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Abstract

This paper deals with the analysis, implementation, and comparison of several vector-valued
total variation (TV) methods that extend the Rudin-Osher-Fatemi variational model to color
images. By considering the discrete gradient of a multichannel image as a 3D structure with
dimensions corresponding to the spatial extent, the differences to other pixels, and the color
channels, we introduce in [J. Duran, M. Moeller, C. Sbert, and D. Cremers, “Collaborative
Total Variation: A General Framework for Vectorial TV Models”, SIAM Journal on Imaging
Sciences, 9(1), pp. 116–151, 2016] collaborative sparsity enforcing norms for penalizing the
resulting tensor. We call this class of regularizations collaborative total variation (CTV). We
first analyze the denoising properties of each collaborative norm for suppressing color artifacts
while preserving image features and aligning edges. We then describe the primal-dual hybrid
gradient method for solving the minimization problem in detail. The resulting CTV–L2 vari-
ational model can successfully be applied to many image processing tasks. On the one hand,
an extensive performance comparison of several collaborative norms for color image denoising
is provided. On the other hand, we analyze the ability of different CTV methods for decompos-
ing a multichannel image into a cartoon and a textural part. Finally, we also include a short
discussion on alternative minimization methods and compare their computational efficiency.

Source Code

ANSI C source code to produce the same results as the demo is accessible at the IPOL web
part of this article1.

Keywords: denoising; cartoon + texture decomposition; color images; vectorial total variation;
collaborative norm; proximity operator; primal-dual hybrid gradient algorithm
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1 Introduction

The most common degradation model in image restoration relates the observed data f to the under-
lying true image u by means of

f = Au+ η, (1)

where η is an i.i.d. zero-mean Gaussian variable representing the noise and A is a linear operator
modelling the degradation of u caused, for instance, by optical blurring. Image denoising models may
be seen as a special case by taking A to be the identity. Unfortunately, the problem of recovering
u from (1) is ill-posed in the sense of Hadamard [22] in many practical applications. It is therefore
necessary to introduce some a priori knowledge on the solution. In several mathematical frameworks,
this prior often takes the form of a regularization term for an energy functional which is to be
minimized. Observing that quadratic regularization did not allow recovering sharp discontinuities,
Rudin, Osher and Fatemi proposed [33] the total variation (TV) regularization.

Let Ω ⊂ R
2 be a bounded domain, then the total variation of a function u ∈ L1(Ω,R) is given by

TV(u) := sup
ξ∈Ξ

{∫

Ω

u(x, y) div(ξ(x, y)) dx dy

}
,

where (x, y) ∈ Ω and Ξ is a set of continuously differentiable and bounded functions with compact
support in Ω. The space of functions of bounded variation is then defined as

BV(Ω) :=
{
u ∈ L1(Ω,R) : TV(u) <∞

}
.

It is well known [1] that TV(u) is finite if and only if its distributional derivative Du is a finite Radon
measure, in which case TV(u) = |Du|(Ω). If ∇u ∈ L1(Ω,R2), then TV(u) =

∫
Ω
|∇u|. Without risk

of ambiguity, TV(u) is usually denoted by
∫
Ω
|∇u| even when u is not smooth enough to justify this

integral notation. In this setting, TV denoising consists of solving the minimization problem

min
u∈BV(Ω)

∫

Ω

|∇u|+ λ

2
‖u− f‖22, (2)

where λ is a positive weighting constant and f ∈ L2(Ω,R).
In the grayscale setting, the total variation can be defined differently depending on the norm

in which the functions in Ξ are bounded. Indeed, Ξ = {ξ ∈ C1
c (Ω,R

2) : ‖ξ(x, y)‖2 ≤ 1, ∀(x, y) ∈ Ω}
leads to the isotropic TV ∫

Ω

√
(∂xu(x, y))

2 + (∂yu(x, y))
2 dx dy,

where∇u(x, y) = (∂xu(x, y), ∂yu(x, y)) denotes the gradient in R
2. On the other hand, the anisotropic

TV follows from the choice Ξ = {ξ ∈ C1
c (Ω,R

2) : ‖ξ(x, y)‖∞ ≤ 1, ∀(x, y) ∈ Ω}
∫

Ω

(
|∂xu(x, y)|+ |∂yu(x, y)|

)
dx dy.

For color images u : Ω → R
C , where C denotes the number of channels, several extensions of

TV have been proposed depending not only on the coupling of the spatial derivatives but also on
the coupling of color channels. The first known vectorial TV is due to Blomgren and Chan [6], who
coupled the global weight of the TV contributions across channels. On the other hand, Attouch et
al. [4] suggested the channel-independent variant

C∑

k=1

∫

Ω

√(
∂xuk(x, y)

)2
+
(
∂yuk(x, y)

)2
dx dy,
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which uses an ℓ1 channel coupling. A special case of TV proposed in [35] and further studied in [8]
follows from coupling both the spatial derivatives and the color channels with the ℓ2 norm

∫

Ω

√√√√
C∑

k=1

((
∂xuk(x, y)

)2
+
(
∂yuk(x, y)

)2
)
dx dy.

Other versions of vectorial TV are based on Schatten p−norms, which penalize the ℓp norm of the
singular values of the Jacobian at each point [23, 35]. For typical color images, the singular values
of matrices of the form (

∂xu1(x, y) ∂xu2(x, y) ∂xu3(x, y)
∂yu1(x, y) ∂yu2(x, y) ∂yu3(x, y)

)
(3)

are penalized. It was shown in [19] that the natural choice for vectorial TV from geometric measure
theory is the Schatten ∞−norm, that is, the penalization of the largest singular value. Another
important case is the nuclear norm that arises when one penalizes the singular values with the help
of the ℓ1 norm. It is a convex relaxation of minimizing the rank of the matrix in (3), so that the
gradients (jumps) of different color channels are encouraged to point into the same direction.

Although the TV regularization was originally designed for image denoising, it has become one of
the most popular regularizations for several image processing problems and has sparked a tremendous
amount of research. In particular, the problem of decomposing an image into a cartoon part, which
consists of the geometric and smoothly-varying component of the original image, and a textural part,
which captures essentially the oscillating patterns (texture, details, and noise), can be convincingly
solved by means of (2). Indeed, Meyer stated in [26] that the right decomposition within a variational
framework is the one where the cartoon part has minimal TV while the oscillatory component has
a minimal norm in a dual space of BV. In the end, the oscillatory component is simply computed
as the difference between the original image and its cartoon part. We refer the reader to [9, 36] and
references therein for more details.

We proposed in [16, 17] to take a generalized viewpoint that unifies most vectorial TV based
models proposed in the literature. By considering the derivatives of a color image as a linear opera-
tor, one obtains a 3D data structure of the gradient: one dimension corresponding to the pixels, one
dimension corresponding to the derivatives, and one dimension corresponding to the color channels.
We penalize this structure using a different norm along each dimension.

In this paper, we provide an extensive performance comparison of different vectorial TV regulari-
zations based on collaborative norms for both denoising and cartoon + texture decomposition of
color images. We use the primal-dual hybrid gradient (PDHG) method [12, 18, 37] for solving the
resulting minimization problems. Since the key to obtaining a fast PDHG algorithm is an efficient
evaluation of the proximity operators arising from the collaborative norms, they will be considered
and provided in detail. We also include a short discussion on alternative minimization methods and
compare their computational efficiency.

2 Mathematical Background on Convex Analysis

In a general framework, assume that X is a finite dimensional Hilbert space endowed with an inner
product 〈·, ·〉 and induced norm ‖·‖. By the Riesz representation theorem, we identify the dual space
of X with X itself. Furthermore, assume throughout this section that f : X → R∪ {∞} is a proper
convex function. We refer to [21, 32] and references therein for further details.

The convex conjugate of f , also known as the Legendre-Fenchel transform of f , is the function
f ∗ : X → R ∪ {∞} defined as

f ∗(x∗) = sup
x∈X
{〈x, x∗〉 − f(x)}, x∗ ∈ X.
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For example, the Legendre-Fenchel transform of f(x) = ‖x‖ is

f ∗(y) =

{
0 if ‖y‖∗ ≤ 1,
+∞ otherwise,

that is, the indicator function of the dual norm ball, with the dual norm given by

‖y‖∗ = sup
x∈X
{〈x, y〉 : ‖x‖ ≤ 1}.

Suppose now that f is further lower-semicontinuous. The proximity operator of f with parameter
τ > 0, denoted by proxτf : X → X, is defined as

proxτf (x) = argmin
y∈X

{
1

2
‖y − x‖22 + τf(y)

}
, x ∈ X.

Since the function minimized on the righthand side is strongly convex, there exists an unique mini-
mizer. The above definition indicates that proxτf (x) is a point that compromises between minimizing
f and being close to x. For differentiable functions and small values of τ , the proximal mapping
behaves as a kind of gradient step, proxτf (x) ≃ x− τ∇f(x). This suggests that proximal operators
may be useful in optimization. Finally, we recall the celebrated Moureau’s identity that connects the
proximity operator of a function and of its Legendre-Fenchel transform in the following way

x = proxτf (x) + τprox 1
τ
f∗

(x
τ

)
. (4)

3 Collaborative Total Variation

For the rest of the paper, we will focus on the discrete setting. We consider a color image as a 2D
matrix of size N × C denoted by u = (u1, . . . ,uC) ∈ R

N×C , where N is the number of pixels, C is
the number of channels, and uk = (u1,k, . . . , uN,k)

⊤. Up to a permutation of the dimensions, let us
define the discrete gradient of u to be a 3D matrix or tensor of the form Du ∈ R

N×M×C with M
denoting the number of spatial derivatives (typically, M = 2 and the differences in x- and y-direction
are considered).

It makes sense to look at vectorial TV as applying collaborative norms to the discrete gradient of
the image as we define in [17] and reproduce below for the sake of completeness.

Definition 1. Let ‖ · ‖a : RN → R be any vector norm and ‖ · ‖~b : RM×C → R any matrix norm.
Then, the collaborative norm of A ∈ R

N×M×C, which will be denoted by ‖ · ‖~b,a : RN×M×C → R, is
defined as

‖A‖~b,a := ‖v‖a, with vi = ‖Ai,:,;‖~b, ∀i ∈ {1, . . . , N}, (5)

where Ai,:,: is the (two-dimensional) submatrix obtained by stacking the second and third dimensions
of A at the i−th position in the first dimension.

By setting ‖ · ‖a := ℓr and ‖ · ‖~b := ℓp,q in (5), we obtain the ℓp,q,r norm defined as

‖A‖p,q,r =




N∑

i=1




M∑

j=1

(
C∑

k=1

|Ai,j,k|p
)q/p




r/q



1/r

,

where any of the indices p, q or r being equal to infinity means taking the maximum of the absolute
values along the corresponding dimension. Since the previous norm is in general non invariant to
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permutations, it is important to clearly state the order of the dimensions of the 3D structure. Let
col, der, and pix be abbreviations for color, derivative, and pixel, respectively. We propose to denote
by ℓp,q,r(dim1, dim2, dim3), where dim1, dim2, dim3 ∈ {col, der, pix}, the collaborative norm resulting
from first applying the ℓp norm along the dim1 dimension, then the ℓq norm along the dim2 dimension
of the remaining 2D matrix, and, finally, the ℓr norm to the remaining vector.

We also propose to generalize the framework introduced in [35] by setting ‖ · ‖a := ℓq and
‖ · ‖~b :=Schatten−p in (5), which leads to the collaborative (Sp, ℓq) norm defined as

(Sp, ℓq) (A) =




N∑

i=1

∥∥∥∥∥∥∥




Ai,1,1 · · · Ai,1,C
...

. . .
...

Ai,M,1 · · · Ai,M,C




∥∥∥∥∥∥∥

q

Sp




1/q

.

We will write (Sp(dim1, dim2), ℓ
q(dim3)) to make clear that we first penalize the singular values of

each 2D matrix arising from each position along the dim1 dimension, and then the ℓq norm is applied
to the remaining vector.

The proposed framework unifies several pre-existing definitions for vectorial TV regularization.
Table 1 gives an overview of all local vectorial TV methods proposed in the literature the authors are
aware of. Since many of these methods only involve either the isotropic or the anisotropic variant,
we complete the table by including the missing parts. Interestingly, there are cases where one can
imagine different versions due to an ambiguity of the permutation of the dimensions. We refer the
reader to [17] for a more detailed discussion on the literature of vectorial total variation methods.

3.1 Denoising Behaviour of Collaborative TV Regularization

The question about which TV methods work well depends on the characteristics of the data, so
we cannot expect one regularization to be the best choice for all types of images. This makes
the understanding of what prior hypothesis different collaborative norms are based on even more
important. To simplify, we will focus on what kind of color coupling is most suitable for certain
types of data.

Figure 1 shows the results for an image with independent color channels. In this case, the ℓ1,1,1

regularization is superior to the others because of penalizing each channel independently, although
the restored image provided by the ℓ2,1,1 norm is on the same footing (which makes sense since
the difference between both is weak). On the contrary, Figure 2 displays the performance of the
same collaborative norms on an almost black-and-white image. Since there is a strong inter-channel
correlation, the ℓ∞,1,1 regularization provides the best denoised image whereas the ℓ1,1,1 one exhibits
the strongest color artifacts. We can see that, although it performs not as well as ℓ∞,1,1, the (S1, ℓ1)
approach – which forces the gradient vectors of all channels to be parallel – almost suppresses all
color artifacts. Finally, Figure 3 shows the results on an image where we leave open if the colored
wave pattern is signal content or noise. We see that the ℓ1,1,1 regularization eliminates all noise from
constant regions but keeps the wave pattern. On the contrary, the ℓ∞,1,1 norm eliminates the colored
waves entirely. The regularization based on an ℓ2 channel coupling suppresses but does not eliminate
them. Therefore, we expect a color coupling with an ℓp norm to be stronger the larger p is.

4 Numerical Minimization

In this section, we present the primal-dual hybrid gradient (PDHG) method [12, 18, 37], a powerful
optimization algorithm that breaks complex problems into simple sub-steps. For a better readability,
we use the notations X = R

N×C and Y = R
N×M×C .
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Literature Continuous Formulation Our Framework

[4]
C∑

k=1

∫

Ω

√
(∂xuk(x, y))2 + (∂yuk(x, y))2 dx dy ℓ2,1,1(der, pix, col)

Anisotropic
variant

C∑

k=1

∫

Ω

(
|∂xuk(x, y)|+ |∂yuk(x, y)|

)
dx dy ℓ1,1,1(der, pix, col)

[8, 34]

∫

Ω

√√√√
C∑

k=1

((
∂xuk(x, y)

)2
+
(
∂yuk(x, y)

)2)
dx dy ℓ2,2,1(der, col, pix)

Anisotropic
variants

∫

Ω




√√√√
C∑

k=1

(∂xuk(x, y))2 +

√√√√
C∑

k=1

(∂yuk(x, y))2


 dx dy ℓ2,1,1(col, der, pix)

∫

Ω

√√√√
C∑

k=1

(
|∂xuk(x, y)|+ |∂yuk(x, y)|

)2
dx dy ℓ1,2,1(der, col, pix)

Strong
coupling

∫

Ω

(
max
1≤k≤C

|∂xuk(x, y)|+ max
1≤k≤C

|∂yuk(x, y)|
)

dx dy ℓ∞,1,1(col, der, pix)
∫

Ω

max
1≤k≤C

(
|∂xuk(x, y)|+ |∂yuk(x, y)|

)
dx dy ℓ1,∞,1(der, col, pix)

Isotropic
variants

∫

Ω

√(
max
1≤k≤C

|∂xuk(x, y)|
)2

+

(
max
1≤k≤C

|∂yuk(x, y)|
)2

dx dy ℓ∞,2,1(col, der, pix)
∫

Ω

max
1≤k≤C

√
(∂xu(x, y))

2 + (∂yu(x, y))
2 dx dy ℓ2,∞1(der, col, pix)

Supremum
variant

∫

Ω

(
max
1≤k≤C

(
max

{
|∂xuk(x, y)|, |∂yuk(x, y)|

}))
dx dy ℓ∞,∞,1(col, der, pix)

[34, 23]

∫

Ω

r∑

i=1

|σi (∇u(x, y))| dx dy (S1(col, der), ℓ1(pix))

Frobenius
norm

∫

Ω

√√√√
r∑

i=1

(σi (∇u(x, y)))2 dx dy (S2(col, der), ℓ1(pix))

[34, 19]

∫

Ω

max
1≤i≤r

σi (∇u(x, y)) dx dy (S∞(col, der), ℓ1(pix))

Table 1: Overview of the different vectorial TV approaches proposed in the literature as well as a
completion regarding their isotropic and anisotropic relatives.

4.1 The Primal-Dual Hybrid Gradient Method

The general convex minimization problem we are concerned with is

min
u∈X

G(u) + F (Du), (6)

where G : X → R and F : Y → R are proper convex lower-semicontinuous functionals, and
D : X → Y is the linear operator associated to the 3D structure of the gradient.

Given (u0,g0,q0) ∈ X × Y × Y and ū0 = u0 as initializations, the PDHG algorithm iteratively
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Clean Noisy ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix)

ℓ2,2,1(col, der, pix) ℓ∞,1,1(col, der, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 1: Denoising a synthetic image with totally uncorrelated channels. Observe that the TV
regularization that makes use of the ℓ1,1,1 norm is superior to the others because it penalizes each
color channel independently.

Clean Noisy ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix)

ℓ2,2,1(col, der, pix) ℓ∞,1,1(col, der, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 2: Denoising a synthetic image with high inter-channel correlation. Since the color channels
are highly correlated, the ℓ∞,1,1 norm provides the best denoised image contrary to the ℓ1,1,1 norm,
which exhibits the strongest color artifacts.

computes the solution of (6) by means of

un+1 = proxτnG
(
un − τnD

⊤qn
)
,

ūn+1 = un+1 +
(
un+1 − un

)
,

gn+1 = prox 1
σn

F

(
Dūn+1 +

1

σn

qn

)
,

qn+1 = qn + σn

(
Dūn+1 − gn+1

)
,

(7)
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Noisy ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ∞,1,1(col, der, pix)

Figure 3: Denoising a synthetic image where we leave open if the colored wave pattern is signal
content or noise. One observes that the ℓ1,1,1 norm keeps the colored waves but the ℓ∞,1,1 norm
eliminates them totally. In between both approaches, the ℓ2 norm suppresses but does not eliminate
the wave pattern.

where τn and σn are step-size parameters that can, for instance, be chosen fixed with τσ‖D‖2 ≤ 1 to
guarantee convergence. We refer the reader to [18, 10, 31] for more detailed information about the
algorithm as well as its connection to other first order methods. In subsection 4.4 we will discuss a
strategy for accelerating the above algorithm by choosing τ and σ adaptively.

4.2 Proximal Operator of the Data Term

By introducing collaborative total variation regularizations, the extension of the ROF model to color
images reads as follows

min
u∈X

λ

2
‖u− f‖22 + ‖Du‖~b,a, (8)

where f ∈ X is the noisy image and λ > 0 controls the trade-off between a good fit to f and a
(piecewise) smooth solution. Casting (8) in the form of (6), one obtains that G(u) = λ

2
‖u − f‖22 is

the data-fidelity term and F (Du) = ‖Du‖~b,a is the regularization term.

The proximity operator of G has a closed-form solution

û = proxτG(u) ⇔ û = argmin
v∈X

{
1

2
‖v − u‖22 + τ

λ

2
‖v − f‖22

}
⇔ û =

u+ τλf

1 + τλ
.

Therefore, the solution of un+1 = proxτnG
(
un − τnD

⊤qn
)
is given by

un+1 =
un + τn (div qn + λf)

1 + τnλ
, (9)

where the discrete divergence operator, div : Y → X, is defined in analogy with the continuous
setting as 〈−divq,u〉X = 〈q, Du〉Y .

4.3 Proximal Operators of Collaborative TV Regularizations

It is remarkable that all variants of different collaborative norms imposed on the gradient of the color
channels in (8) can be solved efficiently by the PDHG method (7). The only thing that changes when
changing the regularization term is the proximity operator of F .
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4.3.1 Proximity Operators of ℓp,q,r Norms

In the following, we use the colon to denote all elements along one dimension. For example, the ℓp

norm of A ∈ R
M×N×C with respect to its third dimension reads ‖Ai,j,:‖pp =

∑C
k=1 |Ai,j,k|p.

The ℓ1,1,1 norm. The proximity operator decouples in all variables and each problem just contains
an absolute value penalty. It is well known that the resulting proximity operator becomes

(
prox 1

σ
‖·‖1,1,1

(A)
)
i,j,k

= max

(
|Ai,j,k| −

1

σ
, 0

)
sign

(
Ai,j,k

)
.

The ℓ2,1,1 norm. The case of an inner ℓ2 coupling is also well known in the image processing litera-
ture and its proximity operator is often called (generalized) shrinkage. By a short computation
or via the application of [17, Theorem 7] we find

(
prox 1

σ
‖·‖2,1,1

(A)
)
i,j,k

= max

(
‖Ai,j,:‖2 −

1

σ
, 0

)
Ai,j,k

‖Ai,j,:‖2
.

The ℓ2,2,1 norm. Similarly to the previous case, the proximity operator of the ℓ2,2,1 norm is

(
prox 1

σ
‖·‖2,2,1

(A)
)
i,j,k

= max

(
‖Ai,:,:‖2,2 −

1

σ
, 0

)
Ai,j,k

‖Ai,:,:‖2,2
.

The ℓ∞,1,1 norm. Whenever the supremum norm is involved it is more convenient to use Moreau’s
identity (4) to express the proximity operator by the proximity operator of its dual, which
results in a projection onto the ℓ1 ball. We obtain

(
prox 1

σ
‖·‖∞,1,1

(A)
)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1≤1 (σ|Ai,j,:|)

)
i,j,k

.

where |Ai,j,:| denotes the component-wise absolute value of vector Ai,j:. Although the projection
onto the ℓ1 ball does not admit a closed form solution, several efficient algorithms have been
proposed in the literature and we refer the reader to [15] for an example.

The ℓ∞,∞,1 norm. Similarly to the previous norm, it follows that

(
prox 1

σ
‖·‖∞,∞,1

(A)
)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1,1≤1 (σ|Ai,:,:|)

)
i,j,k

.

with proj‖·‖1,1≤1 denoting the projection operator onto the unit ℓ1,1 ball.

The ℓ∞,2,1 norm. Analogously, the proximity operator of the ℓ∞,2,1 norm is

(
prox 1

σ
‖·‖∞,2,1

(A)
)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1,2≤1 (σ|Ai,:,:|)

)
i,j,k

.

where proj‖·‖1,2≤1 denotes the projection operator onto the unit ℓ1,2 ball. Opposed to the

previous case, a projection onto the unit ℓ1,2 ball is much more expensive to compute than an
ℓ1,1 ball projection and requires the solution of a convex optimization problem.
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The ℓ2,∞,1 norm. If the order of norms of the previous case is switched such that the inner norm is
ℓ2, we can use [17, Theorem 7] to obtain the proximity operator as follows

(
prox 1

σ
‖·‖2,∞,1

(A)
)
i,j,k

=
Ai,j,k

‖Ai,j,:‖2
max

(
‖Ai,j,:‖2 −

1

σ
vi,j, 0

)
,

where

vi,j =
(
proj‖·‖1≤1

(
σ
(
‖Ai,j,:‖2

)
j

))
i,j
.

In the above formula,
(
‖Ai,j,:‖2

)
j
stands for the vector obtained by stacking ‖Ai,j,:‖2 for all

j ∈ {1, . . . ,M}. Once more, prox‖·‖1≤1 is merely the projection onto the ℓ1 ball.

4.3.2 Proximity Operators of (Sp, ℓq) Norms

Let us finally discuss the proximity operators of the (S1(col, der), ℓ1(pix)) and (S∞(col, der), ℓ1(pix))
norms. For this purpose, define the submatrix

Bi :=




Ai,1,1 · · · Ai,1,C
...

. . .
...

Ai,M,1 · · · Ai,M,C


 ,

for each i ∈ {1, . . . , N}. Since the considered regularizations have an outer ℓ1 norm, the computation
of their proximity operators decouples at each pixel. We are thus left with a problem of the form

min
Z∈RC×M

1

2
‖Z − B‖22 + α‖Z‖Sp , (10)

where B := BT
i ∈ R

C×M . Let UΣ0V
T be the singular value decomposition of B, with U and V being

orthonormal and Σ0 being diagonal. Since Sp norms are invariant with respect to multiplication with
orthonormal matrices, our optimization problem is equivalent to

min
Z∈RC×M

1

2
‖UTZV − Σ0‖22 + α‖UTZV ‖Sp .

Instead of minimizing over all Z, we can introduce a new variable Σ := UTZV , minimize over all
Σ, and set Ẑ = UΣ̂V T after finding the minimizing argument Σ̂. Note that U and V are invertible,
such that we are still minimizing over the full matrix space. The resulting optimization problem is

min
Σ∈Rr×r

1

2
‖Σ− Σ0‖22 + α‖Σ‖Sp ,

where r is the number of nonzero singular values of B. The argument that minimizes the above
expression has to be a diagonal matrix due to Mirsky’s inequality [27]. In this case, the Sp norm
coincides with the ℓp norm of the diagonal, which is the reason why we can finally rewrite (10) as

min
s∈Rr

1

2
‖s− s0‖22 + α‖s‖p, (11)

where s0 and s denote the diagonals of Σ0 and Σ respectively.
We would like to emphasize that it is not necessary to compute U in the singular value decom-

position of B. Indeed, let Σ̂ be the diagonal matrix which has the argument ŝ that solves (11) as its
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diagonal. From the singular value decomposition one has that BV = UΣ0, and the commutation of
diagonal matrices leads to the equalities

BV Σ̂ = UΣ0Σ̂ = UΣ̂Σ0.

Let Σ†
0 be the pseudo-inverse matrix of Σ0, which is given by

(
Σ†

0

)
i,j

=





1

(Σ0)i,i
if i = j and (s0)i,i 6= 0,

0 otherwise.

Multiplying each righthand side of the relation BV Σ̂ = UΣ̂Σ0 by Σ†
0, one obtains

BV Σ̂Σ†
0 = UΣ̂.

Finally, since Σ̂ has at most as many nonzero diagonal entries as Σ0, we conclude that the solution
to (10) is

BV Σ̂Σ†
0V

T = UΣ̂V T = Ẑ. (12)

Considering the left hand side of (12), we can see that only the matrices V and Σ0 are needed for
solving the original optimization problem. Let us explain in detail how to compute them for usual
3 × 2 matrices as arising from applying (Sp, ℓq) norms to RGB color images. It is well known that
the characteristic polynomial of the square symmetric matrix BTB ∈ R

2×2 can be written as

σ2 − tr(BTB)σ + det(BTB) = 0,

where tr(BTB) and det(BTB) denote the trace and determinant of BTB, respectively. Therefore,
the singular values of B are explicitly given by2

σ1 =

√
tr(BTB) + ∆

2
and σ2 =

√
tr(BTB)−∆

2
,

with ∆ =
√

tr2(BTB)− 4 det(BTB). On the other hand, from the relation (BTB)vi = σivi one
easily deduces that the eigenvectors of BTB, displayed as columns of matrix V , are

V =





(
σ1 − (BTB)22 σ2 − (BTB)22

(BTB)21 (BTB)21

)
, if (BTB)21 6= 0,

(
1 0
0 1

)
, if (BTB)21 = 0 and (BTB)11 ≥ (BTB)22,

(
0 1
1 0

)
, if (BTB)21 = 0 and (BTB)11 < (BTB)22.

4.4 Adaptive Step-Size Parameters

A drawback of the PHDG scheme is that the condition τσ‖D‖2 ≤ 1 has to be met to ensure
convergence. For complicated linear operators D the quantity ‖D‖ can be difficult to estimate
tightly. Additionally, the convergence speed heavily depends on the particular choices of τ and σ.

2Recall that the singular values of a real matrix B ∈ R
m×n are the square roots of the eigenvalues of the square

symmetric matrix BTB ∈ R
n×n.
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Therefore, we incorporate the idea of Goldstein et al. in [20], in which the step-sizes are chosen
adaptively leading to a faster convergence of the algorithm and making the computation of ‖D‖
unnecessary. For the sake of completeness, let us summarize the adaptive choice proposed in [20].

Using Moreau’s identity (4), the optimality conditions of the algorithm given in (7) are

1

τn

(
un − un+1

)
−D⊤qn ∈ ∂G(un+1),

1

σn

(
qn − qn+1

)
+Dūn+1 ∈ ∂F ∗(qn+1).

After some straightforward computations, one has

1

τn

(
un − un+1

)
−D⊤

(
qn − qn+1

)
∈ ∂G(un+1) +D⊤qn+1,

1

σn

(
qn − qn+1

)
−D

(
un − un+1

)
∈ ∂F ∗(qn+1)−Dun+1.

(13)

Considering that the two expressions on the lefthand side being equal to zero yields the optimality
condition to the original problem (6), we define the following sequence of primal and dual residuals

Rp
n+1 :=

1

τn

(
un − un+1

)
−D⊤

(
qn − qn+1

)
,

Rd
n+1 :=

1

σn

(
qn − qn+1

)
−D

(
un − un+1

)
.

Accordingly, the PDHG scheme (7) converges if

lim
n→∞

(
‖Rp

n+1‖21 + ‖Rd
n+1‖21

)
= 0

and, thus, one would like to choose τn and σn so that the residuals are as small as possible. Note
that there is a trade-off between small primal residuals Rp

n+1 and small dual residuals Rd
n+1. Indeed,

a large value of τn leads to a strong minimization in u but a slow maximization in w, resulting in a
small primal residual at the cost of a large dual residual. On the contrary, a small value of τn leads
to a small dual residual at the cost of a large primal residual. By assuming that Rp

n+1 and Rd
n+1

increase and decrease monotonically with τn and σn, Goldstein et al. [20] suggested to enforce the
residual balancing principle, that is,

‖Rp
n+1‖1 ≃ ‖Rd

n+1‖1.
Residual balancing methods work by adapting parameters after each iteration to approximately
maintain this equality. In order to control the adaptivity level of the algorithm, a sequence of
parameters {αn} is introduced, with αn ∈ (0, 1) for all n ≥ 0. If the primal and dual residuals differ
by a factor greater than ∆, with ∆ > 1, then the step-size related to the larger residual is increased
by a factor of (1− αn)

−1 and the step-size related to the smaller residual is decreased by a factor of
(1−αn), (for image intensity values in [0, 255]). If both residuals are comparable, then the step-sizes
remain the same. Every time the step-size parameters are updated to fit the balancing principle, we
define αn+1 = ηαn, for some η < 1, so that the adaptivity decreases during the iterations.

Finally, the convergence of the algorithm is guaranteed if the following “backtracking”condition
is met at each iteration

bn+1 =
2τnσn 〈D (un+1 − un) ,qn+1 − qn〉

γσn‖un+1 − un‖2 + γτn‖qn+1 − qn‖2 ≤ 1, (14)

where γ ∈ (0, 1) is a constant. If the step-sizes are too large and, consequently, the above condition
does not hold, τn and σn are decreased by a factor βbn+1, with β ∈ (0, 1) being a constant. It is also
shown in [20] that condition (14) is only activated a finite number of times.
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5 Implementation Details

For practical purposes, we assume that an image channel is given by a matrix of size Nw × Nh

rearranged from left to right and from top to bottom into a vector of size N . In this setting,
u(x, y) shall denote the value uyNw+x in the image vector. Furthermore, we have that M = 2, since
the horizontal and vertical spatial derivatives are used, and C = 3, since the red, green and blue
channels are considered.

5.1 Discrete Gradient and Divergence Operators

Consider an RGB image as u = (u1,u2,u3) ∈ R
N×3, with uk = (u1,k, . . . , uN,k)

⊤ ∈ R
N . We define the

discrete gradient operatorDu ∈ R
N×2×3 via forward differences. Therefore, the horizontal derivatives

are computed as

(Du)i,1,k =

{
ui+1,k − ui,k if i 6≡ 0 mod Nw,
0 otherwise,

(15)

and the vertical derivatives are given by

(Du)i,2,k =

{
ui+Nw,k − ui,k if i 6≡ 0 mod Nh,
0 otherwise,

(16)

for each channel k ∈ {1, 2, 3} and at each pixel i ∈ {1, . . . , N}. According to the previous definitions,
the discrete divergence divq ∈ R

N×3 is explicitly given by

(divq)i,k =





qi,1,k if i ≡ 1 mod Nw,
−qi−1,1,k if i ≡ 0 mod Nw,
qi,1,k − qi−1,1,k otherwise,

+





qi,2,k if i ≡ 1 mod Nh,
−qi−Nw,2,k if i ≡ 0 mod Nh,
qi,2,k − qi−Nw,2,k otherwise,

where q ∈ R
N×2×3 is the dual variable.

5.2 PDHG Algorithm

Algorithm 1 displays the pseudo-code of the proposed backtracking PDHG method. The adaptive
procedure described in Section 4.4 requires several parameters, which are fixed to ∆ = 1.5, η = 0.95,
α0 = 0.2, β = 0.95, and γ = 0.75. The primal and dual step-sizes are initialized with τ0 = σ0 = 0.5.
As a stopping criterion we used a tolerance value ε for the average primal plus dual residuals per pixel
(which are computed for the step-size adaptation anyways). In any case, we stop the algorithm after
500 iterations even if the tolerance was not reached. The pseudo-code for the step-size adaptation
function adaptSteps is given as Algorithm 2. Note that its use is optional and Algorithm 1 works
with fixed step-sizes as well. The implementation of the proximity operators proxG and proxF is
detailed in the next subsection.

5.3 Implementation of Proximal Operators

The proximity operator of the data fidelity-term is given by (9) or Algorithm 3 respectively. On
the other hand, the implementation of the proximal mappings related to the norms described in
Section 4.3 are detailed in Algorithms 4–11. One simply replaces proxF in Algorithm 1 by the
desired proximity operator. In Algorithms 12–13 we additionally show the numerical schemes we
propose for computing the projection of a non-negative vector onto the unit ball of the ℓ1 and
ℓ1,2 norms, respectively. We used an alternating directions method of multipliers to solve the ℓ1,2

projection subproblem. For the sake of readability, we have moved all algorithmic descriptions from
this subsection to Appendix A.
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Algorithm 1: PDHG Scheme for Color TV Denoising Using Collaborative Norms

input : Noisy image f ∈ R
N×3, trade-off parameter λ > 0, tolerance ε > 0, proximal operator

function proxF, step-size adaptation function adaptSteps, and parameters (τ0, σ0, α0).
output: Denoised image u ∈ R

N×3.

(u0, ū0,g0,q0, n)← (0,u0,0,0, 0) Initializations

while not stopping criterion do

un+1 ← proxG (un + τndivq
n, f , λ, τn) Optimize for u

ūn+1 ← un+1 + (un+1 − un) Over-relaxation on u

gn+1 ← proxF

(
Dūn+1 +

1

σn

qn, σn

)
Optimize for g

qn+1 ← qn + σn (Dūn+1 − gn+1) Update dual variable q

Adapt step-sizes

(un+1,gn+1,qn+1, τn+1, σn+1, αn+1)←
adaptSteps(un,un+1,gn,gn+1,qn,qn+1, τn, σn, αn)n← n+ 1

Algorithm 2: adaptSteps (un,un+1,gn,gn+1,qn,qn+1, τn, σn, αn) – Step-sizes Adaptation

input : Current iterates (un+1,gn+1,qn+1), previous iterates (un,gn,qn), current step-sizes
(τn, σn), and adaptation parameter αn. The parameters (ν,∆, α0, β) are prefixed.

output: Adapted iterates (un+1,gn+1,qn+1) and adapted parameters (τn+1, σn+1, αn+1).

Rp
n+1 ←

∥∥∥∥
1

τn
(un − un+1) + div (qn − qn+1)

∥∥∥∥
1

Primal residual

Rd
n+1 ←

∥∥∥∥
1

σn

(qn − qn+1)−D (un − un+1)

∥∥∥∥
1

Dual residual

bn+1 ←
2τnσn〈D (un+1 − un) ,qn+1 − qn〉

γσn‖un+1 − un‖22 + γτn‖qn+1 − qn‖22
Backtracking condition

if bn+1 > 1 then Decrease step-sizes to fit balancing principle

(τn+1, σn+1, αn+1)←
(
βτnbn+1,

βσn

bn+1

, α0

)

(un+1,gn+1,qn+1)← (un,gn,qn)

else if Rp
n+1 > ∆Rd

n+1 then Increase primal and decrease dual step-sizes

(τn+1, σn+1, αn+1)←
(

τn
1− αn

, σn(1− αn), ηαn

)

else if Rp
n+1 <

1
∆
Rd

n+1 then Decrease primal and increase dual step-sizes

(τn+1, σn+1, αn+1)←
(
τn(1− αn),

σn

1− αn

, ηαn

)

else Keep primal and dual step-sizes

(τn+1, σn+1, αn+1)← (τn, σn, αn)
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6 Discussion on Alternative Minimization Methods

Although our numerical experiments, the online code, as well as the experiments in the companion
SIAM paper [17] were done with the PDHG backtracking algorithm described in the previous sub-
section, there are several other minimization techniques which could be more suitable to a particular
type of TV regularized problem. While the PDHG backtracking approach is extremely versatile as it
obtains good runtimes on a wide variety of problems without changing anything but the proximity op-
erators, a particular structure of the optimization problem such as the strongly convex collaborative
TV denoising problem make accelerated schemes attractive.

To provide the reader with some intuition of possible gains of using minimization methods that
exploit the strong convexity of the problem, we conduct a small comparison in MATLAB. Besides the
PDHG scheme with fixed stepsizes and the PDHG backtracking scheme (PDHG-BT), we additionally
compare to the following methods:

1. The fast iterative shrinkage thresholding algorithm FISTA [5], which is based on ideas of
Nesterov in [28], on the dual TV denoising problem. Instead of the original stepsize rule
proposed in [5], we used a variant which was for instance considered in [11] and led to faster
convergence in our numerical experiments. The updates are conducted as follows

qn+1 = argmin
q

1

2

∥∥∥∥q−
(
q̄n − τD

(
D⊤q̄n − 1

λ
f

))∥∥∥∥
2

2

+ F ∗(q),

q̄n+1 = qn+1 +
n− 1

n+ 2

(
qn+1 − qn

)
.

The projections corresponding to the proximity operators of F ∗ can easily be obtained from
our description of the proximity operators of F using Moreau’s identity (4).

2. An acceleration of the PDHG algorithm for strongly convex problems given in [12], which
iterative adapts the step sizes and the amount of extrapolation. Since pseudocode for this
variant is provided in [12, Algorithm 2], we do not restate the algorithm here.

3. The alternating directions method of multipliers (ADMM), see for instance [7] for an overview.
Similar to the way (7) states the PDHG algorithm in primal form, one can derive the ADMM
algorithm in primal-dual form as

un = argmin
u

G(u) +
σ

2

∥∥∥∥D
(
u− un−1

)
+

1

σ
q̄n

∥∥∥∥
2

2

,

qn = argmin
q

1

2

∥∥q− qn−1 + σDun
∥∥2
2
+ σF ∗(q),

q̄n+1 = −2qn + qn−1,

(17)

where, in our case, G(u) = λ
2
‖u− f‖22 is the data fidelity term.

4. Motivated by the primal-dual form of the ADMM algorithm in (17), it seems natural to use
exactly the same strongly convex acceleration scheme as in [12, Algorithm 2] not only for the
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PDHG, but also for the ADMM method. The latter yields the algorithm

un = argmin
u

{
G(u) +

σn

2

∥∥∥∥Du−Dun−1 +
1

σn

q̄n

∥∥∥∥
2

2

}
,

qn = argmin
q

1

2

∥∥q− qn−1 + σnDun
∥∥2
2
+ σnF

∗(q),

θn =
1√

1 + 2γ 1
σn

, σn+1 =
σn

θn
,

q̄n+1 = −qn − θn
(
qn − qn−1

)
.

(18)

Although the idea for the acceleration scheme (18) is straight-forward for the ADMM algo-
rithm written in its primal-dual form (17), we are not aware of a publication investigating
algorithm (18) above. Upon submission of our manuscript, we were informed through private
communication that the same algorithm will also appear in the overview paper by Chambolle
and Pock [13], which is in preparation and will contain a more detailed analysis of the conver-
gence properties. Acceleration techniques for linearized ADMM algorithms have recently been
investigated in [30]. We will refer to algorithm (18) as ADMM-ACC.

Table 2 shows the results of our small runtime comparison. As we can see, the accelerated ADMM
scheme requires the lowest number of iterations in all test scenarios. Depending on the difference
in the number of iterations and the complexity of the proximity operator either the accelerated
ADMM or the accelerated primal-dual scheme led to the fastest runtime. Additionally, we can see
that the acceleration schemes clearly outperform the two primal-dual algorithms that do not exploit
the strong convexity. Nevertheless, the backtracking approach leads to significantly fewer iterations
than the standard PDHG scheme while being equally versatile. In summary, we used and described
the PDHG backtracking approach detailed in this paper because a great variety of different imaging
problems (for instance the ones we considered in [17]) can be solved without changing the algorithm
or adapting the step sizes. Considering Table 2 the price we pay for this flexibility are suboptimal
convergence speeds on problems such as TV denoising.

7 Image Denoising Results

In this section, we present a detailed performance comparison of several collaborative norms for color
image denoising. For our experiments, we used 8−bit reference images and all results were saved in
integer values relatives to the intensity range [0, 255]. Furthermore, we ran the algorithm until the
error was below ε = 10−5 or the maximum number of 500 iterations was reached. In what follows,
all norms are given by ℓp,q,r(col, der, pix) or (Sp(col, der), ℓq(pix)), except ℓ2,∞,1(der, col, pix).

7.1 Influence of the Balancing Parameter

As a first step, we want to determine the general behaviour of each collaborative TV regularization
with respect to tuning the balancing parameter λ. For these tests, we artificially added zero-mean
Gaussian noise of standard deviation 25 to the first noise-free color image from Figure 8.

Figure 4 shows the plots of the peak signal-to-noise ratio (PSNR)3 each method achieves for
certain values of λ. One observes that the peaks of the PSNR curves of the regularizations using the

3The peak signal-to-noise ratio (PSNR) is the ratio between the reference signal and the distortion signal in an
image, given in decibels. The higher the PSNR, the closer the distorted image is to the original one. Its value is defined

as PSNR = 10 log10

(
255

2

MSE

)
, where MSE is the mean-squared error between the original and the distorted images.
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CTV λ PDHG PDHG-BT PDHG-ACC ADMM FISTA ADMM-ACC

ℓ1,1,1

3
iter. 3211 907 1080 209 1299 183

time 17.37 13.21 5.84 4.19 7.86 3.61

6
iter. 3215 764 559 196 685 124

time 18.07 11.09 3.11 4.02 4.11 2.45

12
iter. 2620 529 299 159 369 85

time 14.23 7.65 1.62 3.20 2.25 1.67

ℓ2,2,1

3
iter. 1133 404 236 88 508 75

time 7.26 6.09 1.51 1.89 3.65 1.62

6
iter. 876 253 135 62 271 49

time 5.63 3.86 0.87 1.30 2.00 1.03

12
iter. 430 122 63 35 116 28

time 2.76 1.86 0.40 0.74 0.84 0.59

(S1, ℓ1)

3
iter. 3601 867 436 221 1094 132

time 132.37 39.80 16.04 11.24 41.20 6.73

6
iter. 2932 557 227 179 600 89

time 107.82 25.47 8.36 9.11 22.55 4.50

12
iter. 1695 307 109 104 289 53

time 62.28 14.02 3.99 5.26 10.84 2.66

Table 2: Runtime comparison on the minimization of (8) using MATLAB. We ran the alternating
directions method of multipliers (ADMM) algorithm for 5000 iterations and computed the energy of
the final result. We used the latter as a baseline and determined after how many iterations (iter) and
after what runtime in seconds (time) each of the algorithms got within 0.01% of the baseline energy.
The comparison refers to solving the TV denoising problem with varying data fidelity parameters
λ and varying types of CTV regularizations. The algorithms involved in the comparison are the
primal-dual (PDHG) method from [12] with σ = 2 and τ = 1/18, the accelerated PDHG method
from [12] for strongly convex problems (PDHG-ACC), the PDHG method with backtracking from [20]
(PDHG-BT), the ADMM with a Lagrange parameter of 0.03, the fast gradient projection algorithm
with heavy-ball scheme (FISTA), and the proposed accelerated ADMM scheme (ADMM-ACC).

ℓ∞,1,1, (S1, ℓ1), ℓ2,1,1, and ℓ∞,2,1 norms achieve the highest values. Interestingly, although the ℓ1,1,1

norm shows one of the lowest performances in terms of the maximal PSNR, its corresponding curve
seems to drop slower as one overestimates λ.

To illustrate how the choice of the balancing parameter influences visually the final result, Figure 5
exhibits the performance of the ℓ∞,1,1 norm for several values of λ. When λ is too small, noise is
completely removed but the image becomes over-smoothed and, thus, significant information is lost
– see the result with λ = 0.01. On the contrary, if λ is chosen too large it makes the influence of the
regularization term insignificant and the method is not able to hide color artifacts efficiently – see
the result with λ = 0.1. The optimal value of the balancing parameter in terms of PSNR, which in
this case is λ = 0.04, compromises between removing noise and preserving signal content.

7.2 Runtime Comparison among CTV Methods

In this subsection, we compare the computational cost of all CTV methods described in the imple-
mentation details. For these tests, we added zero-mean Gaussian noise of standard deviation 30 to
the twelfth image from Figure 6. The tolerance was fixed to 5 · 10−3 since we experimentally checked
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Figure 4: Comparison of CTV methods using different values of the trade-off parameter λ. The
peaks of the curves of ℓ∞,1,1, (S1, ℓ1), ℓ2,1,1 and ℓ∞,2,1 norms achieve the highest values. Although
ℓ1,1,1 norm shows one of the lowest performances in terms of the maximal PSNR, its curve drop is
slower as one overestimates λ.

Noisy, PSNR = 20.74 λ = 0.1, PSNR = 24.92 λ = 0.05, PSNR = 27.62

λ = 0.04, PSNR = 27.93 λ = 0.03, PSNR = 27.55 λ = 0.01, PSNR = 24.09

Figure 5: Results from ℓ∞,1,1 norm. For λ = 0.01, the noise disappears but at the cost of over-
smoothing. If λ = 0.1, the method is not able to hide color artifacts. The optimal value of λ in terms
of the PSNR (λ = 0.04) gets a compromise between removing noise and preserving signal content.
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CTV ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)

CPU 8.939 8.221 7.685 15.931 244.017 19.785 13.749 11.344 10.947
PSNR 30.14 31.00 30.92 31.13 30.91 30.71 30.97 31.05 30.46

λ 0.048 0.034 0.026 0.025 0.019 0.015 0.018 0.031 0.024

Table 3: For a 768×512 Kodak image (the twelfth from Figure 6), the running times in seconds of the
CTV regularizations are displayed. All methods were run on a laptop with one core Processor 2.5 GHz
Intel Core i5 with 4 GB 1600 MHz DDR3 RAM. Note that ℓ2,2,1 is the most efficient regularization,
whereas ℓ∞,2,1 involves high computational costs because of the projection onto the unit ball of the
ℓ1,2 norm. Although the ℓ1 projection also requires an iterative process, the computational cost of
the ℓ∞,1,1 regularization is not far from that of (S1, ℓ1) but still providing better denoising results in
terms of the PSNR.

that the best PSNR values were reached at this point in all cases. All methods were run with the
optimal trade-off parameters on a laptop with one core Processor 2.5 GHz Intel Core i5 with 4 GB
1600 MHz DDR3 RAM.

The running times as well as the obtained PSNR values are displayed in Table 3. It is important
to make clear that, for each method, the computational cost decreases as λ increases because the
solution is required to be closer and closer to the initial data. We observe that ℓ2,2,1, ℓ2,1,1, and
ℓ1,1,1 are the most efficient methods, although they do not provide the best PSNR values. On the
other hand, we realize that the projection onto the unit ball of the ℓ1,2 norm needed by the ℓ∞,2,1

regularization is computationally expensive, which does not happen in such considerable way with
the projections onto the unit balls of the ℓ1 and ℓ1,1 norms involved in the methods using the ℓ∞,1,1

and ℓ∞,∞,1 collaborative norms, respectively. The computational costs of the Schatten−p norms are
midway between the most efficient methods and those coupling the color channels with the help of
the ℓ∞ norm.

7.3 Performance Comparison Using Several Image Databases

We now provide an extensive performance comparison of all CTV methods on different image col-
lections with different inherent properties. In each table of this subsection we determined the value
of the parameter λ at which the highest PSNR was reached on the first image and then used the
same parameter on the others. To create the noisy images, we artificially added zero-mean Gaussian
noise of standard deviation 15 to the reference noise-free images. On the other hand, we used noise
of standard deviation 25 in all figures to make the differences among regularizations more apparent.
For a better readability, all figures have been moved to Appendix B.

7.3.1 Kodak Database

Images in the Kodak collection4 have few color saturated regions, but are challenging due to fine
scale details close to the Nyquist frequency. The mean saturation of these images is 15 and the
mean value of the gradient of the chromatic components is 1.75, computed in the YUV color space.
Figure 6 displays all Kodak images used in our tests.

Table 4 displays the PSNR values for each CTV regularization obtained on the Kodak image
data set. As we can see, the ℓ∞,1,1 norm is superior for 10 out of the 12 examples. The large
inter-channel correlation of Kodak images explains why a strong channel coupling, which encourages
jumps that occur in all color coordinates, performs best. Along the same lines, the ℓ∞,2,1 norm
behaves well, in fact, it gives the best numerical result on the fifth and twelfth images. Not only

4http://r0k.us/graphics/kodak
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Kodak Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
1 24.78 28.14 29.07 28.51 29.90 29.19 28.60 29.07 29.20 27.96
2 24.76 28.54 29.48 29.22 30.18 29.87 29.36 29.66 29.83 28.62
3 24.80 29.20 30.15 29.81 30.85 30.51 29.84 30.25 30.33 29.24
4 24.68 30.92 32.22 31.80 32.73 32.71 31.54 32.13 32.32 31.01
5 24.71 31.50 32.75 32.41 33.13 33.30 32.10 32.64 32.81 31.65
6 24.72 27.36 28.19 27.98 29.01 28.64 28.29 28.52 28.59 27.47
7 24.71 29.46 30.39 30.12 30.86 30.71 29.99 30.35 30.57 29.53
8 24.96 31.08 32.10 31.84 32.41 32.40 31.62 32.02 32.20 31.22
9 25.68 30.92 31.74 31.54 32.10 32.00 31.49 31.78 31.85 31.11
10 24.66 29.75 30.81 30.49 31.48 31.29 30.52 30.94 31.05 29.84
11 24.66 30.14 31.10 30.84 31.49 31.46 30.68 31.07 31.22 30.25
12 24.71 31.85 33.15 32.84 33.45 33.69 32.47 33.03 33.25 32.05

Avg. 24.82 29.91 30.93 30.62 31.47 31.31 30.54 30.96 31.10 30.00

Table 4: PSNR denoising results on Kodak dataset (Figure 6).

the ℓ∞,1,1 outperforming in general ℓ∞,2,1, but also ℓ2,1,1 beating ℓ2,2,1 leads to the conclusion that
anisotropy is better suited than isotropy for this dataset. Table 4 also reveals that ℓ∞,2,1(col, der, pix)
provides better results than ℓ2,∞,1(der, col, pix), which reinforces the importance of the order of the
dimensions when penalizing the gradient of the image. Furthermore, the ℓ1,1,1 norm shows one of the
worst performances since it neither couples the colors nor the derivatives. In our experiments, the
Schatten (S∞, ℓ1) norm does not work very well either. It seems that imposing jumps of different color
channels to point into the same direction can more effectively be enforced by the convex relaxation
(S1, ℓ1) for minimizing the rank of the derivative matrix, than having a single direction in the dual
variable as in the (S∞, ℓ1) approach.

In general, a low performance in the PSNR also entails a rejection by a human visual inspection.
In spite of this, any numerical criterion cannot fully replace human evaluation, which still is an
important criterion for judging the performance of image denoising algorithms. Figure 11 illustrates
a comparative visual quality assessment of the optimal results obtained on parts of the first Kodak
image. We see that most of tested TV regularizations lead to significant color artifacts. For instance,
note that many spots remain around the graffiti or on the window frames. Only the method based on
the ℓ∞,1,1 norm succeeds in hiding most of the remaining noise from the human observer. Although
(S1, ℓ1) shows nice denoising properties, a derivative matrix which has two vectors being equal to
zero also has rank one and, as a consequence, colored edges are not actively suppressed.

7.3.2 IMAX Database

The IMAX database [24] has many more saturated colors and edges separating colored regions than
Kodak. Contrary to the previous case, the mean saturation is 30 while the mean value of the gradient
of the chromatic components is 6.21. Figure 7 shows all images from IMAX collection used here.

Table 5 shows that the order of the regularizations from best to worst performances in terms of the
PSNR changes considerably with respect to the Kodak collection. Images in the IMAX dataset have
lower channel-correlation and, thus, methods based on a strong channel coupling are not expected
to be the best choice in this case. Because of the Euclidean norm being clearly weaker than the
supremum norm, ℓ2,1,1 and ℓ2,2,1 outperform ℓ∞,1,1 and ℓ∞,2,1, which gave the best results on Kodak
images instead. One also realizes that the method based on the (S1, ℓ1) norm is superior for all tested
images. Therefore, imposing the gradients of different channels to point in the same direction benefits
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IMAX Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
1 25.32 29.29 29.83 29.64 29.74 29.52 28.97 29.25 29.98 29.16
2 24.90 27.80 28.41 28.26 28.43 28.32 27.80 28.02 28.60 27.75
3 25.46 30.44 30.96 30.84 30.78 30.66 30.16 30.39 31.17 30.33
4 25.14 29.26 29.91 29.75 29.95 29.82 29.30 29.54 30.13 29.22
5 25.62 31.11 31.46 31.40 30.97 30.84 30.33 30.55 31.64 30.89
6 25.01 29.83 30.49 30.32 30.34 30.13 29.55 29.84 30.74 29.68
7 25.21 30.96 31.63 31.48 31.41 31.21 30.66 30.98 31.80 30.87
8 25.34 31.98 32.72 32.60 32.50 32.30 31.78 32.15 32.88 31.99
9 25.21 32.54 33.36 33.32 33.08 32.93 32.50 32.85 33.53 32.70
10 24.69 32.26 33.06 33.02 32.70 32.54 32.10 32.49 33.20 32.37
11 25.55 30.21 30.85 30.75 30.87 30.73 30.35 30.59 30.98 30.29
12 25.21 30.58 31.18 30.99 31.11 30.87 30.36 30.69 31.30 30.50

Avg. 25.22 30.52 31.16 31.03 30.99 30.82 30.32 30.61 31.33 30.48

Table 5: PSNR denoising results on IMAX dataset (Figure 7).

from images having many edges separating saturated colored regions. Although the performance of
the ℓ1,1,1 norm increases with respect to the Kodak set, the improvement is not enough to become
competitive. Finally, the regularizations that make use of the ℓ∞,∞,1 and (S∞, ℓ1) norms are not
efficient on this collection either.

The optimal result each method gave on parts of the first IMAX image is shown in Figure 12.
Note that all regularizations with an ℓ∞ channel coupling lead to color artifacts in smooth (but
saturated) areas, such as the green flowers, and around image features. The same conclusions can
be drawn from the result given by the (S∞, ℓ1) norm. In particular, the above mentioned methods
fail to recover the underlying true image at edges separating saturated colored regions. On the other
hand, methods based on the (S1, ℓ1) and ℓ2,1,1 norms provide the best visual performances since the
contours are almost noise-free and look clear. Interestingly, the result of the ℓ1,1,1 norm is relatively
close to the two previous ones although the denoised image suffers from over-smoothing in some
parts.

7.3.3 IPOL Database

In this subsection we compare the performance of CTV methods on a set of noise-free images (the
real standard deviation of the inherent noise is less than one) introduced by Colom and Buades [14]
for IPOL. All RGB pictures were taken with a Canon EOS 30D reflex camera of scenes under good
lighting conditions and with a low ISO level. Figure 8 shows the 12 images used in our tests. Unlike
the Kodak and IMAX collections, there are no common properties among these images that allow
us to preset the requirements a regularization method should satisfy for a good performance on it.

The PSNR values of the denoised images are given in Table 6. As expected, there is no regulariza-
tion being the best choice for all images, although (S1, ℓ1) provides the best average followed closely
by ℓ∞,1,1 and ℓ∞,2,1. We observe that ℓ∞,2,1 is superior for images with main smooth regions, since
a strong channel coupling with isotropic diffusion is well suited. The performance of all methods on
images with outstanding vegetation is not satisfactory due to the general inability of distinguishing
texture and noise. Finally, ℓ1,1,1, (S∞, ℓ1) and ℓ∞,∞,1 norms give the worst numerical results.

Figure 13 shows the optimal results for the fourth IPOL image. For a better comparative visual
quality assessment, we have zoomed in on the lower left corner of the dice. First, we observe that
the ℓ∞,∞,1 and (S∞, ℓ1) norms do not perform well because, not only strong color artifacts remain
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IPOL Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
1 25.01 29.86 30.61 30.27 30.81 30.53 29.84 30.18 30.77 29.71
2 25.04 30.51 31.22 30.90 31.26 31.07 30.32 30.68 31.34 30.33
3 25.11 30.43 31.32 31.20 31.62 31.56 30.99 31.25 31.68 30.62
4 24.99 34.91 36.06 36.01 35.96 36.61 35.30 35.77 36.22 35.36
5 25.63 29.68 30.18 30.02 30.20 29.97 29.58 29.76 30.42 29.55
6 25.16 27.12 28.02 27.85 28.54 28.35 27.95 28.17 28.34 27.29
7 25.06 33.69 34.71 34.45 34.76 34.90 33.88 34.35 34.80 33.85
8 25.78 33.15 33.76 33.73 33.57 33.67 33.10 33.33 33.90 33.33
9 24.62 33.65 34.71 34.42 34.87 35.07 33.96 34.47 34.80 33.80
10 24.83 26.45 27.19 27.09 27.32 27.29 26.79 26.99 27.37 26.57
11 24.90 29.52 30.32 30.07 30.72 30.51 29.94 30.24 30.50 29.56
12 25.26 31.49 32.21 31.92 32.25 32.08 31.40 31.75 32.31 31.40

Avg. 25.12 30.87 31.69 31.49 31.82 31.80 31.09 31.41 31.87 30.95

Table 6: PSNR denoising results on IPOL dataset (Figure 8).

inside the white dot, but also the edges have been clearly damaged during the restoration process.
Furthermore, ℓ1,1,1, ℓ2,1,1 and ℓ2,2,1 are not able to hide noise effectively. Although the remaining
methods perform similarly, the underlying image being piecewise smooth favours the regularizations
based on a ℓ2 derivative coupling, such as ℓ∞,2,1 and ℓ2,∞,1. Finally, the (S1, ℓ1) norm provides one
of the best visual results, particularly at image edges.

7.3.4 ARRI Database

The ARRI collection5 [2] contains high-resolution color image sequences captured with a professional
digital cinema camera in raw format. For our experiments, we extracted clipped pictures of 750×750
pixels and transformed them into 8−bit images. Figure 9 displays the set of images we used.

The results displayed in Table 7 support the claim that the question which regularization is
better for suppressing noise depends on the properties of the image being considered. In general, the
performance of all methods on this collection is numerically superior to the three previous databases.
Furthermore, the ℓ1,1,1 norm providing the worst PSNR values indicates that images in Figure 9 are
inter-channel correlated to varying degrees. In general, we see that (S1, ℓ1), ℓ∞,1,1 and ℓ∞,2,1 lead to
the best numerical results. It is interesting to remark that ℓ∞,1,1 and ℓ∞,2,1 are beaten by ℓ2,2,1 on
images taken under difficult lighting conditions like the number seven.

It is well known that a drawback of the total variation is the staircase effect [29], a tendency to
produce flat regions separated by artificial edges. To a greater or lesser extent, this phenomenon is
observed for all methods at the contour of the dice in Figure 13, but can also be seen in the warning
signs in Figure 14, which shows the optimal denoising results for the first ARRI image. Note that
while the staircase effect is least visible for (S1, ℓ1) regularization, the best noise suppression results
are obtained by the ℓ∞,1,1 norm. In particular, even the border of the exclamation mark shows little
color artifacts.

7.3.5 BSDS Database

We finally present experiments on the BSDS database, a superset of 481 × 321 RGB pictures of a
wide variety of natural scenes introduced in [25] and further extended in [3] for image segmentation.

5ftp://ftp.arri.de/
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ARRI Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
1 24.85 30.93 31.79 31.61 31.94 31.79 31.29 31.63 31.90 31.03
2 24.79 33.26 34.42 34.06 34.55 34.40 33.54 34.08 34.43 33.33
3 24.84 33.89 34.81 34.83 34.94 35.23 34.69 34.89 34.99 34.33
4 25.23 34.61 35.40 35.40 35.43 35.59 35.16 35.37 35.49 35.01
5 24.66 33.43 34.18 34.12 34.13 34.24 33.76 34.04 34.20 33.70
6 24.74 29.33 30.23 30.11 30.35 30.27 29.80 30.10 30.46 29.53
7 25.21 33.17 33.81 33.68 33.56 33.50 32.95 33.28 33.81 33.25
8 24.65 31.30 32.19 31.82 32.36 31.95 31.25 31.75 32.18 31.18

Avg. 24.87 32.49 33.35 33.20 33.41 33.37 32.81 33.14 33.43 32.67

Table 7: PSNR denoising results on ARRI dataset (Figure 9).

BSDS Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
1 24.88 29.70 30.56 30.41 30.82 30.72 30.17 30.46 30.80 29.85
2 25.02 30.01 30.98 30.52 31.54 31.03 30.44 30.87 31.12 29.95
3 25.04 30.26 31.03 30.86 31.43 31.26 30.78 31.04 31.24 30.41
4 24.96 32.59 33.73 33.66 33.99 34.01 33.36 33.72 34.00 32.93
5 24.72 30.16 30.88 30.75 31.18 31.07 30.62 30.87 31.01 30.32
6 25.03 29.24 30.19 29.77 30.89 30.36 29.84 30.22 30.37 29.27
7 24.65 29.12 30.11 29.74 30.88 30.44 29.81 30.22 30.32 29.15
8 24.71 30.57 31.62 31.51 32.11 32.09 31.44 31.75 31.92 30.82
9 24.70 31.05 31.94 31.75 32.11 32.01 31.32 31.69 32.04 31.20
10 25.42 31.19 31.93 31.87 31.90 31.86 31.34 31.57 32.10 31.37
11 24.72 28.06 29.06 28.92 30.02 29.69 29.48 29.60 29.64 28.36
12 24.64 30.82 31.86 31.58 32.19 31.97 31.20 31.67 32.03 30.89

Avg. 24.87 30.23 31.16 30.95 31.59 31.38 30.82 31.14 31.38 30.38

Table 8: PSNR denoising results on BSDS dataset (Figure 10).

Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
Avg. 24.98 30.80 31.66 31.46 31.86 31.74 31.12 31.45 31.82 30.90

Table 9: Average of PSNR values over all databases.

Figure 10 shows the twelve BSDS images we tested.

The numerical results displayed in Table 8 show that all CTV regularizations perform similar to
the Kodak database. In this regard, the ℓ∞,1,1 norm is significantly superior for 10 out of the 12
images, which indicates that the color channels of pictures in Figure 10 are highly correlated. On
images 4 and 10, the ℓ∞,2,1 and (S1, ℓ1) regularizations obtain the highest PSNR values, respectively.
In the first case, the isotropic diffusion is favoured by prevailing smooth areas, whereas the nuclear
norm has a better performance on images having color saturated regions.

In Figure 15, one can assess the visual quality of the optimal results obtained on parts of the
third BSDS image. Note that the regularization making use of the ℓ∞,1,1 norm is the most successful
in suppressing noise. In particular, it removes most of the colored edges between the tire and the
wheel rim, which clearly remain in all others results to a greater or lesser extent.
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7.3.6 Average over Databases

We finally display the PSNR average over all databases in Table 9. As expected, the regularizations
using either the ℓ∞,1,1 norm or the (S1, ℓ1) norm yield the best numerical results. Accordingly,
we conclude that strong inter-channel coupling and the modeling assumption of the jumps in all
channels being parallel give the best chances for denoising color image. If the type of images to be
reconstructed is known, one can choose a regularization that is tailored to the particular type of color
and derivative correlation.

7.4 Performance Comparison Using Several Noise Levels

The goal of this subsection is to evaluate the ability of each vectorial TV model for denoising color
images corrupted with several noise levels. In order not to give advantage to a particular regular-
ization due to the inherent properties of the data, the study was led on five natural images from
different collections. More concretely, we used the last picture from each of the previous databases.
We optimized the value of the balancing parameter for each test, so that one expects smaller values
of λ as the noise level increases.

Table 10 shows the PSNR values of the denoised images provided by each regularization for
several input noise standard deviations. By and large, we realize that the methods based on ℓ∞,1,1,
(S1, ℓ1), ℓ2,1,1 and ℓ∞,2,1 norms outperform all other approaches. Interestingly, one observes that the
superiority of a strong channel coupling becomes even more evident as the noise level increases. In
this regard, note that the ℓ∞,1,1 norm gives the best numerical results for the IPOL, ARRI and BSDS
collections, whereas the ℓ∞,2,1 norm does so for the Kodak database. However, the less inter-channel
correlation and the more saturated colored regions of images in the IMAX collection make the ℓ∞

channel coupling unsuitable for denoising this type of data. In this case, the (S1, ℓ1) norm or even
the ℓ2,1,1 norm provide better results. Furthermore, the nuclear norm performs best for almost all
images in case the noise level is small.

Finally, Figure 16 in Appendix B shows the same results but considering noise with standard
deviation 50. We observe that strong color artifacts appear on the parrot cheek in all results except
for the ℓ∞,1,1 norm. In fact, this method is visually superior to the regularization based on the ℓ∞,2,1

norm which, interestingly, gave the best PSNR value.

8 Cartoon + Texture Decomposition Results

We present now examples of decomposing a color image f into a cartoon u part and a textural v
part, f = u + v, by using different collaborative sparsity enforcing norms. For that purpose, the
cartoon part is defined as the solution to the minimization problem (8). Then, the textural part is
simply computed as the difference between the original data and its cartoon part. For visualization
purposes, v is linearly rescaled from [−20, 20] to [0, 255]. Differences outside this range are saturated
to 0 and 255 respectively. The algorithm parameters and the stop criterion are the same as in the
image denoising case. All figures from this section have been moved to Appendix B.

8.1 Influence of the Balancing Parameter

As described previously, the balancing parameter λ defines the contributions of the regularization and
fidelity terms to the total energy given in (8). Since the cartoon part is computed as the minimizer
of (8), the value of λ determines the minimal collaborative total variation which u is allowed to
have. In the variational model we are dealing with, the CTV of u is an increasing function of
λ. Consequently, one expects that less and less amount of textural details remain in the cartoon
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Noise standard deviation 5
Image Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
Kodak 34.19 39.02 39.83 39.70 40.02 39.94 39.39 39.68 40.09 39.17
IMAX 34.38 36.92 37.33 37.11 37.22 37.03 36.49 36.74 37.50 36.68
IPOL 34.34 37.90 38.53 38.16 38.41 38.15 37.43 37.76 38.69 37.64
ARRI 34.14 37.41 38.14 37.71 38.01 37.66 36.94 37.34 38.17 37.13
BSDS 34.16 37.41 38.23 37.90 38.60 38.30 37.63 38.01 38.45 37.39
Avg. 34.24 37.73 38.41 38.12 38.45 38.22 37.58 37.91 38.58 37.60

Noise standard deviation 10
Image Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
Kodak 28.21 35.52 36.43 36.32 36.60 36.55 35.99 36.31 36.68 35.76
IMAX 28.58 32.87 33.42 33.20 33.39 33.19 32.60 32.91 33.56 32.71
IPOL 28.58 33.83 34.54 34.21 34.53 34.30 33.56 33.94 34.67 33.66
ARRI 28.15 33.42 34.28 33.86 34.27 33.93 33.16 33.66 34.28 33.21
BSDS 28.14 33.23 34.21 33.87 34.56 34.27 33.53 33.99 34.39 33.26
Avg. 28.33 33.77 34.58 34.29 34.67 34.45 33.77 34.16 34.72 33.72

Noise standard deviation 20
Image Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
Kodak 22.25 32.12 33.04 32.96 33.19 33.19 32.68 32.97 33.26 32.43
IMAX 22.82 29.23 29.80 29.62 29.78 29.62 29.11 29.41 29.89 29.20
IPOL 22.93 29.90 30.57 30.32 30.63 30.45 29.90 30.22 30.65 29.86
ARRI 22.18 29.87 30.77 30.44 30.89 30.57 29.96 30.44 30.75 29.83
BSDS 22.16 29.37 30.43 30.12 30.77 30.51 29.81 30.28 30.57 29.46
Avg. 22.47 30.10 30.92 30.69 31.05 30.87 30.29 30.66 31.02 30.16

Noise standard deviation 30
Image Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
Kodak 18.88 30.13 30.99 30.91 31.12 31.16 30.69 30.95 31.16 30.44
IMAX 19.49 27.09 27.60 27.46 27.58 27.45 27.03 27.30 27.66 27.11
IPOL 19.72 27.49 28.08 27.90 28.16 28.02 27.62 27.86 28.13 27.54
ARRI 18.73 27.93 28.83 28.57 29.01 28.67 28.22 28.64 28.81 28.03
BSDS 18.69 27.21 28.24 28.00 28.54 28.34 27.73 28.15 28.34 27.38
Avg. 19.10 27.97 28.75 28.57 28.88 28.73 28.26 28.58 28.82 28.10

Noise standard deviation 50
Image Noisy ℓ1,1,1 ℓ2,1,1 ℓ2,2,1 ℓ∞,1,1 ℓ∞,2,1 ℓ∞,∞,1 ℓ2,∞,1 (S1, ℓ1) (S∞, ℓ1)
Kodak 14.89 27.30 27.97 27.89 28.06 28.11 27.75 27.94 28.05 27.57
IMAX 15.40 23.97 24.37 24.26 24.34 24.26 23.97 24.16 24.39 24.03
IPOL 15.77 24.04 24.48 24.36 24.55 24.47 24.22 24.37 24.49 24.14
ARRI 14.59 25.48 26.26 26.10 26.47 26.19 25.90 26.19 26.26 25.71
BSDS 14.43 24.68 25.53 25.37 25.77 25.75 25.21 25.50 25.61 24.92
Avg. 15.02 25.09 25.72 25.60 25.84 25.76 25.41 25.63 25.76 25.27

Table 10: For different noise levels, PSNR results on the last image from each dataset.
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component of the decomposition as the balancing parameter decreases. Due to the total variation
being able to recover sharp discontinuities, the geometry of the input data will be mainly preserved
in the cartoon part instead.

There is no unique decomposition of an image into texture and cartoon. A texture seen at close
range is just a set of well-distinguished objects. For this reason, it can be kept in the cartoon part
for large values of λ, and passes over to the textural part for lower values. The balancing parameter
in the algorithm is therefore crucial, and must be chosen by the user. To illustrate how this choice
influences visually the results, Figure 17 exhibits the performance of the ℓ1,1,1 norm for several values
of λ. Note that textural details, such as the tiles on the tablecloth, progressively transfer to the
cartoon part as the balancing parameter decreases.

8.2 Performance Comparison among Collaborative Norms

We finally display a visual comparison of several CTV methods for cartoon and texture decomposi-
tion. Since the contribution of the regularization term to the global energy depends on the choice of
the collaborative norm, we estimated the values of λ in such a way that the same BV norms for the
grayscale cartoon parts, computed as Pi =

1
C

∑
k ui,k, were obtained

‖P‖BV = ‖DP‖1 =
N∑

i=1

√
((DP )i,1)

2 + ((DP )i,2)
2, (19)

where (DP )i,1 and (DP )i,2 are computed analogously to (15)-(16). More concretely, we ran the
algorithm by using the ℓ1,1,1 norm for several λ’s and picked up the value for which the best visual
result was obtained. In the remaining regularizations, λ is chosen such that the TV value of the
grayscale cartoon parts according to (19) is the same for all regularizations.

Figures 18 and 19 display the cartoon and textural parts, respectively, of an image where almost
everything is texture. As a consequence, the cartoon components in Figure 18 only contain smoothed
versions of the original image, and all details move to the textural parts in Figure 19. In such cases,
large CTV regularizations or, equivalently, small values of the balancing parameter λ, are needed
to remove the whole texture. We further observe in Figure 18 that all methods with an ℓ∞ channel
coupling provide cartoon components which turn greyish; see, for instance, the second arch to the
left. This fact matches the theoretical analysis provided in [17], where we state that the supremum
norm leads to the strongest inter-channel correlation and makes the most prior assumptions. On the
other hand, ℓ∞,1,1 and ℓ2,1,1 perform best near edges since the contours, such as the upper edge of
the roof, in the cartoon parts are straighter and look clearer than in all other cases.

Figures 20 and 21 respectively show the cartoon and textural parts provided by each collaborative
TV on a cartoon-like image. Because of the data being almost piecewise-smooth and without texture,
a smaller regularization is needed to obtain visually convincing results and, thus, one can choose a
large value of λ. Observe that there is no significant differences between the original image and the
cartoon parts. Finally, it is worth emphasizing that all collaborative norms using an ℓ∞ channel
coupling are better suited for removing noise from the cartoon components. As a consequence, the
associated textural parts contain more oscillations due to noise.

9 Conclusions

In this paper, we provided an in-depth analysis of different vectorial total variation regularizations
obtained by replacing the usual TV with a collaborative norm that penalizes the three-dimensional
structure of the discrete gradient of the underlying image. We used pixels, derivatives and color
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channels as the corresponding dimensions. We considered several ℓp,q,r and Schatten (Sp, ℓq) norms
as penalizations and discussed in detail the numerical implementation of their proximity operators.
For the computation of the solution of the minimization problems involving the proposed TV based
models, the primal-dual hybrid gradient algorithm was used with adaptive step-size parameters
for faster convergence. We also displayed a detailed performance comparison of CTV denoising
methods by using images from different databases (thus, images with different inherent properties)
and different amounts of noise. In our experiments, we exhibited the superiority of the regularizations
based on the ℓ∞,1,1 and (S1, ℓ1) norms for a strong suppression of color artifacts. Finally, the proposed
CTV-L2 models are used for cartoon and texture decomposition of color images.

10 OnLine Demo

An online demo of Algorithm 1 is available at the IPOL web page of this article. The ANSI C source
code (documented) used in this online demo is also available from the web page.

The user chooses one of the proposed collaborative norms to be used in the CTV–L2 model. In
general, the inputs are a color image and a value of λ > 0. One can upload his/her own image or
use any of the images available on the demo page. The algorithm can be run in two different ways:

• Upload a noise-free color image, add Gaussian noise and then denoise it. In this case, the
noise standard deviation is also required for creating the noisy image from the uploaded one.
The outputs are the ground-truth uploaded image, the noisy image, the denoised image, the
difference image between the ground truth and the result, the difference image between the
noisy image and the result, the RMSE and the PSNR values of both noisy and denoised images.
In the above cases, the difference images are linearly rescaled from [−4σ, 4σ] to [0, 255], where
σ denotes the noise standard deviation.

• Apply directly one of the proposed CTV methods to a noisy or a noise-free color image. In
the noisy case, the result is a denoised version of the input data, and the outputs are the noisy
uploaded image, the denoised image, and the difference image between the noisy image and
the result. In the noise-free case, the result is a cartoon + texture decomposition of the input
data, and the outputs are the noise-free uploaded image, the cartoon part (that is, the solution
of the minimization of the CTV–L2 energy) and the textural part (computed as the difference
image between the uploaded data and the cartoon part). In the above cases, the difference
images are linearly rescaled from [−20, 20] to [0, 255].

Finally, let us emphasize that the algorithm tolerance is fixed to 10−4 and the maximum number
of iterations to 250 for the online demo.

A Algorithmic Description of Proximity Operators

Algorithm 3: proxG (u, f , λ, τ) – Proximity Operator of Fidelity Term

input : Proximal argument u ∈ R
N×3, noisy vector f ∈ R

N×3, trade-off parameter λ > 0,
step-size parameter τ > 0.

output: Proximal vector û = proxτG(u) ∈ R
N×3.

for i← 1 to N do

for k ← 1 to 3 do

ûi,k ←
ui,k + τλfi,k

1 + λτ
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Algorithm 4: proxL111 (q, σ) – Proximity Operator of ℓ1,1,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖1,1,1

(q) ∈ R
N×2×3.

for i← 1 to N do

for j ← 1 to 2 do

for k ← 1 to 3 do

q̂i,j,k ← sign (qi,j,k) ·max
(
|qi,j,k| − 1

σ
, 0
)

Algorithm 5: proxL211 (q, σ) – Proximity Operator of ℓ2,1,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖2,1,1

(q) ∈ R
N×2×3.

for i← 1 to N do

for j ← 1 to 2 do

̺←
√
q2i,j,1 + q2i,j,2 + q2i,j,3

if ̺ > 10−8 then µ← 1
̺
·max

(
̺− 1

σ
, 0
)

else µ← 0

for k ← 1 to 3 do
q̂i,j,k ← µ · qi,j,k

Algorithm 6: proxL221 (q, σ) – Proximity Operator of ℓ2,2,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖2,2,1

(q) ∈ R
N×2×3.

for i← 1 to N do

̺←
√
q2i,1,1 + q2i,1,2 + q2i,1,3 + q2i,2,1 + q2i,2,2 + q2i,2,3

if ̺ > 10−8 then µ← 1
̺
·max

(
̺− 1

σ
, 0
)

else µ← 0

for k ← 1 to 3 do

for j ← 1 to 2 do

q̂i,j,k ← µ · qi,j,k

Algorithm 7: proxLinf11 (q, σ) – Proximity Operator of ℓ∞,1,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖∞,1,1

(q) ∈ R
N×2×3.

for i← 1 to N do

for j ← 1 to 2 do

v← (v1, v2, v3)
for k ← 1 to 3 do

vk ← σ|qi,j,k|
v← L1Projection(v)
for k ← 1 to 3 do

q̂i,j,k ← qi,j,k − 1
σ
· sign (qi,j,k) · vk
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Algorithm 8: proxLinfinf1 (q, σ) – Proximity Operator of ℓ∞,∞,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖∞,∞,1

(q) ∈ R
N×2×3.

for i← 1 to N do

v← (v1, v2, v3, v4, v5, v6)
for k ← 1 to 3 do

for j ← 1 to 2 do

v2k+j−2 ← σ|qi,j,k|

v← L1Projection(v)
for k ← 1 to 3 do

for j ← 1 to 2 do

q̂i,j,k ← qi,j,k − 1
σ
· sign (qi,j,k) · v2k+j−2

Algorithm 9: proxLinf21 (q, σ) – Proximity Operator of ℓ∞,2,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖∞,2,1

(q) ∈ R
N×2×3.

for i← 1 to N do

for j ← 1 to 2 do

vj ← (vj1, v
j
2, v

j
3)

for k ← 1 to 3 do

vjk ← σ|qi,j,k|

(v1,v2)← L12Projection (v1,v2)
for k ← 1 to 3 do

for j ← 1 to 2 do

q̂i,j,k ← qi,j,k − 1
σ
· sign (qi,j,k) · vjk

Algorithm 10: proxL2inf1 (q, σ) – Proximity Operator of ℓ2,∞,1(col, der, pix) Norm

input : Proximal argument q ∈ R
N×2×3, step-size parameter σ > 0.

output: Proximal vector q̂ = prox 1
σ
‖·‖2,∞,1

(q) ∈ R
N×2×3.

for i← 1 to N do

̺← (̺1, ̺2, ̺3)
v← (v1, v2, v3)
for k ← 1 to 3 do

̺k ←
√
q2i,1,k + q2i,2,k

vk ← σ · ̺k
v← L1Projection(v)
for k ← 1 to 3 do

if ̺k > 10−8 then µ← 1
̺k
·max

(
̺k − 1

σ
vk, 0

)
else µ← 0

for j ← 1 to 2 do

q̂i,j,k ← µ · qi,j,k
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Algorithm 11: proxSchattenL1 (p,q, σ) – Proximity Operator of (Sp(col, der), ℓ1(pix)) Norm

input : Proximal argument q ∈ R
N×2×3, index of Schatten norm p ∈ {1,∞}, step-size

parameter σ > 0.
output: Proximal vector q̂ = prox 1

σ
(Sp,ℓ1)(q) ∈ R

N×2×3.

for i← 1 to N do

B ←




qi,1,1 qi,2,1
qi,1,2 qi,2,2
qi,1,3 qi,2,3




M ← BTB ∈ R
2×2

(T, Z)← (M11 +M22,M11M22 −M12M21)

det←
√

max
(
T 2

4
− Z, 0

)

(eig1, eig2)←
(
max

(
T
2
+ det, 0

)
,max

(
T
2
− det, 0

))

(s1, s2)←
(√

eig1,
√
eig2

)

if |M12| > 10−8 then

(γ0, γ1, γ2)← (M12, eig1 −M22, eig2 −M22)

(µ1, µ2)←
(√

γ2
0 + γ2

1 ,
√

γ2
0 + γ2

2

)

V ←
( γ1

µ1

γ2
µ2

γ0
µ1

γ0
µ2

)

else

if M11 > M22 then

V ←
(

1 0
0 1

)

else

V ←
(

0 1
1 0

)

if p = 1 then (S1(col, der), ℓ1(pix)) norm

(ŝ1, ŝ2)←
(
max

(
s1 − 1

σ
, 0
)
,max

(
s2 − 1

σ
, 0
))

else if p =∞ then (S∞(col, der), ℓ1(pix)) norm

v← (v1, v2)
(v1, v2)← (σ · s1, σ · s2)
v← L1Projection(v)

(ŝ1, ŝ2)←
(
s1 − 1

σ
· v1, s2 − 1

σ
· v2
)

if s1 > 10−8 then ŝ1 ← ŝ1
s1

if s2 > 10−8 then ŝ2 ← ŝ2
s2

Σ̂Σ†
0 ←

(
ŝ1 0
0 ŝ2

)

Ẑ ← BV Σ̂Σ†
0V

T ∈ R
3×2

for k ← 1 to 3 do

for j ← 1 to 2 do

q̂i,j,k ← ẐT
k,j
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Algorithm 12: L1projection(v) – Projection onto ℓ1 Norm Ball

input : Input vector v ∈ R
m
≥0.

output: Projected vector v = proj‖·‖1≤1(v).

(s, n, α)← (∞, 0, 0)
while s > 1 do

(s, n)← (0, 0)
for i← 1 to m do

vi ← max (vi − α, 0)
s← s+ |vi|
if vi 6= 0 then n← n+ 1

if n > 0 then α← 1
n
(s− 1) else s← 0

Algorithm 13: L12projection(v1,v2) – Projection onto ℓ1,2 Norm Ball

input : Input vector (v1,v2) ∈ R
m
≥0 × R

m
≥0.

output: Projected vector (v1,v2) = proj‖·‖1,2≤1 (v
1,v2).

b1,b2,p1,p2, z1, z2 ∈ R
m

(α1, α2, β1, β2)← (0, 0, 0, 0)
for i← 1 to m do

(b1i , b
2
i )← (0, 0)

(p1i , p
2
i )← (v1i , v

2
i )

(α1, α2)← (α1 + p1i , α2 + p2i )

for n← 1 to 100 do

(δ1, δ2)← (α1 + β1, α2 + β2)

∆←
√
(δ1)2 + (δ2)2

if ∆ > 1 then (δ1, δ2)←
(

δ1

∆
, δ

2

∆

)

for i← 1 to m do

(z1i , z
2
i )← (max (v1i + b1i , 0) ,max (v2i + b2i , 0))

for i1 ← 1 to m do

(γ1, γ2)← (0, 0)
for i2 ← 1 to m do

if i1 = i2 then α← 0.4 else α← −0.1
(γ1, γ2)←

(
γ1 + α

(
σp1i2 + δ1 − β1 + z1i2 − b1i2

)
, γ2 + α

(
σp2i2 + δ2 − β2 + z2i2 − b2i2

))
(
v1i1 , v

2
i1

)
← (γ1, γ2)

(α1, α2)← (0, 0)
for i← 1 to m do

(α1, α2)← (α1 + v1i , α
2 + v2i )

(β1, β2)← (β1 + α1 − δ1, β2 + α2 − δ2)
for i← 1 to m do

(b1i , b
2
i )← (b1i + v1i − z1i , b

2
i + v2i − z2i )
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B Figures

Kodak 1 Kodak 2 Kodak 3 Kodak 4 Kodak 5 Kodak 6

Kodak 7 Kodak 8 Kodak 9 Kodak 10 Kodak 11 Kodak 12

Figure 6: Kodak dataset.

IMAX 1 IMAX 2 IMAX 3 IMAX 4 IMAX 5 IMAX 6

IMAX 7 IMAX 8 IMAX 9 IMAX 10 IMAX 11 IMAX 12

Figure 7: IMAX dataset.

IPOL 1 IPOL 2 IPOL 3 IPOL 4 IPOL 5 IPOL 6

IPOL 7 IPOL 8 IPOL 9 IPOL 10 IPOL 11 IPOL 12

Figure 8: IPOL dataset.
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ARRI 1 ARRI 2 ARRI 3 ARRI 4

ARRI 5 ARRI 6 ARRI 7 ARRI 8

Figure 9: ARRI dataset.

BSDS 1 BSDS 2 BSDS 3 BSDS 4 BSDS 5 BSDS 6

BSDS 7 BSDS 8 BSDS 9 BSDS 10 BSDS 11 BSDS 12

Figure 10: BSDS dataset.
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Clean Noisy

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 11: Optimal results on the first Kodak image, which was corrupted with noise of s.d. 25.
Note that almost all regularizations are not able to suppress color artifacts around the graffiti or on
the window frames. Only the ℓ∞,1,1 norm succeeds in removing most of the noise.
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Clean Noisy

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 12: Optimal results on the first IMAX image, which was corrupted with noise of s.d. 25.
All methods with an ℓ∞ channel coupling fail to remove noise not only at edges separating colored
regions but also in smooth areas such as the green flowers. The (S1, ℓ1) and ℓ2,1,1 norms perform the
best, closely followed by ℓ1,1,1.
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Clean Noisy

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,2(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 13: Optimal results on the fourth IPOL image, which was corrupted with noise of s.d. 25.
Note that ℓ∞,∞,1 and (S∞, ℓ1) norms perform the poorest since strong artifacts remain inside and
around the white dot. Among the best performances, the ℓ∞,2,1 and ℓ2,∞,1 norms beat the ℓ∞,1,1 norm
favoured by the underlying image being piecewise smooth. Finally, (S1, ℓ1) is the best denoising
method close to edges because of separating saturated colored regions.
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Clean Noisy

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ell∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 14: Optimal results on the first ARRI image, which was corrupted with noise of s.d. 25.
The staircase effect appears around the warning sign in all denoised images, the (S1, ℓ1) norm being
the only one that gives a convincing result. Regarding the suppression of noise, ℓ∞,1,1 is the most
successful in hiding color artifacts as one can see, for instance, bordering the exclamation mark.
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Clean Noisy

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 15: Optimal results on the third BSDS image, which was corrupted with noise of s.d. 25.
Note that the ℓ∞,1,1 norm provides the most pleasing result since it actively suppresses color edges
between the tire and the wheel rim.
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Clean Noisy

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 16: Optimal results on the last Kodak image, which was corrupted with noise of s.d. 50.
We observe that strong color artifacts remain on the parrot cheek in all results except for the ℓ∞,1,1

norm. In fact, this method is visually superior to the regularization based on the ℓ∞,2,1 norm which,
on the contrary, gave the biggest PSNR value in Table 10.
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Barbara image

Cartoon, λ = 0.075 Texture, λ = 0.075

Cartoon, λ = 0.05 Texture, λ = 0.05

Cartoon, λ = 0.025 Texture, λ = 0.025

Figure 17: Cartoon + texture decomposition obtained from the CTV–L2 model (8) with ℓ1,1,1 norm.
Note, for instance, that the tiles on the tablecloth progressively vanish in the cartoon part when λ
decreases, that is, when there is more regularization.

66



On the Implementation of Collaborative TV Regularization: Application to Cartoon+Texture Decomposition

Garden image

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 18: For each collaborative norm, cartoon components of the Garden image which almost
consists of high frequencies due to texture. See the text for an analysis of these results.
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Garden image

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 19: For each collaborative norm, textural components of the Garden image which almost
consists of high frequencies due to texture. See the text for an analysis of these results.
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Dolphin image

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 20: For each collaborative norm, cartoon components of the Dolphin image which is already
cartoon-like. See the text for an analysis of these results.
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Dolphin image

ℓ1,1,1(col, der, pix) ℓ2,1,1(col, der, pix) ℓ2,2,1(col, der, pix)

ℓ∞,1,1(col, der, pix) ℓ∞,2,1(col, der, pix) ℓ∞,∞,1(col, der, pix)

ℓ2,∞,1(der, col, pix) (S1(col, der), ℓ1(pix)) (S∞(col, der), ℓ1(pix))

Figure 21: For each collaborative norm, textural components of the Dolphin image which is already
cartoon-like. See the text for an analysis of these results.
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