
Published in Image Processing On Line on 2016–02–02.
Submitted on 2014–04–28, accepted on 2015–12–23.
ISSN 2105–1232 c© 2016 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2016.117

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Computing an Exact Gaussian Scale-Space

Ives Rey-Otero1, Mauricio Delbracio2

1 CMLA, ENS Cachan, France (ives.rey-otero@cmla.ens-cachan.fr)
2 ECE, Duke University, USA (mauricio.delbracio@duke.edu)

Communicated by Pascal Getreuer Demo edited by Ives Rey Otero

Abstract

Gaussian convolution is one of the most important algorithms in image processing. The present
work focuses on the computation of the Gaussian scale-space, a family of increasingly blurred
images, responsible, among other things, for the scale-invariance of SIFT, a popular image
matching algorithm. We discuss and numerically analyze the precision of three different alter-
natives for defining a discrete counterpart to the continuous Gaussian smoothing operator. This
study is focused on low blur levels, that are crucial for the scale-space accuracy.

Source Code

An ANSI C source code implementation of the described algorithms is accessible at the IPOL
web page of this article1, together with an on-line demo.

Keywords: blur; scale-space; Gaussian convolution; DFT; Lindeberg

1 Introduction

The Gaussian smoothing operator is one of the most popular tools used in digital image process-
ing. This classic operator has been extensively used, either as a fast pre-process to increase noise
robustness before applying another algorithm, or as the fundamental operator in scale-space the-
ory [8, 10, 12, 14].

Let u(x) be a continuous image defined for every x = (x, y) ∈ R
2. The continuous Gaussian

smoothing operator is defined as the convolution operator on R
2 with the isotropic Gaussian function

of integral equal to 1,

Gσu(x) :=

∫

R2

Gσ(x
′)u(x− x′)dx′, with Gσ(x) =

1

2πσ2
e−

|x|2

2σ2 ,

where the Gaussian function is parameterized by its standard deviation σ.
This operator is the cornerstone of several image processing algorithms particularly used for

building the scale-space, a multi-scale image representation. The rationale is that the Gaussian
function is the only function that satisfies the following properties [1, 2, 9, 10, 14, 13]:

1https://doi.org/10.5201/ipol.2016.117

Ives Rey-Otero, Mauricio Delbracio, Computing an Exact Gaussian Scale-Space, Image Processing On Line, 6 (2016), pp. 8–26.
https://doi.org/10.5201/ipol.2016.117

Computing an Exact Gaussian Scale-Space

1. Linearity. Gσ(λu(x) + µv(x)) = λGσu(x) + µGσv(x) for any real λ, µ;

2. Shift invariance. If Tτu(x) := u(x − τ) denotes the translation of parameter τ , then
Gσ(Tτu)(x) = Tτ (Gσu)(x);

3. Scale invariance. IfHλu(x) := u(λx) denotes an expansion by a factor λ−1, thenGσ(Hλu)(x) =
Hλ(Gσ′u)(x) with σ′ = λσ;

4. Rotation invariance. IfRθu(x) := u(Rθx) denotes the rotation of angle−θ, thenGσ(Rθ)u(x) =
Rθ(Gσ)u(x);

5. Nonnegativity. Gσ(x) ≥ 0, ∀(x, σ) ∈ R
2 × R+;

6. Semi-group. Gσ2(Gσ1u)(x) = G√
σ2
1+σ2

2
u(x).

Additionally, it can be easily checked that if u is continuous and bounded, then (t,x) 7→ G√
2tu(x)

is the solution of the heat diffusion equation ∂v/∂t = ∆v with initial condition v(0,x) = u(x) (see [6],
Chapter 2).

What is the discrete counterpart of this continuous operator? Could it be defined to satisfy the
properties of the continuous Gaussian convolution? Despite its central role in image processing, the
Gaussian convolution is generally crudely approximated by discrete convolutions or even box filters.
Numerous algorithms have been proposed for approximating the Gaussian convolution in digital
images. This work concentrates on three of the most relevant ones for the accurate computation
of the Gaussian scale-space, namely, the Fourier based convolution, the discrete convolution with
a sampled Gaussian function and Lindeberg’s discrete scale-space smoothing [10]. These methods
can be described either as approximations of the continuous Gaussian convolution or as linear filters
designed to satisfy some of the previously introduced properties expressed in the discrete framework.
Other methods, not discussed in this work, include the use of recursive filters [15, 3] or the iteration of
extended box filters [7]. They provide fast and accurate approximations of the Gaussian convolution
for large σ values but they crudely approximate the Gaussian function for low values of σ (typically
σ ≤ 1), making them unsuitable for an accurate computation of the Gaussian scale-space. For a
complete survey regarding speed and performance of the Gaussian convolution for large values of σ
we refer the reader to [5].

In this work, we propose to use the semi-group property for measuring the accuracy of each of
the analyzed methods. In particular, we test if multiple iterations of the same Gaussian convolu-
tion produce the same result as a single convolution with the blur level foretold by the semi-group
property. The conclusions are straightforward. The only method that allows to compute accurately
the Gaussian scale-space is the Fourier based convolution. The discrete convolution with samples
from a Gaussian function is accurate only if the applied blur level is large enough to avoid aliasing
artifacts (i.e. σ > 0.8). Although Lindeberg’s smoothing method satisfies the semi-group property,
it introduces a bias in the applied amount of blur, which is significantly lower. Evident though they
are, these conclusions may have a strong impact on the conception and performance of algorithms
using the Gaussian scale-space.

The rest of the article is organized as follows. Section 2 introduces the mathematical tools
used to justify the Fourier based convolution. Each of the three discussed methods is explained
in Section 3 where a detailed implementation with a mathematical interpretation is given. The
algorithm’s pseudocodes can be found in the Appendix. In Section 4 we present some numerical
experiments and we finally conclude in Section 5.

9

Ives Rey-Otero, Mauricio Delbracio

2 Mathematical Preliminaries

2.1 Notations

In the sequel, uk,l ∈ R for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1 denote the samples of a digital
image of size M ×N . By a slight abuse of notation, we will denote this image by (uk,l). We denote
by ⌊·⌋ and ⌈·⌉ the floor and ceiling functions respectively.
The Fourier transform of f ∈ L1(R2) is the function f̂ , defined for all (ξ, η) ∈ R

2 by

f̂(ξ, η) =

∫

R2

f(x, y)e−i(xξ+yη)dxdy.

The Discrete Fourier Transform (DFT) of (uk,l) is defined as the sequence

ũm,n =
1

MN

M−1∑

k=0

N−1∑

l=0

uk,le
− 2iπmk

M e−
2iπnl
N ,

for m = −⌊M/2⌋, . . . ,−⌊M/2⌋+M − 1 and n = −⌊N/2⌋, . . . ,−⌊N/2⌋+N − 1.
The Inverse Discrete Fourier Transform (IDFT) of (ũm,n) with m = −⌊M/2⌋, . . . ,−⌊M/2⌋+M − 1

and n = −⌊N/2⌋, . . . ,−⌊N/2⌋+N − 1 is defined as the sequence

uk,l =

(−⌊M
2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmk

M e
2iπnl
N

for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1. The DFT and IDFT are inverse transformations:
IDFT ◦DFT = Id and DFT ◦ IDFT = Id.

2.2 DFT and DCT Interpolations

A convenient continuous image model is to represent images as trigonometric polynomials, or equi-
valently, periodic band-limited functions. The limited bandwidth of camera lenses motivates this
approach. The periodic extension of the signal is arbitrary, as is any other signal extension, but it is
particularly convenient for Fourier interpolation.

We will say that P is a bi-dimensional trigonometric polynomial of degrees ⌊M
2
⌋ and ⌊N

2
⌋, and

periodicities a and b, if and only if

P (x, y) =

(−⌊M
2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

am,ne
2iπmx

a e
2iπny

b ,

where am,n ∈ C for m = −⌊M
2
⌋, . . . ,−⌊M

2
⌋+M − 1 and n = −⌊N

2
⌋, . . . ,−⌊N

2
⌋+N − 1.

The following proposition, characterizes the polynomial coefficients that satisfy an interpolation
criterion.

Proposition 1. (The DFT Interpolation) There exists a unique trigonometric polynomial u of de-
grees ⌊M

2
⌋ and ⌊N

2
⌋, and of periodicities a and b, that satisfies the interpolation condition

u

(
k
a

M
, l

b

N

)
= uk,l, for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1,

10

Computing an Exact Gaussian Scale-Space

namely

u(x, y) =

(−⌊M
2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmx

a e
2iπny

b ,

where the polynomial coefficients ũm,n are computed by the DFT of (uk,l).

From now on, we will consider without loss of generality that a = M and b = N . This can be
fulfilled by an appropriate parameterization of R2.

DCT interpolation

When manipulating images through the DFT interpolation, the digital image is implicitly extended
to Z2 via periodization. This eventually leads to strong discontinuities at image borders. The discrete
cosine transform (DCT) interpolation reduces the discontinuities caused by the brutal periodization
by first symmetrizing the image.

The DCT interpolation of the digital image (uk,l) of size M × N is equivalent to the DFT
interpolation of the symmetrized signal (̊uk,l) of size 2M × 2N where ůk,l = usM (k),sN (l) with sM(k) =
min(k, 2M − 1 − k) for 0 ≤ k ≤ 2M − 1 and sN(l) is defined similarly. The DFT interpolation
(Proposition 1) applied to this particular case defines the DCT interpolation as the only trigonometric
polynomial ů of degrees M and N and of periodicities 2M and 2N that interpolates exactly the
symmetrized image

ů (k, l) = ůk,l, for k = 0, . . . , 2M − 1 and l = 0, . . . , 2N − 1,

namely,

ů(x, y) =
M−1∑

m=−M

N−1∑

n=−N

˜̊um,ne
iπmx
M e

iπny
N .

Thus, the DCT interpolation can be expressed as

ů(x, y) =
M−1∑

m=0

N−1∑

n=0

αmαnDCT (u)m,n cos

(
π(x+ 1/2)m

M

)
cos

(
π(y + 1/2)n

N

)
,

with αm = 1/2 when m = 0 and αm = 1 elsewhere, and where (DCT (u)m,n) denotes the type-II DCT
coefficients of image (uk,l) defined for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1 by

DCT (u)m,n =
1

MN

M−1∑

k=0

N−1∑

l=0

uk,l cos

(
π(k + 1/2)m

M

)
cos

(
π(l + 1/2)n

N

)
.

Since ů(k, l) = uk,l for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1, the inverse DCT transform IDCT, is
computed by

IDCT (u)k,l =
M−1∑

m=0

N−1∑

n=0

αmαnum,n cos

(
π(k + 1/2)m

M

)
cos

(
π(l + 1/2)n

N

)
,

with αm = 1/2 when m = 0 and αm = 1 elsewhere.

11

Ives Rey-Otero, Mauricio Delbracio

2.3 The Convolution Theorem

Let uk,l ∈ R for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1 be a real-valued digital image of size M ×N ,
and let u(x, y) be its DFT interpolation,

u(x, y) =

(−⌊M
2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmx

M e
2iπny

N

where (ũm,n) = DFT ((uk,l)). The following theorem states that the convolution of the DFT inter-
polation of a digital image with a linear filter can be computed exactly by properly weighting its
DFT coefficients. This result plays an important role in the present framework. Indeed, it links the
continuous image model to the discrete computations that we are able to compute in practice.

Theorem 1. The convolution of the trigonometric polynomial

u(x, y) =

(−⌊M
2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmx

M e
2iπny

N

with a function f ∈ L1(R2), is the trigonometric polynomial

f ∗ u(x, y) =
(−⌊M

2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

ũm,nf̂

(
2πm

M
,
2πn

N

)
e

2iπmx
M e

2iπny
N .

Proof. Let us consider the pure wave of frequency ξ ∈ R
2, gξ(x) = eiξ·x. Then,

f ∗ gξ(x) =
∫

R2

f(x′)gξ(x− x′)dx′ = eiξ·x
∫

R2

f(x′)e−iξ·x′

dx′ = f̂(ξ)gξ(x),

which is a pure wave of the same frequency. The result follows from the linearity of convolution.

This theorem can be extended to the DCT interpolation by considering the symmetrized 2M×2N
image.

3 Analysis of Three Digital Gaussian Convolution Algo-

rithms

Several algorithms have been proposed for the Gaussian smoothing of digital images. This work
concentrates on three of them, the Fourier based convolution, the discrete convolution with samples
from the Gaussian function and Lindeberg’s discrete scale-space smoothing. In what follows we
describe each of these algorithms.

3.1 DFT Convolution

Since only a finite set of the image values are known, it is not possible to directly compute the con-
tinuous Gaussian convolution. However, if for example, we accept that the image is band-limited and
periodic, then we can fully recover the image values in the continuous domain. This is done by the
DFT interpolation presented in Proposition 1. Moreover, if we accept these convenient hypotheses,

12

Computing an Exact Gaussian Scale-Space

the continuous Gaussian convolution can be computed exactly in the Fourier domain at the cost of
two DFTs and one operation per pixel, as indicated by the convolution theorem (Theorem 1).

Remark. The Fourier transform of the isotropic Gaussian function Gσ(x, y) with standard deviation

σ is Ĝσ(ξ, η) = e−
σ2

2 (ξ2+η2). Applying Theorem 1 to the Gaussian function, the continuous Gaussian
convolution of the DFT interpolation u(x, y) of digital image (uk,l) is

Gσ ∗ u(x, y) =
(−⌊M

2
⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N
2
⌋+N−1)∑

n=−⌊N
2
⌋

ũm,nĜσ

(
2πm

M
,
2πn

N

)
e

2iπmx
M e

2iπny
N ,

where Ĝσ(
2πm
M

, 2πn
N

) = e
−σ2π2

2

(

(2m
M)

2
+(2n

N)
2
)

.

A description of the method is presented in Algorithm 1 while Figures 1 and 2 provide illustrations
of the algorithm behavior in the image and Fourier domains.

Since this algorithm implements the continuous Gaussian convolution (assumed an underlying
continuous image model), all properties of the continuous Gaussian convolution are verified. However,
using the DFT interpolation amounts to implicitly assuming that the digital image originates from
sampling a band-limited periodic function below the Nyquist rate. The assumption that the image is
well sampled is often unrealistic. Although for natural images, the low-pass filter behavior of digital
cameras justifies the assumption of an underlying band-limited function, the frequency band will not
be necessarily the same as the one covered by the sampling. The periodic assumption is unnatural.
The forced periodization can lead to strong discontinuities at image borders (see Figure 1), which
contradicts in some extent the band limited-assumption, causing ringing. These artifacts can be
reduced by using the DCT variant.

DCT Convolution

Since the DCT interpolation of an M × N image is equivalent to the DFT interpolation of the
2M × 2N mirror symmetrized image, Theorem 1 can be reformulated in terms of DCT sequences.
The underlying continuous image model is then a trigonometric polynomial of degrees M and N and
periodicities 2M and 2N . The continuous convolution of the DCT interpolation u(x, y) of the digital
image (uk,l) with a Gaussian function of standard deviation σ is

Gσ ∗ u(x, y) =
M−1∑

m=−M

N−1∑

n=−N

DCT (u)m,nĜσ

(πm
M

,
πn

N

)
e

iπmx
M e

iπny
N ,

where Ĝσ(
πm
M

, πn
N
) = e

−σ2π2

2

(

(m
M)

2
+(n

N)
2
)

. The complexity of the process is reduced by using the
symmetry of the DCT coefficients. The continuous Gaussian convolution involves weighting the
M × N type-II DCT coefficients. The algorithm is detailed in Algorithm 2. Figure 3 shows a
Gaussian DCT smoothing of a grayscale image. This figure illustrates how the artifacts induced by
the implicit DFT periodization are removed with the DCT variant.

3.2 Convolution with a Sampled Gaussian Function.

The most common discrete approximation of the Gaussian convolution is obtained by sampling the
truncated continuous Gaussian function. Although being straightforward to implement, we will show
that it does not satisfy the semi-group property for small σ values.

13

Ives Rey-Otero, Mauricio Delbracio

Figure 1: Illustrating the continuous Gaussian convolution through DFT interpolation. The first
column illustrates the adopted continuous image model. The image is defined on the R

2 plane. It
is periodic u(x + kM, y + lN) = u(x, y) (top) and band-limited with supp(û) ∈ [−π, π]2 (bottom).
The borders of the digital image are represented by a red box. The green box indicates [−π, π]2, the
domain relative to the sampling. The domain is extended to illustrate that the continuous image
is periodic and band-limited. The second column illustrates the Fourier transform of the Gaussian
function defined on the R

2 plane for σ = 0.8. The convolution in the spatial domain is equivalent
to a multiplication in the Fourier domain. The last column illustrates the periodic trigonometric
polynomial relative to this Gaussian convolution (top) and a representation of the Dirac amplitudes
in its Fourier transform (bottom). It is a classic convention, also adopted here, that a continuous
digital image is displayed by showing a constant value on each pixel, equal to its sampled value at
the pixel center. Thanks to the optical blur of the screen and of our vision, the result is, visually, a
decent representation of the smooth ideal image.

The continuous 1D Gaussian function of standard deviation σ is truncated at width 2Kσ; typical
values of K are 3 or 4 to gather most of the signal’s energy. Then, it is sampled to produce the
discrete filter (gk)k of width 2⌈Kσ⌉+ 1 and normalized to sum one,

gk =
e−

k2

2σ2

∑⌈Kσ⌉
l=−⌈Kσ⌉ e

− l2

2σ2

, k = −⌈Kσ⌉, . . . , ⌈Kσ⌉.

The convolution with the sampled Gaussian function algorithm (detailed in Algorithm 3) consists in
the computation of the separable 2D discrete convolution

vk,l =

⌈Kσ⌉∑

k′=−⌈Kσ⌉
gk′

⌈Kσ⌉∑

l′=−⌈Kσ⌉
gl′ u

′
k−k′,l−l′ ,

14

Computing an Exact Gaussian Scale-Space

Input Image σ = 1.0 σ = 3.0

Fourier spectrum modulus σ = 1.0 σ = 3.0

Figure 2: Grayscale input image and the results of applying the DFT Gaussian convolution with
parameter σ = 1.0, 3.0. In the bottom row, the respective moduli of the Fourier spectra show
the attenuation of high frequencies. The high values in the Fourier spectra along the vertical and
horizontal axes are caused by the strong discontinuities when periodizing the image.

where u′ denotes the extension of u to the Z2 plane either by (M,N)-periodization or symmetrization
followed by (2M, 2N)-periodization. Formally

u′(k, l) = u(sM(k), sN(l)) with sM(k) = k mod M,

for periodic extension, or

sM(k) = min(k mod 2M, 2M − 1− (k mod 2M)),

in case of the (half-sample) symmetric extension. The pseudo-code in Algorithm 3 incorporates the
symmetric extension of the signal, the modification for the periodic extension is straightforward.

Gaussian function aliasing and semi-group property. The Fourier transform of the Gaussian

function Gσ, Ĝσ(ξ, µ) = e−σ2 ξ2+µ2

2 , has no compact support. Thus, the sampling of the Gaussian
function never satisfies the band-limited assumption needed by the Nyquist-Shannon sampling the-
orem (see e.g. [4]). Since the value of Ĝσ(ξ, µ) at the Nyquist frequency is e−π2σ2/2, the aliasing is
not significant for σ > 1 [11].

As we will show in the numerical experiments in Section 4, the aliasing of the Gaussian function
contributes to a significant deviation from the semi-group property.

15

Ives Rey-Otero, Mauricio Delbracio

Input Image σ = 1.0 σ = 3.0

Fourier spectrum modulus σ = 1.0 σ = 3.0

Figure 3: Grayscale input image and the results of applying the DCT Gaussian convolution with
parameter σ = 1.0, 3.0. In the bottom row, the respective moduli of the Fourier spectra show the
attenuation of high frequencies similar to the case of DFT convolution. The main difference is
that in the DCT Gaussian smoothing, the implicit symmetrization of the image avoids the strong
discontinuities when periodizing.

Truncation error. The error due to truncation is shown in Figure 4. The error is very small for
large enough values of K (for instance, the error is less than 10−4 for K ≥ 4). The truncation at
⌈Kσ⌉ also induces oscillations on the spectrum. If (vk,l) and (vtrunck,l) denote the respective outputs of
the convolutions of u with the infinite and the truncated versions of the sampled Gaussian function,
then their DFT coefficients are related by

v̂truncm,n =
M−1∑

m′=0

N−1∑

n′=0

v̂m′,n′D⌈Kσ⌉(2π(m−m′)/M)D⌈Kσ⌉(2π(n−n′)/N),

for m = −⌊M/2⌋, . . . ,−⌊M/2⌋ +M − 1 and n = −⌊N/2⌋, . . . ,−⌊N/2⌋ + N − 1 and where DL denotes
the Dirichlet function (also known as the periodic sinc function),

DL(x) =





sin((L+1/2)x)
sin(x/2)

if x 6= 2kπ, k ∈ Z

(−1)k(L−1) if x = 2kπ, k ∈ Z.

The oscillating spectrum due to the convolution with the Dirichlet kernel is noticeable for small
values of K, as can be seen in Figure 5.

16

Computing an Exact Gaussian Scale-Space

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

Truncation Error

σ

K=1

K=2

K=3

K=4

K=5

K=6

Figure 4: Impact of truncation of the Gaussian function. The sequence of samples of the 1D
Gaussian function gk is truncated at ⌈Kσ⌉ samples. The truncation error is defined as the square

root of the total energy loss,
√∑

|k|>⌈Kσ⌉ g
2
k, divided by the square root of the total energy of the

Gaussian function,
√∑

k g
2
k. We have approximated the total energy of the Gaussian function by∑

|k|≤⌈50σ⌉ g
2
k. The truncation error decays rapidly with K and becomes smaller than 10−4 for K ≥ 4.

3.3 Lindeberg’s Discrete Scale-Space Smoothing

Let u be a continuous and bounded signal, then the Gaussian convolution v : t 7→ G√
2tu is the

solution of the heat equation ∂v
∂t

= ∆v with initial condition v(0,x) = u(x) 2 . Lindeberg’s smoothing
method [10] is based on computing the solution of a spatial discretization of the heat equation
∂v
∂t

= ∆v.
For a one-dimensional sequence (uk)k∈Z, Lindeberg’s smoothing method consists in finding vk(t),

solution of
∂tvk(t) = ∆discrvk(t), with vk(0) = uk,

where ∆discrvk(t) denotes the 1d Laplacian finite difference scheme ∆discrvk = vk−1−2vk+vk+1. This
solution can be computed via a discrete convolution with the discrete sequence

gLindebergn = e−tIn(t),

where t = σ2/2 and In denotes the modified Bessel functions.
For a two-dimensional signal (uk,l)(k,l)∈Z2 , Lindeberg’s smoothing method consists in solving

∂tvk,l(t) = ∆discr
γ vk,l(t), with vk,l(0) = uk,l,

where ∆discr
γ denotes the following 2D Laplacian finite difference scheme

∆discr
γ u = (1− γ)∆+u+ γ∆×u,

2Equivalently, thanks to the re-parameterization σ = t2

2 , v : σ 7→ Gσu is the solution of the equation ∂v
∂σ

= σ∆v.

17

Ives Rey-Otero, Mauricio Delbracio

Sampled Gaussian function truncated at ⌈3σ⌉ Sampled Gaussian function truncated at ⌈4σ⌉

Figure 5: Impact of truncation. In the first row, the convolutions of a test image with sampled
Gaussian function of standard deviation σ = 4 truncated at ⌈3σ⌉ (left) and ⌈4σ⌉ (right). Second
row, the respective image spectra (the intensity scale is optimized for better visualization). Notice
the oscillations for a truncation at ⌈3σ⌉ of the sampled Gaussian function.

with

∆+uk,l = uk+1,l + uk−1,l + uk,l+1 + uk,l−1 − 4uk,l,

∆×uk,l = 1/2(uk+1,l+1 + uk+1,l−1 + uk−1,l+1 + uk−1,l−1)− 2uk,l,

for 0 ≤ γ ≤ 1/2. The parameter γ controls the shape of the Laplacian discrete operator3.
The smoothed image is computed by Euler’s method. This explicit time marching scheme consists

in applying the following iteration formula

v(pδt)k,l − v((p− 1)δt)k,l
δt

= ∆discr
γ v((p− 1)δt)k,l

for 1 ≤ p ≤ P with δt the step size and P the total number of iterations (i.e. Pδt = σ2/2).
The stability of Euler’s method is guaranteed if the step size satisfies δt < 1/8(1 − γ/2σ). The
implementation of Lindeberg’s smoothing method is detailed in Algorithm 4.

3For a thorough analysis of the influence of parameter γ on isotropy, we refer the interested reader to [10] pp.
127-134.

18

Computing an Exact Gaussian Scale-Space

4 Experiments

Let us assume that the Gaussian semi-group property is valid. Then, applying N times a Gaussian
filter of parameter σ should produce the same result as filtering only once with a Gaussian function
of parameters

√
Nσ. This allows us to evaluate the validity of the semi-group property for all the

described methods.

Indeed, if an image of a Gaussian function is filtered by a Gaussian function of a given standard
deviation, the filtered signal should be a Gaussian function of a standard deviation given by the
semi-group property. Thus, the following experiment was carried out. A sampled Gaussian function
of standard deviation σin was considered as the input signal. It was filtered N times by each of the
different Gaussian filters implementations with parameter σ. A Gaussian function was fitted to the
filtered image by least squares. The estimated standard deviation was compared to the theoretical
expected value

√
σ2
in +Nσ2. The input Gaussian standard deviation was set to σin = 1.0 to avoid

aliasing artifacts, and the number of iterations N was set to 10.

The results are shown in Figures 6 to 9. Each figure shows the estimated blurs, the differences
between estimated and theoretical values, and the root-mean-square error between the pixels of the
two filtered images.

The experiment demonstrates that, as expected, the DFT convolution (Figure 6) and its DCT
variant (Figure 7) fully satisfy the semi-group property with machine precision error.4 Figure 8 shows
the previous experiment for the sampled Gaussian function truncated at ⌈5σ⌉. For low values of σ,
the estimated blur level deviates from the theoretical value

√
Nσ and the method fails to satisfy the

semi-group property. This is due to the aliasing in the sampled Gaussian function. The difference
with respect to the theoretical values is less than 10−3 for σ ≥ 0.8. Applying Lindeberg’s method
consists in solving a discretized version of the heat equation. The parameter γ which defines the
Laplacian finite difference scheme is set here to γ = 1/2. Lindeberg’s smoothing method satisfies the
semi-group property (Figure 9) but the estimated blur is lower than the theoretical value.

Additionally, direct and iterated convolutions were applied on a test image. For all four methods,
the RMSE5 between the direct and the iterated convolutions is displayed in Figure 10, while Figure 11
shows the image difference. The DCT and DFT convolution produce the lowest errors. Nevertheless,
the sampled Gaussian function and Lindeberg’s method give similar errors for large values of σ (i.e.
σ ≥ 0.9).

5 Conclusion

In this work we analyzed three methods for the Gaussian smoothing of digital images. We focused
on the most commonly used methods for the computation of the Gaussian scale-space. We have
detailed their implementation as well as an analysis of how they differ from the continuous Gaussian
convolution.

Computing the Gaussian scale-space with high precision requires an accurate implementation
of the Gaussian convolution for low blur levels. With that aim, the present work was particularly
focused on the accuracy at low levels of Gaussian blur (i.e. σ ≤ 1).

The DFT and DCT Gaussian convolutions fully satisfy the semi-group property, thus giving an
accurate discrete implementation of the continuous Gaussian convolution. The discrete convolution
with samples from a Gaussian function also satisfies the semi-group property for large blurs (i.e.
σ > 0.8). However, the aliasing of the sampled function for low blur levels makes it unsuitable for

4The algorithms are implemented using single-precision float data type.

5Root-mean-square error. For (xn) and (yn) with n = 1 . . . N , RMSE((xn), (yn)) =
1
N

√∑N
n=1(xn − yn)2.

19

Ives Rey-Otero, Mauricio Delbracio

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

DFT

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

RMSE

σ

Figure 6: DFT convolution. A Gaussian convolution of parameter
√
Nσ is compared to N = 10

iterations of a Gaussian convolution of parameter σ (denoted N ×Gσ) for different values of σ. On
the left, the estimated blur levels for the direct and iterated filters are plotted as a function of σ. The
theoretical value

√
Nσ is plotted in black. In the center, the difference between the estimated blur

levels for direct and iterated filters as a function of σ is plotted in red. This difference is below 10−5

which indicates that the DFT method satisfies the semi-group property. The difference between the
estimated blur level in the iterated filtered image and the theoretical blur level as a function of σ
is plotted in black. The DFT convolution is accurate since this difference is below 10−3 for σ ≥ 0.1
and is below 10−6 for σ ≥ 0.4. On the right, the root-mean-square error (RMSE) between the pixel
values of both filtered images confirms the DFT consistency regarding the semi-group property.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

DCT

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

RMSE

σ

Figure 7: The DCT convolution of an image is the DFT convolution after symmetrization of the
image. Unsurprisingly, the semi-group property is satisfied by this variant.

20

Computing an Exact Gaussian Scale-Space

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

Sampled Gaussian kernel

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

RMSE

σ

Figure 8: Sampled Gaussian functions truncated at ⌈5σ⌉. A convolution of parameter
√
Nσ is

compared to N = 10 iterations of a filter of parameter σ (denoted N ×Gσ) for the range 0 ≤ σ ≤ 1.
On the left, the estimated blur levels for the direct and iterated filters are plotted for different values
of σ. The theoretical value

√
Nσ is plotted in black. The center and right plots show the blur

level difference and the RMSE of the filtered images respectively. For low values of σ, the estimated
blur after N convolutions is lower that the theoretical value. Indeed, in this case, the sampled
functions are aliased and the method does not satisfy the semi-group property. This is confirmed
by a blur difference above 10−2 for σ ≤ 0.6 (red curve, center plot). The difference with respect to
the theoretical values is less than 10−3 for σ ≥ 0.8. For very low values of σ (e.g. σ ≈ 0.2), the
measured blur is null. This is reasonable since in this case, the sampled function is reduced to a
sequence with only one nonzero coefficient.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

Lindeberg smoothing method

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

RMSE

σ

Figure 9: Lindeberg’s smoothing method. A smoothing of parameter
√
Nσ is compared to N = 10

iterations of the method with parameter σ (denoted N ×Gσ) for the range 0 ≤ σ ≤ 1. The method
consists in the resolution of a discretized version of the heat equation. The experiment demonstrates
that Lindeberg’s smoothing method satisfies the semi-group property. The two measured blurs are
almost identical (difference around 10−3, see center plot). However, the estimated blur is lower than
the theoretical value of

√
Nσ.

21

Ives Rey-Otero, Mauricio Delbracio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

RMSE

σ

DFT

DCT

Sampled kernel

Lindeberg

Figure 10: Validity of the semi-group property on a natural image (portrait, see Figure 11) for DFT
and DCT convolutions, convolution with sampled Gaussian functions and Lindeberg’s smoothing
method. The RMSE between a convolution of parameter

√
Nσ and N = 10 iterations of a Gaussian

filtering of parameter σ is plotted as a function of 0 ≤ σ ≤ 1. DCT and DFT produce the lowest
errors, followed by Lindeberg’s method. For σ ≥ 0.9 the RMSE produced with the sampled Gaussian
function is similar to those produced by Lindeberg’s method.

accurate computations of the Gaussian scale-pace. Finally, although Lindeberg’s smoothing method
satisfies the semi-group property, it introduces a bias in the applied amount of blur.

A Pseudocodes

Algorithm 1: DFT convolution.
Inputs: - u, input digital image of M ×N pixels.

- σ, standard deviation of the Gaussian function.
Output: v, output image of M ×N pixels.

//Compute the DFT coefficients of u
(ũm,n)← DFT (uk,l)

//Weight the DFT coefficients

for −⌊M2 ⌋ ≤ m ≤ −⌊M2 ⌋+M − 1 and −⌊N2 ⌋ ≤ n ≤ −⌊N2 ⌋+N − 1 do

ṽm,n ← ũm,nĜσ

(
2πm

M
,
2πn

N

)
= ũm,ne

−σ
2
π
2

2

(

(2m

M)
2

+(2n

N)
2
)

//Compute Inverse discrete Fourier transform of ṽ
(vk,l)← IDFT (ṽm,n)

return v

22

Computing an Exact Gaussian Scale-Space

0.2 0.3 0.4 0.5 0.6 0.7 0.8

DFT

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−7

DCT

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−7

Sampled kernel

−0.01 −0.005 0 0.005 0.01 0.015

Lindeberg

−1 −0.5 0 0.5 1 1.5

x 10
−4

Figure 11: Image difference between direct and iterated convolutions for the four studied algorithms
applied on the test image portrait. For the DFT and DCT convolutions, for convolution with
sampled Gaussian functions and Lindeberg’s method, the smoothing parameter σ is set to 0.5 for each
iterated filtering and to 0.5

√
10 for direct filtering. The methods based on Fourier and Lindeberg’s

method are consistent with the semi-group property. The measured RMSE between direct and
iterated convolution are 7.81 × 10−3 (DFT and DCT), 6.29 (sampled Gaussian) and 5.90 × 10−2

(Lindeberg). The DCT and DFT methods achieve machine precision.

23

Ives Rey-Otero, Mauricio Delbracio

Algorithm 2: DCT convolution.
Inputs: - u, input digital image of M ×N pixels.

- σ, standard deviation of the Gaussian function.
Output: v, output image of M ×N pixels.
Temporary: -DCT (u), type-II DCT coefficients of the input image, M ×N real coefficients.

-DCT (v), type-II DCT coefficients of the output image.

//Compute the DCT coefficients of u
(DCT (u)m,n)← DCT (uk,l)

//Weight the DCT coefficients

for 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1 do

DCT (v)m,n ← DCT (u)m,nĜσ

(πm
M

,
πn

N

)
= DCT (u)m,ne

−σ
2
π
2

2

(

(m

M)
2

+(n

N)
2
)

//Compute Inverse discrete cosine transform of DCT (v)
(vk,l)← IDCT (DCT (v)m,n)

return v

Algorithm 3: Convolution with a sampled Gaussian function.
Inputs: u, input digital image of M ×N pixels.

σ, standard deviation of the Gaussian function
Output: v, output digital image of M ×N pixels.
Parameter: K, the Gaussian function is truncated at −⌈Kσ⌉ and ⌈Kσ⌉.
Temporary: w, M ×N image used to store intermediate computations.

//Sample the truncated Gaussian function.

for −⌈Kσ⌉ ≤ k ≤ ⌈Kσ⌉ do gk = e−
k
2

2σ2

//Normalize the sequence to sum 1.
for −⌈Kσ⌉ ≤ k ≤ ⌈Kσ⌉ do gk = gk/(

∑
k′ gk′)

//Convolution on columns

for 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1 do

wm,n ←
∑⌈Kσ⌉

k=−⌈Kσ⌉ gkusM (m−k),n

with sM (m) = min(m mod 2M, 2M − 1−m mod 2M))

//Convolution on lines

for 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1 do

vm,n ←
∑⌈Kσ⌉

k=−⌈Kσ⌉ gkwm,sN (n−k)

with sN (n) = min(n mod 2N, 2N − 1− n mod 2N))

return v

24

Computing an Exact Gaussian Scale-Space

Algorithm 4: Lindeberg’s smoothing method.
Input: u input digital image of M ×N pixels.
Output: v output digital image of M ×N pixels.
Parameters: σ applied blur.

0 ≤ γ ≤ 1/2 parameter defining ∆discr
γ the Laplacian finite difference scheme.

Temporary: P , number of Euler iterations.
δt, Euler step size.
∆+v, ∆×v, ∆

discr
γ v, auxiliary discrete Laplacians.

// Euler method setting

P ← ⌈8(1− γ/2)σ2⌉
δt← σ

P

// Initialization

v ← u
// Euler Method

for p = 1, . . . , P do
// Compute discrete Laplacian

for 0 ≤ k ≤M − 1 and 0 ≤ l ≤ N − 1 do
∆+vk,l ← uk+1,l + uk−1,l + uk,l+1 + uk,l−1 − 4uk,l

∆×uk,l ← 1
2 (uk+1,l+1 + uk+1,l−1 + uk−1,l+1 + uk−1,l−1)− 2uk,l

∆discr
γ vk,l ← (1− γ)∆+vk,l + γ∆×vk,l

note: The half-sample symmetric boundary condition is used.

// Euler iteration formula

for 0 ≤ k ≤M − 1 and 0 ≤ l ≤ N − 1 do

vk,l ← vk,l − δt∆discr
γ vk,l

note: ⌈·⌉ denotes the ceiling function.

Acknowledgements

This work was partially supported by the Centre National d’Etudes Spatiales (CNES, MISS Project),
the European Research Council (Advanced Grant Twelve Labours), the Office of Naval Research
(Grant N00014-97-1-0839), Direction Générale de l’Armement (DGA), Fondation Mathématique
Jacques Hadamard and Agence Nationale de la Recherche (Stereo project).

Image Credits

Standard test image.

References

[1] L. Alvarez, F. Guichard, P-L. Lions, and J-M. Morel, Axioms and fundamental equa-
tions of image processing, Archive for Rational Mechanics and Analysis, 123 (1993), pp. 199–257.
http://dx.doi.org/10.1007/BF00375127.

[2] J. Babaud, A.P. Witkin, M. Baudin, and R. O. Duda, Uniqueness of the Gaussian kernel
for scale-space filtering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8
(1986), pp. 26–33. http://dx.doi.org/10.1109/TPAMI.1986.4767749.

[3] R. Deriche, Recursively implementating the Gaussian and its derivatives, research report,
INRIA, 1993. http://hal.inria.fr/inria-00074778/en/.

25

Ives Rey-Otero, Mauricio Delbracio

[4] C. Gasquet and P. Witomski, Fourier Analysis and Applications: Filtering, Numerical
Computation, Wavelets, Texts in Applied Mathematics, Springer, 1999. ISBN 9780387984858.

[5] P. Getreuer, A survey of Gaussian convolution algorithms, Image Processing On Line, 3
(2013), pp. 286–310. http://dx.doi.org/10.5201/ipol.2013.87.

[6] F. Guichard, J.-M. Morel, and R Ryan, Contrast invariant image analysis and PDE’s,
Springer, 1999.

[7] P. Gwosdek, S. Grewenig, A. Bruhn, and J. Weickert, Theoretical foundations of gaus-
sian convolution by extended box filtering, in Scale Space and Variational Methods in Computer
Vision, Springer, 2012, pp. 447–458. http://dx.doi.org/10.1007/978-3-642-24785-9˙38.

[8] T. Iijima, H. Genchi, and K. Mori, A theory of character recognition by pattern
matching method, in Learning systems and intelligent robots, Springer, 1974, pp. 437–450.
http://dx.doi.org/10.1007/978-1-4684-2106-4˙22.

[9] J. Koenderink, The structure of images, Biological Cybernetics, 50 (1984), pp. 363–370.
http://dx.doi.org/10.1007/BF00336961.

[10] T. Lindeberg, Scale-space theory in computer vision, Springer, 1993.
http://dx.doi.org/10.1007/978-1-4757-6465-9.

[11] J-M. Morel and G. Yu, Is SIFT scale invariant?, Inverse Problems and Imaging, 5 (2011),
pp. 115–136. http://dx.doi.org/10.3934/ipi.2011.5.115.

[12] J. Sporring, M. Nielsen, L. Florack, and P. Johansen, Gaussian Scale-Space Theory,
vol. 8, Kluwer Academic Publishers, Dordrecht, 1997.

[13] J. Weickert, S. Ishikawa, and A. Imiya, Linear scale-space has first been pro-
posed in Japan, Journal of Mathematical Imaging and Vision, 10 (1999), pp. 237–252.
http://dx.doi.org/10.1023/A:1008344623873.

[14] A Witkin, Scale-space filtering: A new approach to multi-scale description, in IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing, vol. 9, IEEE, 1984, pp. 150–153.
http://dx.doi.org/10.1109/ICASSP.1984.1172729.

[15] I.T. Young and L.J. Van Vliet, Recursive implementation of the Gaussian filter, Signal
processing, 44 (1995), pp. 139–151. http://dx.doi.org/10.1016/0165-1684(95)00020-E.

26

	Introduction
	Mathematical Preliminaries
	Notations
	DFT and DCT Interpolations
	The Convolution Theorem

	Analysis of Three Digital Gaussian Convolution Algorithms
	DFT Convolution
	Convolution with a Sampled Gaussian Function.
	Lindeberg's Discrete Scale-Space Smoothing

	Experiments
	Conclusion
	Pseudocodes

