txt file of the archive. Note
that an optional rectification step can be launched before running the algorithm.

Keywords: stereovision; bilateral filter

1 Introduction

Stereo vision matching algorithms aim at estimating the depth of a scene given two photographs
taken from different points of view. When the camera makes a fronto-parallel motion between the
two images, depth estimation is done by estimating the disparity of each pixel, that is its apparent
displacement from the first image (reference image) to the second image (target image). This disparity
permits to recover the 3D position of the point that was photographed in this pixel since disparity
is inversely proportional to depth [1].

1https://doi.org/10.5201/ipol.2015.123
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(a) Reference image. (b) Target image. (c) Ground-truth disparity map.

Figure 1: Tsukuba image pair and its ground truth disparity map: the intensity is proportional to
the apparent horizontal displacement, the black border meaning “no data”.

The core of disparity map computation methods is pixel correspondence. In order to compute
the disparity of a pixel in the reference image, the corresponding pixel in the target image has to be
found. With rectified pairs of images the search of the corresponding pixel is limited to the pixels
on the same horizontal line in the target image. Therefore, the correspondence search can be done
measuring the similarity between pixels and their neighborhoods and choosing the best match.

A key challenge in the correspondence search is image ambiguity, which results from the am-
biguous local appearances of image pixels due to image noise and insufficient (or repetitive) texture.
By using local support windows, called patches, the image ambiguity is reduced efficiently while the
discriminative power of the similarity measure is increased. In this approach, it is implicitly assumed
that all pixels in a patch are at a similar depth in the scene and, therefore, that they have similar
disparities. The artifact resulting from the violation of this assumption is the foreground-fattening
phenomenon.

This effect appears when a pixel is wrongly assigned the disparity corresponding to other pixels in
its patch. For this reason, although taking larger patches leads to smoother results, it also increases
the fattening effect, producing errors near the depth discontinuities (this phenomenon occurring on
the data of Figure 1 is illustrated in Figure 2).

(a) 3× 3 (b) 9× 9 (c) 20× 20 (d) 35× 35

Figure 2: Resulting disparity maps for Tsukuba obtained with a simple block-matching method (using
SAD, sum of absolute differences, for patch similarity) for several patch sizes. The visible dilation of
foreground shapes appearing with the increase of the patch size is the fattening phenomenon.

To avoid this phenomenon, adaptive-window methods try to find an optimal support patch for
each pixel. In this article, we study the correspondence search method proposed by Yoon and
Kweon [9]. The method consists in computing the support weights of the pixels in a patch using
color similarity and geometric proximity to the center. The weights permit using larger patches,
getting better results in homogeneous regions, while not provoking the fattening effect near depth
discontinuities.
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The weights introduced by this method are analogous to the ones used in the bilateral filter applied
to image denoising [8]. Recall that the resulting image IBF obtained by applying the bilateral filter
to the original image I in a pixel p is computed as

IBF (p) =

∑

q∈Np∩I
w(p, q) I(q)

∑

q∈Np∩I
w(p, q)

, (1)

where Np = [x − r, x + r] × [y − r, y + r] is a neighborhood of p = (x, y) and the weights are
parameterized by positive real numbers σd and σr

w(p, q) = exp
(

−
‖p− q‖2

2σ2
d

−
‖I(p)− I(q)‖2

2σ2
r

)

. (2)

We have slightly abused the notation in (1), by noting also I the rectangle domain of the image I.

2 The Method

Let us note I the reference image and Ĩ the target image of a rectified stereo pair. Then, Ic(p) will be
the color intensity in the color channel c (c = r for red, c = g for green, c = b for blue) of the pixel p
in the reference image I. Also, given a pixel p = (x, y) in the image I and a disparity d, then p̃d will
be the pixel in Ĩ with coordinates p̃d = (x+ d, y). The method is composed of three parts: adaptive
support-weight computation, dissimilarity computation based on the support-weights and disparity
selection.

2.1 Weight Assignation Based on Gestalt Grouping

Like in other block-matching methods, we take into account a support window of neighbor pixels
to compare it to another patch in the target image. But not all the pixels in these patches may be
relevant to do the comparison. Ideally, only pixels belonging to the same object and at the same
depth should be taken into account. Considering the difficulty of explicitly segmenting an image, a
pragmatic approach is adopted, assigning weights or probabilities to the neighbor pixels, trying to
imitate the human visual system mechanism for grouping similar points. Therefore, the similarity of
pixels in the patch is measured and weights corresponding to the probability to be grouped with the
central pixel are assigned.

The strongest Gestalt grouping principles of the visual system are the color similarity and the
spatial proximity [6]. Following these two principles, the support-weight of a pixel p with respect to
another pixel q can be written as

w(p, q) = f(∆cpq,∆gpq) = wcol(∆cpq) · wpos(∆gpq), (3)

where ∆cpq and ∆gpq are the color distance and the spatial distance between p and q, respectively.
The function f gives the strength of grouping by similarity and proximity, and if we consider ∆cpq
and ∆gpq as independent events, the strength can be measured separately by wcol and wpos.

Yoon and Kweon [9] justify their choice of wcol with the perceptual difference between two colors,

D(cp, cq) = 1− exp
(

−
∆cpq
14

)

, (4)

which is defined in the CIE Lab color space, and where ∆cpq is the Euclidean distance. Based on
this, they define the similarity strength as

wcol(∆cpq) = exp
(

−
∆cpq
γcol

)

, (5)
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depending on a fixed positive parameter γcol.
In our implementation we used colors in the RGB space and the L1 distance

∆cpq =
1

3
‖I(p)− I(q)‖1 =

1

3

∑

c∈{r,g,b}

|Ic(p)− Ic(q)|. (6)

Working in the CIE Lab space implies extra computations and, in addition, our tests yield better
results using RGB and the L1 norm. The computation advantage of using the L1 norm comes from
the fact that it is easy to tabulate: if color channels are integers between 0 and 255, the L1 norm
is an integer between 0 and 3 · 255, whose exponential values can be tabulated. Our tests exhibit a
huge impact on computation time when tabulating: tabulation divides the running time by a factor
13.

Following the same strategy, the proximity strength is defined as

wpos(∆gpq) = exp
(

−
∆gpq
γpos

)

, (7)

where γpos should be the patch radius and ∆gpq is the Euclidean distance

∆gpq = ‖p− q‖2 =
√

(x− x′)2 + (y − y′)2 (8)

where p = (x, y) and q = (x′, y′). Putting (3), (5) and (7) together we have

w(p, q) = wcol(p, q) · wpos(p, q) = exp
(

−
(∆cpq
γcol

+
∆gpq
γpos

))

. (9)

In Figure 3 some examples of weighted patches are shown for the Tsukuba image.

(a) (b)

(c) (d)

Figure 3: Resulting weights for four different 35×35 patches in the Tsukuba left image, with γcol = 12
and γpos = 17.

2.2 Dissimilarity Computation and Disparity Selection

For the dissimilarity computation step of the method we have to take into account the weights that
we have just defined. In the computation of the matching cost between pixels, a raw matching cost e
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based on the color similarity is combined with the corresponding support-weights in both reference
and target patches.

The dissimilarity between two pixels p (in the reference image) and p̃d (in the target image with
disparity d) is defined as

E(p, p̃d) =

∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ comb(w(p, q), w(p̃d, q̃d)) e(q, q̃d)

∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ comb(w(p, q), w(p̃d, q̃d))

. (10)

The function comb : R2 → R combines the weights of tentative corresponding pixels q and q̃d. In
the original article [9], comb is the product of its arguments, but we consider variants later on. A
faster algorithm is the asymmetric case, where comb(w1, w2) = w1 because the weights in the target
image need not be computed. Notice that the former combination leads to a spatial weighting by
exp(−‖p − q‖2/γpos)

2 = exp(−2‖p − q‖2/γpos), while the latter gives a weight exp(−‖p − q‖2/γpos).
To have consistent values in all cases, we modified slightly the definition by pulling the proximity
term outside the combination function

E(p, p̃d) =

∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ wpos(p, q)

2 comb(wcol(p, q), wcol(p̃d, q̃d)) e(q, q̃d)
∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ wpos(p, q)2 comb(wcol(p, q), wcol(p̃d, q̃d))

. (11)

In (11), the raw matching cost e between pixels q and q̃d is defined as the truncated (by a positive
parameter τcol) absolute difference of color

e(q, q̃d) = ec(q, q̃d) = min
{1

3

∑

c∈{r,g,b}

|Ic(q)− Ĩc(q̃d)| , τcol

}

. (12)

However, results improve by introducing another term in the raw matching cost taking into account
the similarity of the x-derivative value between both pixels [7]2. Analogously to ec, define

eg(q, q̃d) = min
{

|∇xI(q)−∇xĨ(q̃d)| , τgrad
}

, (13)

where ∇xI is the x-derivative computed as in the article by Tan and Monasse [7] and τgrad is a
threshold for the gradient difference. Hence, we redefine the total raw matching cost as a linear
combination of ec and eg,

e(q, q̃d) = (1− α) · ec(q, q̃d) + α · eg(q, q̃d) (14)

with α ∈ [0, 1].

Several choices for the combination function comb (some symmetric, one asymmetric) will be
tested, but the choice for the demo is the multiplication of its arguments. A pixel’s final disparity is
selected by the winner-takes-all method,

dp = argmin
d∈Sd

E(p, p̃d), (15)

where Sd = {dmin, . . . , dmax} is the set of all possible disparities, which is assumed known.

2The use of the x-derivative, among other choices, is due to the horizontal apparent motion, since a horizontal edge
(with large y-derivative) is not discriminative because of the aperture problem
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3 Implementation

We have implemented this algorithm in C++. Our implementation is based on the code by Tan and
Monasse [7], the main differences being in the file disparity.cpp.

The pseudo-code for the disparity map computation using adaptive weights is presented in Al-
gorithm 1. The key to a fast algorithm is to compute only once the support weight patches in the
target image Ĩ, based on the trivial observation

(x+ 1) + Sd = x+ (Sd ∪ {dmax + 1} \ {dmin}) . (16)

In other words, the patches in Ĩ that are compared to pixel (x + 1, y) ∈ I are the same as for pixel
(x, y) ∈ I, with the addition of the new patch centered on (x+1+dmax, y) ∈ Ĩ and the subtraction of
the one centered on (x+dmin, y). If the patches of Ĩ centered at pixels {(x+d, y) : d ∈ Sd} are stored
in an array weights, we can simply update the array to pixel x + 1 by storing at index x + dmin,
whose patch centered on (x+dmin, y) is no longer useful, the new patch centered on (x+1+dmax, y).
This is why in Algorithm 1, the lines 7-8 initialize the patches centered on pixels {(0+d, y) : d ∈ Sd}
(except for dmax, computed in the x loop) that will be used for the pixel (0, y) of I. Then, for each
new x, only the patch of Ĩ centered on (x + dmax, 0) needs be computed at line 11. Of course, this
storage is useless in the asymmetric case, when only the weights of I are used.

Another factor to accelerate the implementation is the tabulation of the similarity and proximity
strengths in order to accelerate the computation of weights in function support (Algorithm 2). As
observed above, this is possible only when we use the L1 color distance. The same code is able to
use different combinations of weights in the dissimilarity computation3, the function costCombined

applies Equation (11) for the chosen combination. Also, the raw matching costs are computed only
once for every pair of pixels. For every possible disparity value the matching costs of pixels in the
image are precomputed and stored in a new image, as explained in Algorithm 3. These images form
the layers of the cost volume, defined as

cost[d](p) = e(p, p̃d). (17)

In the original article [9], the authors do not specify whether they use a post-processing method
to detect and fill occlusions and smooth the resulting disparity map, but it seems that they do.
In our implementation we have used the post-processing presented and implemented by Tan and
Monasse [7]. The code is exactly the one presented in the article and explained there. It proceeds by
first detecting inconsistent pixels in left-right disparity maps, replacing their disparity with a simple
scan line based filling, and finally applying a median filter with weights taken from the original image.

4 Results

4.1 Study of Parameters

The parameters of the method are summed up in Table 1, where the default values used in our
experiments are also specified. The values that we have used are not the same as the default
parameters of Yoon and Kweon [9] since they had to be adapted to a different color space and
norm and the new matching cost formula. We chose the values that gave the better results for the
Middlebury benchmark images. Moreover, tuning the parameters for each image individually can
lead to better results in the final disparity map.

We tested our implementation varying the parameters (one at a time) and studied the error in the
resulting disparity map. We compared the resulting disparity maps for the Middlebury benchmark

3This is a compile-time option, the dynamic use of a function pointer resulting in slower code.
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Algorithm 1: Disparity map computation, function disparityAW

input : Color images I and Ĩ, disparity range Sd = {dmin, . . . , dmax}, patch radius r,
parameters γpos, γpol.

output: Disparity maps d1(·), d2(·) for images I and Ĩ respectively.
1 Tabulate color similarity strengths distC(·), array of size 3 · 255 + 1. // Equations (5), (6)
2 Tabulate proximity strengths distP (·), array of size (2r + 1)2. // Equations (7), (8)
3 Compute array cost of #Sd cost images for all disparities. // Algorithm 3

4 E1(·)← +∞ E2(·)← +∞
5 foreach 0 ≤ y < height do
6 Create array weights of #Sd patches.
7 foreach d ∈ [dmin, dmax − 1] do // Weighted target patches

8 weights[d− dmin]← support(Ĩ , d, y, distC). // Algorithm 2

9 foreach 0 ≤ x < width do

10 W1 ← support(I, x, y, distC). // Algorithm 2

11 weights[x+dmax−dmin (mod #Sd)]← support(Ĩ , x+dmax, y, distC). // Algorithm 2

12 foreach d ∈ Sd do

13 W2 ← weights[x+ d− dmin (mod #Sd)]
14 c← cost[d− dmin]
15 Compute dissimilarity E combining W1, W2, c, and distP . // Equation (11)
16 if E < E1(x, y) then
17 E1(x, y)← E
18 d1(x, y)← d

19 if E < E2(x+ d, y) then
20 E2(x+ d, y)← E
21 d2(x+ d, y)← −d

// The blue lines are not executed in the asymmetric combination of weights.

Algorithm 2: Weighted patch computation, function support

input : Color image I, central pixel p, patch radius r, color similarity strength table distC.
output: (2r + 1)× (2r + 1) image of color-based weights weight centered on p in I.

1 weight(.)← 0
2 foreach pixel q ∈ Np ∩ I do

3 Compute δ ← ‖I(p)− I(q)‖1
4 weight(q) = distC[δ]
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Algorithm 3: Cost volume computation

input : Color images I and Ĩ, disparity range Sd = {dmin, . . . , dmax}, parameters α, τcol, τgrad.
output: Cost image vector cost.

1 Compute x-derivatives ∇xI and ∇xĨ.
2 foreach d ∈ Sd do

3 Create cost image cost[d](·)
4 foreach p ∈ I do

5 costc ← τcol costg ← τgrad
6 if p̃d ∈ Ĩ then

7 costc ← min(1
3
∆cpp̃d , τcol) // Equation (12)

8 costg ← min(|∇xI(p)−∇xĨ(p̃d)|, τgrad) // Equation (13)

9 cost[d](p)← (1− α)costc + α costg // Equation (14)

Parameter Value Description
α 0.9 Value in [0, 1] for the combination of the color and the gradient sim-

ilarity. The bigger α, the more important the gradient term is with
respect to the color term.

γcol 12 Positive parameter for the color similarity strength.
γpos 17.5 Positive parameter for the proximity strength.
r 17 Radius of the patch considered in the correspondence search.
τcol 30 Color threshold for the matching cost computation.
τgrad 2 Gradient threshold for the matching cost computation.

Table 1: Default parameters of the algorithm.

with their ground truth and computed the percentage of “bad” pixels (pixels whose absolute disparity
error is greater than 1) for all the pixels in the image, the pixels in non-occluded areas and pixels
near depth discontinuities.

Seeing that varying some parameters had a greater effect on the error near depth discontinuities
than in other pixels, we show in Figure 4a the variation of this error for the four Middlebury bench-
mark images when varying γpos, γcol and α. For γpos, we varied γpos alongside the patch radius r to
see the error evolution when we changed the size of the patch. The error stabilizes for γpos > 15.5
(r = 15) so we preserved the default value of Yoon and Kweon [9] γpos = 17.5 (r = 17) and patch
size 35× 35.

The essence of the method lies in a good choice for the parameter γcol. As we increase γcol, we
take less into account the color distance w.r.t. the central pixel, so we take more pixels in the window
into consideration for the comparison. This translates to the results in a first improvement of the
accuracy when γcol is increased, but the error grows eventually when too many pixels with different
disparities are taken into account for high γcol. As γcol gets very large, we are using regular block
matching. To find a compromise between all the images we choose γcol = 12.

The addition of the gradient term proves to be very beneficial and choosing α = 0.9 we get the
best results. Notice that although this term is highly helpful, we should not disregard the color term,
since the error increases sharply after α = 0.95. Figure 5 shows the influence of α in the resulting
disparity map. We can see that increasing α we erase some of the errors in the background and
recover the edges a lot better, with less fattening effect.

Regarding the color and the gradient thresholds, their effect on the error is similar for all four
images, so we chose to illustrate their influence by showing in Figure 4b the results for the Tsukuba
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(a) Influence of the parameters γpos, γcol and α on the error percentage near depth discontinuities for the
four reference images.

(b) Influence of the thresholds τcol and τgrad on the error percentage in Tsukuba image.

Figure 4: Influence of the parameters on the error percentage.

(a) α = 0, total error = 5.18%. (b) α = 0.5, total error = 4.82%. (c) α = 0.9, total error = 4.46%.

Figure 5: Disparity maps for Tsukuba for different values of α without the post-processing step.

image at all pixels, pixels near depth discontinuities and non-occluded pixels. It is clear that while
the error decreases when τcol increases and stabilizes after τcol = 20, the influence of τgrad is greater
and its optimal value is τgrad = 2.

4.2 Middlebury Benchmark Disparity Maps

In this section the results for the Middlebury benchmark are presented and compared to those
presented in the original article. The parameters values used in all cases are the ones specified in
Table 1. The disparity maps have been improved and smoothed by a final post-processing step as in
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the article by Tan and Monasse [7].

In Figure 6, we can notice that whereas we get a few additional isolated errors compared to the
original method and we are not able to compute the disparity in some small regions, our implemen-
tation recovers the depth discontinuities much better and with less fattening effect. As a result, our
implementation achieves better results in general as it is shown in Table 2.

Left image Ground truth Our results Results from [9]

Figure 6: Disparity maps and comparison with the results of Yoon and Kweon [9].

Tsukuba Venus Teddy Cones
Rank non all disc non all disc non all disc non all disc

Original article [9] 80.2 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26
Ours w/o post-proc. 90.4 2.50 4.46 7.25 1.29 2.86 4.61 7.60 17.0 17.0 3.13 13.8 8.29
Ours with post-proc. 63.7 1.86 2.27 6.61 0.65 1.02 3.15 6.56 14.4 15.5 2.48 8.81 6.91

Table 2: Error percentages on Middlebury stereo benchmark (with tolerance of±1 pixel for disparity).
The rank is the algorithm average rank in the Middlebury website. In bold are the best (i.e., lowest)
values of the three rows for each column. Our results overcome the ones from [9] in most of the cases.
The results are significantly improved by the post-processing.
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4.3 Weights at Error Pixels

The adaptive weights method combined with the use of the gradient gives good results and it has
a good performance at disparity discontinuities. Nevertheless, it is not able to overcome some of
the usual problems of local methods. Indeed, most of the errors produced by this method are found
in repetitive areas, homogeneous regions or isolated points with a very different color from their
neighbors. Examples of these errors are presented in Figures 7, 8 and 9, and the weights around the
erroneous pixels are shown in order to understand their cause.

Figure 7 is an example of repetition (stroboscopic effect). The binders in the shelf are organized
one after another and they look all similar. The method fails to find the good correspondence in the
case of some pixels in that region since it ignores the pixels that are not part of the repetition. In
fact, the pixels are assigned to the previous binder.

(a) Computed disparity map. (b) Left image. (c) Right image.

(d) w(pd, .) (e) w(pe, .) (f) w(pf , .) (g) w(pd, .)w(pe, .) (h) w(pd, .)w(pf , .)

Figure 7: Example of repetition. The patch d of center pd in (b) is matched to patch e of center pe
in (c), but the true correspondence is in fact patch f of center pf . Images (d), (e) and (f) show the
weights in the patches. (g) is the combinations of the weights (d) and (e). (h) is the combination of (d)
and (f). The two combined weights are similar and since the color distances in both correspondences
are also similar because of the repetition, the assignation fails to find the correct disparity.

Figure 8 is an example of isolated point. Below the bust in Tsukuba image there are some letters
on the box that get a bad disparity. The problem in this case is the presence of some points in that
area that have a color really different from their neighbors so the weights in the reference image (8a)
are scattered. Consequently, the possible combinations of weights are also scattered and the similarity
measure takes into account few pixels. Ultimately, the correspondence is assigned to a combination
of weights that consists in almost all the weight concentrated in the central pixel. This effect was
observed in a survey paper [3].

Figure 9 shows that the method, even with its large 35 × 35 windows, is not immune to the
aperture problem, that is, the window is not large enough to contain significant horizontal gradient.
In the background of the image there is a bookcase. The method assigns significant weights only
to those pixels on the shelf (9a), which is a homogeneous region of the image. Because of that, the
method fails to find the correct correspondence.
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(a) (b) (c)

Figure 8: Example of isolated point. (a) Weighted patch of the reference pixel. (b) Combined weights
of the detected correspondence. (c) Combined weights of the true correspondence.

(a) (b) (c)

Figure 9: Example of aperture problem, where the patch is not discriminative enough, because it has
no significant non-horizontal edge. (a) Weighted patch of the reference pixel. (b) Combined weights
of the detected correspondence. (c) Combined weights of the true correspondence.

4.4 Variants of the Method

In our implementation we have modified the original color space used in the similarity strength (5),
but we can study how the method works in the original space. One could also study other ways to
combine the weights of the two patches when we compute the dissimilarity (11) for a certain pair of
pixels. These variants of the method are studied in the following sections.

4.4.1 CIE Lab Space

Using the CIE Lab color space takes more computations due to the conversion of the values originally
in RGB. Although we have not used this space in our implementation, some results using the CIE
Lab space are presented below. For the implementation of the method in this space we used the
following conversion:4 if we have a color c = (r, g, b) in RGB coordinates, first we have to convert it
to XYZ coordinates,





X
Y
Z



 =





0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.950









r/2.55
g/2.55
b/2.55





and then to CIE Lab,






























L = 116 · f(
Y

Yn

)− 16

a = 500 · (f(
X

Xn

)− f(
Y

Yn

))

b = 200 · (f(
Y

Yn

)− f(
Z

Zn

))

with f(t) =

{

t
1
3 if t > ( 6

29
)3

1
3

(

29
6

)2
t+ 4

29
otherwise.

where (Xn, Yn, Zn) = (95.047, 100.00, 108.883) is the white point. The parameters used are γcol = 3.5,
τcol = 10, γpos = 17.5 and α = 0.9. We can observe in Figure 10 that the results near discontinuities

4Formula taken from http://www.cs.rit.edu/~ncs/color/t_convert.html
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are a little worse than using RGB and we get inaccurate edges. Apart from this, the numerical
results are quite close to the ones using the RGB space (Table 3), some of them being even better
(non-occluded pixels of Venus image).

Tsukuba Venus Teddy Cones
non all disc non all disc non all disc non all disc

RGB space 1.86 2.27 6.61 0.65 1.02 3.15 6.56 14.4 15.5 2.48 8.81 6.91
CIE Lab space 1.85 2.60 7.94 0.50 1.25 5.33 7.53 15.1 18.3 3.35 9.83 9.58

Table 3: Error comparison between our implementation using CIE Lab and RGB color spaces.

CIE Lab

RGB

Figure 10: Comparison of color spaces for the Middlebury benchmark images.

4.4.2 Combination of Weights

To compute each patch pair matching cost, the presented method computes the product of weights
of the target and reference patches, see Equation (11). In this section other possibilities are explored.
The simplest approach is to consider only the weights of one patch (asymmetric weights), for example,
those of the reference patch, which amounts to w(p̃d, q̃d) = 1 in Equation (11). Another approach,
similar to taking the product is to take the sum of weights

E(p, p̃d) =

∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ

(

w(p, q) + w(p̃d, q̃d)
)

e(q, q̃d)
∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ

(

w(p, q) + w(p̃d, q̃d)
) . (18)

The parameters that give the best results for these two approaches and used in our tests are γpos = 18,
γcol = 4 and τcol = 20. Finally, in order to take the union of supports and penalize non-coincident
regions, we can consider taking the maximum of weights

E(p, p̃d) =

∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ max

(

w(p, q), w(p̃d, q̃d)
)

e(q, q̃d)
∑

q∈Np∩I,q̃d∈Np̃d
∩Ĩ max

(

w(p, q), w(p̃d, q̃d)
) . (19)

For this approach the best results are achieved by using r = 14, γpos = 14, γcol = 4 and τcol = 15.
Figure 11 shows that near depth discontinuities, the best combination is the product: it puts a

tiny weight on the region occupied by the ear of the teddy bear in left or right image. A program

85
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included in the source code archive, show weights, permits to output the weighted patches with
different combinations.

Visually, the results for the other alternatives are really similar to the ones given by the product
(Figure 12). However, when considering the error (Table 4), the asymmetric and maximum combi-
nations are a little worse in the discontinuities than the product and the sum (except for Tsukuba).
Surprisingly, using asymmetric weights does not reduce the accuracy as much as we could expect and
it proves to be a good substitute if we need to speed up computations. Nevertheless, the maximum
has a worse performance than the other two variants, giving many errors and low accuracy in depth
discontinuities.

Patch and weights centered at pixel (307,44) in
Teddy left image.

Patch and weights centered at the corresponding
matching pixel (292,44) in Teddy right image.

(a) Product. (b) Asymmetric. (c) Sum. (d) Maximum.

Figure 11: Example of the resulting weights for the matching cost computation of two patches using
different combinations of weights.

(a) Product. (b) Asymmetric. (c) Sum. (d) Maximum.

Figure 12: Disparity maps (with post-processing) comparison using diverse weights combinations for
Venus and Teddy images.
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Tsukuba Venus Teddy Cones
non all disc non all disc non all disc non all disc

Product 1.86 2.27 6.61 0.65 1.02 3.15 6.56 14.4 15.5 2.48 8.81 6.91
Asymmetric 1.95 2.41 7.99 0.74 1.42 8.12 6.90 14.6 17.0 3.21 9.90 9.03
Sum 2.28 2.68 8.56 0.65 1.11 5.03 6.82 14.6 16.8 3.01 9.65 8.49
Maximum 2.74 3.14 10.8 1.62 2.23 11.7 7.72 15.2 18.6 3.38 9.72 9.35

Table 4: Error percentages on Middlebury benchmark for different weight combination functions.

4.5 Other Examples

We have tested the algorithm with other images and obtained satisfying results. Some examples
using the default parameters are presented in Figure 13. The method is able to recover fine struc-
tures, for instance, most of the bars, brushes and holes in Art image are respected. In addition,
homogeneous and textured regions are not a problem in most of the cases (Flowerpots and Baby3

images). Nonetheless, we get some errors in the Laundry image in the region of the window.

5 Conclusion

In this article we have studied and implemented Yoon and Kweon’s method [9] for disparity map
computation. This adaptive support-weight approach was the first published block-matching method
that put weights in the blocks. Others have followed, but a survey [3] found that the method of Yoon
and Kweon [9] yields the best results. Very similar results, but with much faster computation, can
be obtained using a guided filter of the cost volume [4], which can also be tested in IPOL [7]. Hosni
et al. [2] propose to use an explicit segmentation of the image in order to speed up computations.
Moreover, one of the best performing stereo matching methods [5] uses a faster approximation of
the presented algorithm that selects cross-shaped neighborhoods. However, it remains to be seen in
what measure the better results are due to the adaptive neighborhoods on their own.

Image Credits

All images by the authors (license CC-BY-SA) except:

Middlebury.
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