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Abstract

This paper presents a method to be used in psychophysical experiments to compare directly
visual perception to an a contrario algorithm, on a straight patterns detection task. The method
is composed of two parts. The first part consists in building a stimulus, namely an array of
oriented elements, in which an alignment is present with variable salience. The second part
focuses on a detection algorithm, based on the a contrario theory, which is designed to predict
which alignment will be considered as the most salient in a given stimulus.

Source Code

The source code associated to this manuscript (written in Matlab) and an online demo are
available from the web page of this article1.

Keywords: human and computer vision; a contrario detection

1 Introduction

Since the emergence of the field of Computer Vision [18] about fifty years ago there have been
many attempts at formalizing vision theories and especially the one formulated by the Gestalt school
of psychology. Its members, Wertheimer, Köhler, Koffka, Kanizsa among others [28, 11, 5, 19, 10],
developed from the twenties to the eighties an original modus operandi, leading to the conclusion that
the first steps of visual perception are based on a reduced set of geometrical grouping laws [26, 27].
These laws, also called Gestalts, describe the configurations in which most human observers can’t
help interpreting different elements as one shape or group. Figure 1 illustrates the laws of proximity,
symmetry and good continuation.

Desolneux et al. [4] designed the a contrario theory as one of the attempts to provide mathematical
foundations to these laws. Several properties of the a contrario framework argue in favor of its
suitability for visual perception modeling.

First, it applies Attneave’s principle, stating that we do not perceive any structure in white
noise [1]. Computer vision algorithms based on the a contrario theory, like for example the Line
Segment Detector [7, 8], typically avoid detections in noise. This idea is also consistent with the
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Symmetry

No grouping

Proximity

Good continuation Vs Symmetry Good continuation

Figure 1: Illustration of some of the grouping laws defined by the Gestalt school of psychology. The
left hand image, adapted from [21], shows how proximity and symmetry forces us to group dots and
lines two by two. The right hand drawing is a figure from [9], which we interpret as three smooth
lines because of the good continuation grouping law. The central image, adapted from [10], illustrates
relationships between grouping laws when several of them occur simultaneously. In this case, in spite
of the two symmetrical shapes, we can’t help seeing two asymmetrical shapes with more regular
contours.

more general non-accidentalness principle, introduced by Witkin, Tenenbaum and Lowe [14, 29, 30],
and of great importance in the study of perception. This principle states that spatial relations are
perceptually relevant when their accidental occurrence is unlikely. Therefore, in accordance with
Attneave’s statement, these meaningful spatial relations should not appear by chance in a random
image of noise.

Another strength of the a contrario theory is that it allows the design of parameterless detection
algorithms. These make as few assumptions as needed to adapt automatically to a large variety
of inputs. Similarly, our visual system is able to perform equally well in very different conditions,
without the need to re-learn, each time, priors on the world.

To link the Gestaltist qualitative description of perceptual grouping laws to a mathematical model,
a quantitative gap must be bridged. Human perceptual behavior has been the subject of quantita-
tive experimentation since the times of Fechner, the founder of Psychophysics. This relatively new
science investigates the relationship between the stimulus intensity and the perceived sensation [24].
Concerning visual perception, psychophysical studies have added quantitative measurements to the
qualitative observations made by the Gestaltists. Among them, one finds experiments investigating
the so called contour2 integration phenomenon [6]. In particular, the role of the Gestaltic good con-
tinuation grouping law (Figure 1), which can be rephrased in Palmer’s words: “All else being equal,
elements that can be seen as smooth continuations of each other tend to be grouped together” [22,
p. 259].

In this paper, we build on a method introduced in the early 90s [6, 12] and still used in the study
of good continuation [13, 20, 15, 16, 25, 23]. It consists in embedding discrete contours in a cluttered
background of oriented elements, called Gabor patches, and measuring the ability of human observers
to perceive such contours, as a function of their characteristics. Here, we focus on a particular case
of good continuation, namely alignments of Gabor patches, like the left hand image in Figure 2.

A result that is common to the previously mentioned experiments, and illustrated in Figure 2,
is that the visual system is good at detecting smooth paths formed by elements that are roughly
oriented like the local tangent of the contour. These studies also reported decreasing detection

2The word contour is used differently in computer vision and human vision science. It is commonly used in the
psychophysics literature to refer to linear structures, tested as targets for visual grouping.
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performance when contours were deviating from this ideal configuration. An important step towards
the understanding of the mechanisms underlying these observations is the definition of a model that
could explain and predict these results obtained experimentally. This paper describes a methodology
adapted to address that issue.

Figure 2: Illustration of the perception of alignments in arrays of Gabor patches. The displayed
elements have the same coordinates in all three images. In the left hand image, 10 elements are
aligned and have the same orientation as their line, whereas the other elements are randomly oriented.
In the right hand image, all elements have random orientations, even the 10 elements that appear
aligned on the left hand image. The central image only shows the coordinates of the elements,
without any orientation. An alignment is perceptible only in the left hand image, where the aligned
elements have the same orientation as their line.

In the first part, we present an algorithm to generate stimuli suited to test the perception of
alignments in different conditions. This generation algorithm complies with several requirements.
As in Figure 2, in a generated stimulus an alignment should be perceptible only thanks to the orien-
tations of the elements composing it. It should be almost impossible to see without the orientation
information, like in the central image of Figure 2, or when the orientations of the aligned elements are
unconstrained, like in the right hand image. Furthermore, the algorithm should allow a great variety
of stimuli. In particular, we want to test the effect observed in Figure 2 with different quantities of
elements per image, several numbers of aligned elements, and in intermediate orientation conditions,
that is, ranging from totally constrained orientations for the aligned elements (left hand image) to
completely random orientations (right hand image).

In the second part, we describe a detection algorithm based on the a contrario theory, designed to
detect alignments in the latter stimuli. More precisely, this algorithm relies on the non-accidentalness
principle to predict whether a candidate alignment is perceptually meaningful. When the target
alignment is detectable for human observers, the algorithm should detect it as well. Otherwise, it
should prefer another structure in the background.

2 Generation Algorithm

The algorithm first sets the coordinates of the elements in the image, and then assigns them their
orientations. Whereas this last step is straightforward (see Section 2.5), the first one is more technical
and is detailed in Sections 2.1- 2.4. The idea is to place randomly, in a square image, a number N of
elements, n of which are aligned, and so that the image is filled homogeneously, without clusters and
large empty regions. In short, we do so by first placing n elements on a line and regularly spaced
by a distance da, and then filling the background with N −n random elements respecting a minimal
distance db from each other and from the aligned elements.
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2.1 Distances between Points

We first need to set the minimal distance between two elements, which we will also take as the minimal
distance from an element to an edge of the image. Recall that we want N elements to fit into the
image and fill it homogeneously, avoiding clusters and large empty regions. These requirements are
somehow the converse to those of the well known problem consisting in filling a domain with as many
spheres as possible, given their radius r. Indeed, in our case we know the number of discs to fit into
the square image, and we want to set their radius in order to get the most homogeneous layout. This
amounts to placing N discs with equal radius r in a square, without overlap but in a compact way,
so that the distance between the centers of two neighboring discs, is about 2r. The most compact
configuration fulfilling these requirements consists in a hexagonal lattice. As we see in Figure 3,
in such an arrangement the density is 1

2
√
3r2

disc per surface unit. Therefore, the maximal possible

radius rhex(N,S) for N discs to fit in a domain of area S verifies

r2hex(N,S) =
S

2
√

3N
. (1)

The distance dhex(N,S) between two adjacent disc centers is twice this radius. In our case we want
to fill a square image of size I×I, with the additional constraint that a disc center be also dhex pixels
away from the image’s edge. Thus the domain is a square with side I − 4rhex = I − 2dhex. Replacing
S by (I − 2dhex(N, I))2 in Equation (1), we get the following equation for dhex

dhex(N, I) =
2
(
I−2dhex(N,I)

)
√

2
√
3N

= 2I√
2
√
3N+4

.

(2)

2r

Figure 3: Illustration of the density of a hexagonal arrangement of discs with radius r. The area of
a red equilateral triangle is

√
3r2, and a triangle contains half a disc (each green portion represents

one sixth of a disc, and a triangle contains three of these portions, that is 3 × 1
6

= 1
2

disc). Thus,
there is 1

2
√
3r2

disc per unit area.

In order to achieve a random layout for the elements’ coordinates (and not a regular lattice) in
our stimuli we need a smaller value for the minimal distance db between background points. This is
equivalent to throw discs with smaller radius so that they can fit more loosely in the same square.
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Therefore, we set3

db(N, I) = λ(I−2db(N,I))√
2
√
3N

= λI√
2
√
3N+2λ

,

(3)

with λ < 2. For our stimuli, we choose λ = 1.5 and I = 500 pixels. Regarding the distance da
separating regularly the aligned points, we simply take

da(N, I) = dhex(N, I) =
2I√

2
√

3N + 4
. (4)

Indeed, whereas db is a minimal distance between random points, which is never achieved in practice
in the stimulus generation, da is the exact spacing between aligned elements; thus it is necessary to
choose da > db, otherwise the aligned points would always be closer from each other than the back-
ground elements, and would therefore be easily detected by an observer from the points coordinates
only.

2.2 Placing the Alignment

In this section we describe how we build an alignment of n points, regularly spaced by a distance da,
in a square image I of size I × I pixels, deprived of db pixels wide horizontal and vertical margins
(Figure 4a). First, assume we have already chosen the center of the alignment c = (xc, yc) (that
is to say the center of the segment defined by the two extremity points in the alignment), and
its orientation θa ∈ [0, π). Then, noting −→va = (cos(θa), sin(θa)) a unitary directing vector of this
segment, the target alignment is the set points s1, s2, . . . , sn defined by s1 = c− (n−1)×da

2
−→va

sk = s1 + (k − 1)da
−→va if 2 ≤ k ≤ n.

(5)

The center c and the orientation θa must be chosen so that the n aligned points belong to the
allowed image domain, that is, in the image but not in the margins. To ensure this, it is sufficient
to test if the two extremity points s1 and sn fall in the image. This criterion is formalized by
Equation (6). 

db + 1
2
(n− 1)da |cos(θa)| ≤ xc ≤ I − db − 1

2
(n− 1)da |cos(θa)|

db + 1
2
(n− 1)da |sin(θa)| ≤ yc ≤ I − db − 1

2
(n− 1)da |sin(θa)|.

(6)

Thus, in our algorithm, for a given number n of aligned elements, we first choose randomly the
orientation θa, and then choose randomly the center c from the rectangle defined by Equation (6), if
the latter is not empty.

The algorithm also ensures that this rectangle is not empty by limiting the aligned elements
to a maximum number nmax. This quantity is defined by Equation (7) as the maximum number

3It may seem more intuitive to simply relax the minimal distance by setting db = λdhex = λ 2I√
2
√
3N+4

with λ < 1

instead of the result of Equation (3) with λ < 2, but recall that we want the minimal distance between elements
to be also the minimal distance from an element to the edge of the image. When relaxing the minimal distance
between elements, we also relax the size of the square. Therefore the relaxation needs to be applied to the first line
of Equation (2), and not directly to its solution dhex. This is what is done in Equation (3). For large values of N ,
db = λ1I√

2
√
3N+2λ1

and db = λ2dhex = λ2
2I√

2
√
3N+4

give approximately the same db if λ1 = 2λ2.
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Figure 4: (a) The authorized image region for the elements of the stimulus: a I × I pixels square,
deprived of db pixels wide horizontal and vertical margins. (b) A discrete homogeneous line-segment,
composed of n = 10 points, with spacing da, center (xc, yc), and direction θa. In the implementation
of the algorithm, we will take the left hand lower corner as the origin of the coordinates.

of elements than can fit in the allowed image domain, arranged into a central and horizontal (or,
equivalently, vertical) alignment with da pixels as regular spacing. This constraint guarantees that
an alignment composed of no more than nmax elements, can always fit in the center of the image,
whatever its orientation θa.

nmax =

⌊
I − 2db
da

⌋
+ 1. (7)

2.3 Placing the Background Elements

Recall that we want to fill the background of I with N − n random elements respecting a minimal
distance db from each other and from the aligned elements. The principle of the algorithm consists
in iteratively performing two main steps. The first step is to define a “forbidden region” as the
union of discs with radius rb and centered at the already placed points. The second step is to choose
a new point randomly and uniformly from the complement of the forbidden region. In practice,
the forbidden region is defined as a discrete dilation of the set of already placed points, with an
approximation of a disc of radius rb as structural element. To set the problem in a discrete frame, we
use a binary image I ′ of size I ′ × I ′ pixels, in which all points will have integer coordinates. Image
I ′ will have a different size from I, as will be explained in the next paragraph. The placement of
the background elements is performed in this new image I ′, and then the coordinates of these new
points are mapped to I with the desired resolution.

Mapping between I and I ′. The size I ′ of I ′ is deduced from the choice of the resolution to
which the coordinates of the final points will be set. For example, to achieve a 0.5 pixels resolution,
we set I ′ = 2I. More generally, for a resolution of r pixels,

I ′ =

⌈
I

r

⌉
(8)

where d·e denotes the upper integer part. Similarly, we define in Equation (9) the mapping between
the coordinates (x, y) of a point in I and its coordinates (x′, y′) in I ′. Computing (x′, y′) from (x, y)
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is done deterministically, as described by Equation (9).

x′ =
⌈x
r

⌉
, y′ =

⌈y
r

⌉
. (9)

This mapping from I to I ′ is used only to transform the coordinates of the aligned points prior to set
the background points. After defining the coordinates of the background points in I ′, we apply an
inverse mapping to get their coordinates in I, as described by Equation (10). This inverse mapping
ensures the desired resolution but avoids to set the coordinates on the vertices of a lattice, by adding
some random noise to the position of the points. Indeed, in Equation (10), ux and uy are sampled
independently from the uniform distribution on [0, 1].

ux = rand([0, 1])
uy = rand([0, 1])
x = (x′ − 1 + ux)× r
y = (y′ − 1 + uy)× r.

(10)

(a) (b) (c) (d) (e)

Figure 5: Illustration of the procedure to set the coordinates of the background points. Every picture
represents I ′ at different steps of the procedure. The white pixels represent the authorized region
A at each step. (a) Initialization of I ′, only the pixels along the margins are set to false, and A is
the inner white square. (b) Update of A after the dilation of the set S initialized with the aligned
points. (c)-(e) Dilation of S after definition of one, two and 50 background points.

Setting the coordinates in I ′. As we said, I ′ is a binary image that we use to define the
coordinates of the background points. The coordinates of every new background point in I ′ are
chosen randomly and uniformly from the authorized region A, defined as the pixels of I ′ that are set
to the Boolean value “true”.

A =
{

(x′, y′) ∈ [1, I ′]2, I ′(x′, y′) = true
}
. (11)

Therefore, I ′ is initialized by setting most of its pixels to “true”. The only pixels set to false are
those which are close enough to the edges, that is{

I ′(x′, y′) = true if d′b ≤ x′ ≤ I ′ − d′b and d′b ≤ y′ ≤ I ′ − d′b
I ′(x′, y′) = false otherwise,

(12)

where d′b =
⌈
db
r

⌉
is the minimum distance allowed between two points and between a point and the

image’s edge, in I ′.
We will denote S the set of already existing points. Naturally, S is initialized with the aligned

points defined in section 2.2 and whose coordinates are transformed according to Equation (9). Then,
the definition of a new point given the existing points in S, is realized following two steps.
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Figure 6: Voronoi cells for a set of points. Only cells that are fully included in the image domain
are taken into account. Cells are filled in gray for background points and in light red for the aligned
points. The check for density cue is a statistical t-test of the hypothesis that the areas of the target
and background cells are samples of two normal distributions with equal means.

• Step 1: update A. We compute δB(S), the morphological dilation of S by the structural
element B, which is a discrete disc of radius d′b (its members comprise all pixels whose centers
are no greater than d′b away from the origin). Then we update I ′ by setting to false all pixels
in δB(S)

∀(x′, y′) ∈ δB(S), I ′(x′, y′) = false. (13)

This update of I ′ automatically updates the set A of authorized points, according to its defi-
nition in Equation (11).

• Step 2: update S. The new point is chosen randomly according to a uniform distribution
over the set A of authorized points. This new point is then added to S.

These two steps are repeated until S reaches N points or A = ∅. Therefore, the total number of
points in the stimulus might be lower than N .

Finally, the coordinates of the background points, that is, the points of S except the alignment,
are transformed following Equation (10) to fit in I. For the alignment in I, we keep the original
coordinates, as defined in Section 2.2.

2.4 Checking for Density Cues

Following [3, 17], we check for density cues by comparing the area of the aligned points’ Voronoi
cells (also called target cells) to those of the background points (also called background cells); see
Figure 6. If the areas of the target cells are significantly different from those of the background cells,
then we suspect that a density cue may exist in the stimulus.

The set of Voronoi cells. We first compute the Voronoi diagram for the set of points. Then
we discard the cells with vertices falling outside the image domain. We will call valid cells the cells
which, on the contrary, have all their vertices included in the image domain. Note that among the
discarded cells there might be target ones. If strictly more than 20% of the target cells are discarded,
which might happen if the alignment is close to an edge, we consider that the remaining target cells
are not sufficient to compute reliable statistics. In that case, the stimulus is regarded as suspicious,
and might be rejected.
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The statistical comparison between target and background cells. If at least 80% of the
target cells are kept, then we compare statistically the areas of the valid target cells to those of the
valid background cells. We assume that the areas of target and background cells are independent
samples of two normal distributions with equal variances, and the tested hypothesis is that these two
distributions have equal means. The alternative hypothesis is that one of the two means is greater
than the other.

The performed test is a t-test. We note A = {a1, . . . , am} and B = {b1, . . . , bq} respectively the
sets of valid Voronoi cells areas for the alignment and the background. Their sample means are
respectively noted ā and b̄. The Matlab method ttest2 computes the sample standard deviations sa
and sb, from which it deduces a unique pooled sample standard deviation s (Equation (14)).

sa =
(

1
m−1

∑m
i=1(ai − ā)2

)1/2
sb =

(
1
q−1
∑q

j=1(bj − b̄)2
)1/2

s =
(

(m−1)s2a+(q−1)s2b
m+q−2

)1/2
.

(14)

Then the value of interest, denoted t, is computed according to Equation (15), and is supposed to
follow a Student t-distribution with m+ q− 2 degrees of freedom, if the tested hypothesis is correct.

t =
ā− b̄

s
√

1
m

+ 1
q

. (15)

If the tested hypothesis holds, t is likely to be close to 0. On the contrary, the greater the absolute
value of t, the less likely samples A and B come from distributions with the same means. Noting
Tm+q−2 a random variable following a Student t-distribution with m+ q − 2 degrees of freedom, the
associated p-value is therefore

p = 1− P
(
− |t| < Tm+q−2 < |t|

)
= 2 P

(
Tm+q−2 ≥ |t|

)
. (16)

The smaller p, the more confidently the tested hypothesis can be rejected. The user can decide
the significance threshold pmin under which the p-value should lead to reject the null hypothesis. A
common practice is to set pmin = 0.05, but this is only a suggestion. We prefer not to impose a
rejection criterion to the user. Indeed, we are aware that the exposed strategy may not be always
optimal and could be adapted. Furthermore, we believe it is useful for research purposes to observe
the relationship between the statistical p-value and the rendered stimulus. Finally, returning the
produced stimulus along with the p-value is the simplest way to guarantee the algorithm ends with
an output.

Note that it is also possible to assume that the areas of target and background cells are inde-
pendent samples of two normal distributions with possibly different variances. In that case, if the
tested hypothesis of equal means is correct, the computed value t has an approximate Student’s t
distribution with a number of degrees of freedom given by Satterthwaite’s approximation

df =

(
s2a
m

+
s2b
q

)2
1

m−1

(
s2a
m

)2
+ 1

q−1

(
s2b
q

)2 . (17)

This is what was done for the stimuli described in [2]. In the latter method, to produce one stimulus,
ten were generated and the one with the greatest p-value was kept. In most cases, the eventual
p-value was greater than 0.6.
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θ
a

α  

-α

Figure 7: Orientation of a target element, chosen randomly from a uniform distribution over [θa −
α, θa + α].

2.5 Setting the Orientations

Target orientations. The orientations of the target elements are randomly chosen from an interval
centered on the main direction θa of the alignment. The width of this interval is determined by
an angle α ∈ [0, π

2
], called angular jitter, and which is a parameter of the algorithm. Then the

orientations θ1, θ2, . . . , θn of the n target elements are independently and uniformly sampled from the
interval [θa − α, θa + α].

Background orientations. The orientations of the background elements are sampled indepen-
dently from a uniform distribution over all possible angles.

This last step completes the definition of the set G = {(xi, yi, θi), 1 ≤ i ≤ N}, representing the
N oriented elements that will be displayed in the stimulus. Sections 2.6 and 2.7 describe how the
actual stimulus is built from G.

2.6 Building a Patch

In our stimuli a patch is a small h×h pixels square image showing the central part of a symmetrical
Gabor function. The family of functions Gf,θ,σ we use is defined by

∀(x, y) ∈ R2, Gf,θ,σ(x, y) =
1

2

(
1 + e−

x2+y2

2σ2 cos
(

2πf(y cos θ − x sin θ)
))

, (18)

where f is the spatial frequency, σ the space constant and θ the orientation of the Gabor element. For
our stimuli, we set h = 15 pixels, f = 0.12 cycles per pixel and σ = 1

4f
pixels. These parameters, as

well as the image dimensions (I = 500 pixels), were adjusted to produce visually satisfactory stimuli
and were also inspired by the literature. However, other values could be used keeping in mind some
practical constraints. The patch must be large enough to show the whole part of the Gabor function
where it takes values different from the background; and not too large to avoid overlaps among
patches. The value of f controls the thickness of this central blob. The smaller f , the thicker the
blob and the more blurry the patch looks. Finally, setting σ proportionally to 1

f
allows to control

the number of blobs that are visible in the patch, independently of f . Increasing the coefficient of
proportionality tends to let appear more cycles, and therefore more blobs, in the patch.

Given the orientation θ of the patch (that is, the main orientation of the central blob), the value
of pixel (i, j) in the patch is given by

g(i, j) = Gf,θ,σ(h− j + 1− c, i− c), (19)

where c = 1+h
2

is such that (c, c) are the coordinates of the center of the patch (whether in Cartesian
or matricial form).
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2.7 Building the Final Stimulus

First, the image I is initialized to the medium gray value. Then for each element (xi, yi, θi) ∈ G,
a patch gi with orientation θi is built as described in Section 2.6. Image I is actually a matrix, in
which the origin of the coordinates is the upper left hand corner, and the first and second coordinates
are the row and column indexes respectively. Since (xi, yi) are intended as Cartesian coordinates in
a classically oriented frame, we need to translate them into image coordinates prior to placing the
patch in the image. This is why we define the central pixel of the patch and its top left hand corner
as follows

x
(i)
c = xi
y
(i)
c = I − yi
x
(i)
start = round(x

(i)
c − h

2
)

y
(i)
start = round(y

(i)
c − h

2
),

(20)

where round(x) = bx+ 0.5c is the closest integer to x; and finally patch gi is placed in the image

I(y
(i)
start : y

(i)
start + h− 1, x

(i)
start : x

(i)
start + h− 1) = gi. (21)

2.8 Examples

Figures 8, 9, 10 and 11 are four examples of stimuli built with the proposed algorithm. The first
three examples show satisfactory stimuli in which no significant density cue was found, that is the
perceptual grouping only depends on the orientations of the target elements. In Figure 11 however,
the alignment is perceptible despite the maximal angular jitter affecting the target elements. The
low associated p-value helps as a criterion to reject this stimulus.

Figure 8: Example of a stimulus with N = 100, n = 5 and α = 0.3·π
2

. The p-value associated to the
t-test is p = 0.49, which means that according to the performed test there is no significant difference
between the areas of the target Voronoi cells and those of the background cells.

2.9 Formal Description of the Algorithm

The generation algorithm, noted Algorithm 1 is described in detail by its pseudo-code.
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Figure 9: Example of a stimulus with N = 200, n = 7 and α = 0.5·π
2

. Here the associated p-value
is p = 0.54. Like in Figure 8, this p-value means that according to the t-test there is no significant
difference between the areas of the target and background Voronoi cells.

Figure 10: Example of a stimulus with N = 600, n = 9 and α = 0.1·π
2

. Here the associated p-value
is p = 0.97. Like in Figures 8 and 9, this p-value means that according to the t-test there is no
significant difference between the areas of the target and background Voronoi cells.

Figure 11: Example of a stimulus with N = 100, n = 9 and α = π
2
. The p-value associated to the

t-test is p = 0.013, which indicates, according to the common threshold pmin = 0.05, that there might
be a significant difference between the areas of the target Voronoi cells and those of the background
cells. It is indeed relatively easy to spot the alignment in the left hand image, and in the central
image.
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Algorithm 1: Generation algorithm

input : The total number N of elements, the number n of aligned points, the level of angular
jitter α; N ∈ [10, 600], n ≥ 3, α ∈ [0, π

2
].

output: The coordinates P and orientations Θ of all elements, the indexes of the aligned
elements idxa, the p-value p associated to the statistical check for density cues, the
stimulus I.

1 I ← 500 // Size of the stimulus’ side, in pixels

2 h← 15 // Size of one patch’s side, in pixels

3 f ← 0.12 // Spatial frequency, in cycles per pixel

4 σ ← 1
4f

// Spatial constant, in pixels

5 (P, idxa, θa)← setCoordinates(I,N, n)
6 actual N ← #P// The actual number of points that could fit in the image - usually equal to N

7 p← checkDensityCue(P, I, idxa)// This p-value is not used further in the algorithm. It informs

the user about the quality of the stimulus (see Section 2.4 and the pseudo-code of checkDensityCue).

8 Θ← setOrientations(θa, α, idxa, actual N)
9 I ← buildStimulus(I, h, P,Θ, σ, f)

10 return P,Θ, p, idxa, I

Function setCoordinates(I,N, nin). This function, called in Algorithm 1, takes as arguments
the image side I in pixels, the total number N of elements and the number nin of aligned
elements. The function returns a list P of N coordinates, representing the positions of the
N elements; the set idxa of indexes of the aligned elements in P ; the orientation θa of the
alignment.

1 λ← 1.5

2 da ← 2I√
2
√
3N+4

3 db ← λI√
2
√
3N+2λ

4 (S, θa)← placeAlignment(I, nin, da, db)
5 n← #S
6 idxa ← (1, . . . , n)
7 ρ← 0.5
8 P ← placeBackground(S,N, ρ, I, db, db)
9 return P , idxa, θa
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Function placeAlignment(I, nin, da, dmarg). This function, called in setCoordinates, takes as
arguments the image side I in pixels, the number nin of aligned elements, the distance da
between consecutive aligned elements, in pixels, and the minimal distance dmarg of any element
from the image’s edge, in pixels as well. If nin is too big (> nmax), the actual number of aligned
elements will be nmax. The function returns a set S of coordinates of the n aligned elements,
and the direction θa of this alignment.

1 θa ← 2π · rand([0, 1])
2 µx ← rand([0, 1])
3 µy ← rand([0, 1])

4 nmax ←
⌊
I−2dmarg

da

⌋
+ 1 // Maximal number of aligned elements that can fit in the image for any θa

5 n← min(nin, nmax)
6 L← (n− 1)da // Length of the alignment

7 xmin
c ← dmarg + L

2
| cos(θa)|

8 xmax
c ← I − dmarg − L

2
| cos(θa)|

9 ymin
c ← dmarg + L

2
| sin(θa)|

10 ymax
c ← I − dmarg − L

2
| sin(θa)|

11 xc ← xmin
c + µx · (xmax

c − xmin
c )

12 yc ← ymin
c + µy · (ymax

c − ymin
c )

13
−→va ← (cos(θa), sin(θa))

14 L← (n− 1)× da
15 s1 ← (xc, yc)− L

2
−→va

16 S ← {s1}
17 for k = 2 to n do
18 sk ← s1 + (k − 1)da

−→va
19 S ← S ∪ {sk}
20 end
21 return S, θa
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Function placeBackground(S,N, r, I, dmarg, dmin). This function, called in setCoordinates,
takes as arguments the set S of coordinates of the aligned elements, the total number N of
elements, the spatial resolution r for the coordinates of the elements, the image side I in pixels,
the minimal distance dmarg of any element from the image’s edge in pixels, and the minimal
distance dmin of any element from its closest neighbor. The function returns a set P of N
coordinates, representing the positions of the N elements.

1 I ′ =
⌈
I
r

⌉
2 d′min =

⌈
dmin

r

⌉
3 d′marg =

⌈
dmarg
r

⌉
4 S ′ ←

⌈
1
r
· S
⌉

// Initialize I ′ according to Equation (12), as illustrated in Figure 5(a)

5 I ′ ← false(I ′, I ′)
6 for x′ = d′marg + 1 to I ′ − d′marg do
7 for y′ = d′marg + 1 to I ′ − d′marg do
8 I ′(x′, y′)← true
9 end

10 end
// Second step of the initialization: turn to false the discs around the aligned elements, as illustrated

in Figure 5(b)

11 D ← structuralElement(disk, d′min)
12 pool← false(I ′, I ′)
13 pool(S ′)← true// Set to true the points in pool with the coordinates contained in S′

14 pool← dilation(pool,D)// Dilation of the aligned elements

15 I ′ ← I ′ and ¬ pool// Update I ′ according to Equation (13)

16 A ← {(x′, y′) ∈ [1, I ′]2, I ′(x′, y′) = true}// Authorized region as defined by Equation (11)

// Start the loop to place background elements, as illustrated in Figure 5(c), (d) and (e)

17 placed← #S// Initialize the number of already placed elements to the number of aligned elements

that could be placed

18 B′ ← ∅// Initialize the set of discrete background points

19 while placed < N and A 6= ∅ do
20 newPt← rand(A)// Choose randomly an element from the authorized region

21 B′ ← B′ ∪ newPt// Add the new element to the set of discrete background points

22 pool← false(I ′, I ′)
23 pool(newPt)← true
24 pool← dilation(pool,D)// Dilation of the placed elements

25 I ′ ← I ′ and ¬ pool// Update I ′ according to Equation (13)

26 placed← placed+ 1
27 A ← {(x′, y′) ∈ [1, I ′]2, I ′(x′, y′) = true}// Authorized region as defined by Equation (11)

28 end
// Transform the discrete coordinates of background points back to non-integer coordinates

29 B ← ∅
30 for p′ ∈ B′ do
31 p← (p′ − 1)r + r × rand([0, 1]2)
32 B ← B ∪ p
33 end
34 P ← S ∪B
35 return P
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Function checkDensityCue(P, I, idxa). This function, called in Algorithm 1, takes as arguments
a set P of N coordinates, representing the positions of the N elements, the image side I in pixels,
and the list idxa of indexes of the points in P belonging to the alignment. The function returns
a p-value associated to a statistical comparison between the areas of the Voronoi cells of the
aligned elements and those of the background elements. The user shall see p as a criterion to
decide whether to reject the stimulus or not. If p is smaller than a significance threshold pmin

(to be chosen by the user, typically pmin = .05), the stimulus should be rejected because the
difference between the two sets of areas will be considered as significant. The value p = 0 means
that the statistical test was not performed, and that the stimulus should be rejected no matter
the significance threshold pmin.

1 V ← voronoi(P )
2 cellsInside← false(#V )
3 for i = 1 to #V do
4 if V (i) ⊂ [0, I]2 then
5 cellsInside(i)← true
6 if i ∈ idxa then
7 cellsAlignmentInside← cellsAlignmentInside ∪ i
8 else
9 cellsBackgroundInside← cellsBackgroundInside ∪ i

10 end

11 end

12 end
13 if #cellsAlignmentInside < 0.8 ·#idxa then
14 p = 0
15 return p

16 end
17 Sa ← surface(V (cellsAlignmentInside))
18 Sb ← surface(V (cellsBackgroundInside))
19 p← ttest(Sa,Sb) // t-test, see Section 2.4

20 return p

Function SetOrientations(θa, α, idxa, N). This function, called in Algorithm 1, takes as ar-
guments the direction θa of the alignment, the angular jitter α, the list idxa of indexes in
{1, . . . , N} corresponding to the aligned elements, and the total number N of elements.

1 n← #idxa
2 Θ← 2π · rand[N ]// N random angles

3 for i = 1 to N do
4 if i ∈ idxa then
5 Θ(i)← θa + α · (2 · rand([0, 1])− 1)
6 else
7 Θ(i)← 2π · rand([0, 1])
8 end

9 end
10 return Θ
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Function buildStimulus(I, h, P,Θ, σ, f). This function, called in Algorithm 1, takes as argu-
ments the dimension I of the image’s side, the dimension h of a patch’s side, the list P of the
patches’ coordinates, the list Θ of the patches’ orientations, the space constant σ and spatial
frequency f that determines the aspect of a patch; the function returns the stimulus itself: a
I × I pixels image representing the set of Gabor patches.

1 N ← #P
2 I ← 0.5 · ones(I, I)
3 for i = 1 to N do

4 x
(i)
c ← Pi.x

5 y
(i)
c ← I − Pi.y

6 x
(i)
start ← round(x

(i)
c − h

2
)

7 y
(i)
start ← round(y

(i)
c − h

2
)

8 cy ← y
(i)
start + h−1

2

9 cx ← x
(i)
start + h−1

2

10 for k = y
(i)
start to y

(i)
start + h− 1 do

11 for l = x
(i)
start to x

(i)
start + h− 1 do

12 kc ← h− k + 1− cy
13 lc ← l − cx
14 I(k, l)← Gf,θi,σ(lc, kc) // Equation (18)

15 end

16 end

17 end
18 return I

3 Detection Algorithm

The detection algorithm described in this section is based on the a contrario theory, which is a
mathematical formulation of the non-accidentalness principle. An a contrario method requires two
models. On the one hand, a geometric model, which is deterministic and, on the other hand, a
probabilistic model.

The geometric model defines an ideal structure x∗ along with a function dx∗(·) measuring a
deviation from it. For example, in our case, the ideal structure is a set of aligned Gabor patches with
perfectly aligned orientations. The measure of a deviation from this ideal configuration, is detailed
in Section 3.1 but we can already provide a hint of it: in Figure 12 (e) for example, the smaller the
angles αi, the closer the depicted chain to a perfect alignment.

The probabilistic model, also called a contrario or background model, is the statistical hypothesis
H0 of the absence of relevant structure - the so called null hypothesis. It represents the most general
assumption on the data. Consistently with Attneave’s principle stating that we do not perceive
any structure in white noise [1], an a contrario model generally gives a maximal entropy to the
building blocks of the percept. For example if these building blocks are oriented, their orientations
must be random, independent, and uniformly distributed for each block. By Attneave’s principle the
emergence of a percept in a realization of such a model should be unlikely, and in any case purely
accidental. Therefore this background model is used to test the significance of an observation, as
follows. Let X be a random variable consistent with H0. Given an observed structure x with a
deviation dx∗(x) from the ideal structure, its relevance is measured by the probability PH0(dx∗(X) ≤
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dx∗(x)) to be at least as close to x∗ under H0. Small deviations yield small probabilities, and are
thus rare events in the background model.

To evaluate the non-accidentalness of an event, an a contrario method takes into account the
whole set of observations that were necessary to come across that particular event. For example, when
looking for alignments in an array of Gabor patches, we define a priori a family of sets of patches,
that will be tested as candidates to be alignments. This is what is usually called the family of tests,
noted T , and NT denotes the number of tests in T . Then, given a tested candidate x that yielded the
deviation dx∗(x), denote byX1, X2, . . . , XNT , the random issues to theNT tests, under the background
modelH0. The question is now how common or, on the contrary, how surprising it would be to observe
a deviation smaller than dx∗(x) among these NT tests. An answer is to estimate the expected number
of variablesXi that verify dx∗(Xi) ≤ dx∗(x). The a contrario theory provides as an estimate a quantity
called Number of False Alarms (NFA), defined as NFA(x) = NT × P[dx∗(X) ≤ dx∗(x)]. In general
the NFA is an upper-bound of the number of deviations to the ideal model smaller than dx∗(x) that
are expected to happen by accident in a set of NT random tests.

In the following subsections, we detail the geometric and a contrario models for our study.

3.1 The Geometric Model

For a given a tuple (g1, . . . , gn) of n Gabor patches, we consider the variables α1, α2L, α2R, . . . ,
α(n−1)L, α(n−1)R, αn, as illustrated in Figure 12(e). Variable αiL is the absolute angle between the
orientation of Gabor patch i and the line joining it to the patch i − 1, while αiR is the same thing
changing i − 1 for i + 1. Since the first and last patches in the tuple have no previous and next
elements respectively, we simply note α1

def
= α1R and αn

def
= αnL. Then we define ω1

def
= α1, ωn

def
= αn

and for i = 2, . . . , n− 1, ωi
def
= max(αiL, αiR); see Figure 12(f).

The ideal alignment that will be our reference structure in the present study, is such a tuple of
Gabor patches for which all angles ωis are equal to 0 rads. In words, it is a set of aligned patches
whose orientations are the same as their line’s orientation.

Then we measure the deviation of a general tuple from an ideal alignment by its maximum angle
ω∗

def
= max{ω1, . . . , ωn}.

3.2 The A Contrario Model

Now we need to define the a contrario model for our stimuli. Figure 13 shows three arrays of Gabor
patches with only background elements and thus no significant alignment. Formally, we model an
array of N Gabor patches by a set g = {(xi, θi)}i=1...N , where xi ∈ R2 represents the coordinates

of patch number i, and θi ∈ R its orientation. We note x
def
= {x1, . . . , xN} and, for any three points

x, y, z ∈ x, φxyz is the angle between vectors −→xy and −→yz. Finally, the set of the 6 nearest neighbors
of a point x ∈ x is noted N6(x) (see Figures 12 (a) and (b)). Then we define an a contrario array of
Gabor patches as a random set G = {(Xi,Θi)}i=1...N verifying two properties:

1. The random variables Θ1, . . . ,ΘN are independent and uniformly distributed in [0, 2π).

2. For any X ∈ X and Y ∈ N6(X) the angle Φ∗XY
def
= minZ∈N6(Y ) |ΦXY Z | is uniformly distributed

in [0, π
6
) (see Figure 12 (d)), and is independent from Φ∗X′Y ′ for any (X ′, Y ′) 6= (X, Y ).

Let’s clarify the relation between this definition and the background stimuli of Figure 13. Property
1 corresponds exactly to the rule we used to define the background elements’ orientations in our arrays
of patches (see Section 2.5). The relevance of property 2 needs more justification. As explained in
Sections 2.1 and 2.3, we built each stimulus so that N elements fit in it, that two elements were
not too close to each other, and that there were no empty regions in the image. The most compact

285



Samy Blusseau, Rafael Grompone von Gioi
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Figure 12: (a) On this array of 100 Gabor patches, we represent the associated graph γ (the orien-
tations of the edges were omitted). In this graph, most of the points are linked to their 6 nearest
neighbors, except when a neighbor is too remote, as it often happens for elements that are close
to the image border. For a point x ∈ x (circled in white in (a)), a chain (x, y) is started for each
y ∈ Nγ(x) in (b), and expanded in (c) into the most rectilinear possible chain. Picture (c) shows
the result after 3 iterations of the expansion process. (d) Given two neighbors x and y, we look for
the neighbor z of y that minimizes the absolute angle between −→xy and −→yz. (e)-(f) The variables the
algorithm measures when analyzing a chain containing n = 4 points.

(a) (b) (c)

Figure 13: Three arrays of Gabor patches containing only background elements and illustrating the
a contrario model.

way to fit discs in a given region is to lay them on a hexagonal lattice. Here we chose the minimal
distance between elements in order to allow some randomness in their coordinates. The resulting
stimuli look like hexagonal lattices affected by some noise, in which property 2 approximately holds
(see Figure 12 (a)). As illustrated in Figure 12 (d), in such an approximately hexagonal lattice, we
expect the maximal value for the angle Φ∗XY to be roughly π

6
. Since we do not know the actual

distribution of Φ∗XY , the simplest assumption is then the uniform distribution in [0, π
6
), which does
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not require to set any parameter. We checked that the empirical distribution of Φ∗XY is reasonably
close to our assumption.

3.3 Input of the Algorithm

The input of the detection algorithm is a set g = {(xi, θi)}i=1...N , that models a Gabor array composed
of N patches (see Section 3.2).

3.4 The Family of Tests

The family of tests is defined by first building a graph γ on the set x = {x1, . . . , xN}, and then
selecting chains of adjacent edges in this graph.

The graph γ. The oriented graph γ = (x, e), where x is the set of vertices and e the set of
edges, is defined as follows: (xi, xj) ∈ e if and only if xj is one of the 6 nearest neighbors of xi
and d(xi, xj) ≤ dmax, where d(xi, xj) is the Euclidean distance between the two points, and dmax the
maximal length we accept for an edge (see next paragraph). We will denote by Nγ(x) the set of
neighbors of x in γ; see Figure 12 (a).

Maximal edge’s length. The maximal length for an edge is based on a statistic of the distances
between a point and its nearest neighbor in x. We list the N distances of each point xi ∈ x to its
nearest neighbor, and define davg as the mean value of this list. Then we take as maximal length for

an edge dmax
def
= 2davg. This is just an empirical choice to avoid too long edges in the graph.

The chains to be tested. A chain (z1, z2, . . . , zn) is in the family of tests T if and only if the
following conditions are fulfilled

n ≥ 3
∀i ∈ {1, . . . , n− 1}, (zi, zi+1) ∈ e
∀i ∈ {3, . . . , n}, zi = min∈Nγ(zi−1) |φzi−2 zi−1 z|,

(22)

where φzi−2 zi−1 z is the angle between vectors −−−−−→zi−2 zi−1 and −−−→zi−1 z. In words, the chains to be tested are
sequences of adjacent elements in γ that minimize the angles between consecutive edges. Figure 12 (c)
shows six examples of chains to be tested, each starting from the same point and composed of five
elements.

The number of tests is approximately

NT
def
= 6×N ×

√
N. (23)

NT is actually an overestimation of the number of tests, since not all nodes in γ have six neighbors,
and we only test chains containing at least three elements.

3.5 The NFA

The NFA of each chain c = (z1, . . . , zn) of T is defined as follows. Consider the variables ω1, . . . , ωn,
as defined in Section 3.1 and illustrated in Figures 12(e) and (f). Under the assumption that g is
a realization of an a contrario array of Gabor patches, the orientations ω1, ω2, . . . , ωn are samples
of n independent random variables Ω1,Ω2, . . . ,Ωn. Ω1 and Ωn are uniformly distributed in [0, π

2
],
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and a short development, presented in the Appendix, shows that Ω2, . . . ,Ωn−1 have a cumulative
distribution function F (ω) = P(Ω2 ≤ ω) = · · · = P(Ωn−1 ≤ ω), defined by

F (ω) = P(Ω ≤ ω) =



12
π2ω

2 if 0 ≤ ω < π
12

2
π
ω − 1

12
if π

12
≤ ω < 5π

12

12
π2ω

2 − 8
π
ω + 2 if 5π

12
≤ ω ≤ π

2
.

(24)

Note that for a random patch Zi in a chain, the probability law of max(αiL, αiR) depends on the angle
Φ∗Zi−1Zi

. The cumulative distribution function F is obtained by integrating over all possible values for

Φ∗Zi−1Zi
, according to the law hypothesized in the a contrario model. Noting ω∗

def
= max{ω1, . . . , ωn}

and Ω∗
def
= max{Ω1, . . . ,Ωn}, the probability that all Ωi be less than the observed ω∗ is

P (Ω∗ ≤ ω∗) =

(
2ω∗

π

)2

× F (ω∗)n−2. (25)

As usual in the a contrario theory, we get a natural definition of the NFA of chain c

NFA(c)
def
= NT × P (Ω∗ ≤ ω∗)

= NT ×
(
2ω∗

π

)2 × F (ω∗)n−2.

(26)

3.6 Output of the Algorithm

The algorithm returns the lowest NFA and the chain that achieves it. When the a contrario theory
is applied to computer vision, the common practice is to detect only structures with NFA below a
certain threshold (typically, NFA = 1). Like in [2], we want to compare the detection algorithm to
visual perception on an objective task, in which both the subject and the algorithm are forced to
report the most salient structure in the stimulus. If we allowed the algorithm to report no detection
at all, we should give the same possibility to human observers, and this would introduce more
subjectivity: the subject could actually see something and decide not to consider it as a significant
alignment. Moreover, we are also interested in the NFA value of the target alignment, whether it is
detected or not (see demo).

3.7 Examples of Detections

In this section we present a few examples illustrating the behavior of the detection algorithm. Fig-
ures 14 and 15 are the most representative cases: the algorithm detects the target alignment when
it is conspicuous (Figure 14), but does not when it is perceptually hard to distinguish the alignment
from the background (Figure 15).

Figure 16 and 17 show two examples where human observers perceive the target alignment whereas
it is not detected by the algorithm. In Figure 16, despite the high level of orientation jitter, human
subjects could detect a part of it, composed of the third, fourth and fifth elements starting from
the top. The reason is probably that the position masking left a larger space around these three
elements. Note that the statistical test on density cue yields a p-value of 0.79, and therefore does
not point out the inefficiency of the masking here. Figure 16 also shows the algorithm’s tendency to
detect curved structures when no salient alignment is present. In Figure 17, the algorithm prefers a
short alignment, although the target alignment seems more salient.
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On the contrary, Figure 18 illustrates the cases where the algorithm finds the target alignment
whereas the latter is not so easy to perceive for a human observer. Because it is quite long and not
so affected by angular jitter the target is expected to be easy to spot. However in this stimulus,
other alignment-like structures occurred by chance in a more central part of the image, which tend
to draw our attention away from the target alignment.

Finally, in Figure 19 we see how the algorithm sometimes detects a chain that includes the target
alignment. The latter is not significant enough to be detected alone, but participates in the detection
of the bigger set. In the present example the algorithm contradicts our perception, since we tend
to see the target and not the longer chain. The fact that the detected structure is curved instead
of a straight alignment, shows another limitation of our algorithm. We tried several strategies to
constrain the curvature of the chains by including it in the computation of the NFA. In general,
this did prevent to detect curves rather than alignments. However, for all the formulations we tried,
this also often led to detecting target alignments that were not perceived by human observers. In
other words, we have not found the appropriate trade-off between curvature and consistency within
orientations. The algorithm presented here is, among the approaches we tried, the one that best
matches the human data [2].

The examples presented above are meant to give an idea of the limitations of the algorithm in
some particular cases. However, in general, the algorithm provides quite accurate predictions of the
perception of alignments in our stimuli. For a detailed presentation of these results, we kindly refer
to [2].

Target alignment Stimulus (input) Detection: NFA = 0.91

Figure 14: Example of detection in a stimulus composed of N = 100 patches, with n = 6 elements
affected by a jitter α = 0.3π

2
. In general the algorithm detects the target alignment when it is

conspicuous.

3.8 Formal Description of the Algorithm

The detection algorithm, noted Algorithm 2 is described in detail by its pseudo-code.

289



Samy Blusseau, Rafael Grompone von Gioi

Target alignment Stimulus (input) Detection: NFA = 22

Figure 15: Example of detection in a stimulus composed of N = 200 patches, with n = 9 elements
affected by a jitter α = π

2
. In general the algorithm does not detect the target alignment when it is

perceptually hard to distinguish from the background.

Target alignment Stimulus (input) Detection: NFA = 0.017

Figure 16: Another example of detection in a stimulus composed of N = 200 patches, with n = 8
elements affected by a jitter α = π

2
. Despite the high level of orientation jitter, it is possible for

an observer to see a part of the target alignment, composed of the third, fourth and fifth elements
starting from the top. The reason is probably that the position masking left a larger space around
these three elements - although the statistical test on density cue yields a p-value of 0.79, and therefore
does not point out the inefficiency of the masking here. The present figure also shows the algorithm’s
tendency to detect curved structures when no salient alignment is present.
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Target alignment Stimulus (input) Detection: NFA = 2.0

Figure 17: Example of detection in a stimulus composed of N = 600 patches, with n = 6 elements
affected by a jitter α = π

4
. In this case the algorithm prefers a short alignment, although the target

alignment seems more salient.

Target alignment Stimulus (input) Detection: NFA = 0.14

Figure 18: Example of detection in a stimulus composed of N = 200 patches, with n = 8 elements
affected by a jitter α = π

4
. Because it is quite long and not so affected by angular jitter the target is

expected to be easy to spot. However in this stimulus, other alignment-like structures occurred by
chance closer to the image center, which tend to draw our attention away from the target alignment.

Target alignment Stimulus (input) Detection: NFA = 0.21

Figure 19: Example of detection in a stimulus composed of N = 100 patches, with n = 4 elements
affected by a jitter α = π

5
. Here the algorithm detected a longer chain than the target. The NFA

associated to the target alignment composed of 4 elements is NFA = 7.3.
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Algorithm 2: Detection algorithm

input : N points x = {xi}i=1...N in R2, N angles Θ = {θi}i=1...N in [0, 2π). Each angle θi is
supposed to be the orientation of a Gabor element placed at xi.

output: The smallest NFA value NFA∗, and the associated set of Gabor elements
{(xi, θi), i ∈ C∗}, where C∗ is a subset of {1, . . . , N}

1 γ ← computeGamma(x)
2 NFA∗ ← +∞
3 C∗ ← ∅
4 for i = 1 to N do

// Nγ(i) is the set of indexes of xi’s neighbors in γ

5 for j ∈ Nγ(i) do
6 C ← (i, j)
7 lastElt← j

8 while #C < b
√
Nc and lastElt 6= ∅ do

9 lastElt← findNextPoint(x, γ, C)
10 C ← C ∪ lastElt
11 NFA← nfa(C,x,Θ)
12 if NFA < NFA∗ then
13 NFA∗ ← NFA
14 C∗ ← C

15 end

16 end

17 end

18 end
19 return NFA∗, {(xi, θi), i ∈ C∗}
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Function computeGamma(x). The input x = {xi}i=1...N is a set of N points in R2, and the
function returns an adjacency matrix γ such that γ(i, j) = 1 if there is an arrow from xi to xj,
and γ(i, j) = 0 otherwise.

1 minDistances← ∅
2 for i = 1 to N do
3 di ← ∅
4 for j = 1 to N do
5 di ← di ∪ d(xi, xj) // Euclidean distance

6 end
7 (di, idxi)← sort(di) // sort in ascending order; idxi contains the new order of the points

indexes

8 minDistances← minDistances ∪ di(2) // di(2) is the second element in di

9 end
10 davg = mean(minDistances) // mean value of the set minDistances

11 γ ← zeros(N,N)
12 for i = 1 to N do
13 for j = 2 to 7 do
14 if di(j) ≤ 2davg then
15 γ(i, idxi(j)) = 1
16 end

17 end

18 end
19 return γ;
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Function findNextPoint(x, γ, c). x = {xi}i=1...N is a set of N points in R2, γ a N×N adjacency
matrix representing an oriented graph on x, and c an ordered list of indexes, corresponding to
a chain of points of x. The function returns an index in {1, . . . , N}, which corresponds to the
point which should expand the current chain c.

1 i1 ← last(c)
2 i2 ← penultimate(c)
3 p1 ← xi1
4 p2 ← xi2
5 i∗ ← ∅
6 maxCosine← −∞
7 for i3 ∈ Nγ(i2) do
8 p3 ← xi3
9 currentCosine←

−−→p1p2·−−→p2p3
p1p2·p2p3

10 if currentCosine > maxCosine then
11 maxCosine← currentCosine
12 i∗ ← i3
13 end

14 end
15 if i∗ /∈ c then
16 nextPoint← i∗

17 else
18 nextPoint← ∅
19 end
20 return nextPoint

Function nfa(C,x,Θ). x = {xi}i=1...N is a set of N points in R2, Θ = {θi}i=1...N a set of N
angles in [0, 2π), and C = (i1, i2, . . . , in) a tuple of n indexes in {1, . . . , N}.
1 p1 ← xi1
2 p2 ← xi2
3 pn−1 ← xin−1

4 pn ← xn
5 ω1 ← |angularError(p1, p2, θi1)|
6 ωn ← |angularError(pn−1, pn, θin)|
7 for k = 2 to n− 1 do
8 p1 ← xik−1

9 p2 ← xik
10 p3 ← xik+1

11 αL ← |angularError(p1, p2, θik)|
12 αR ← |angularError(p2, p3, θik)|
13 ωk ← max(αiL, αiR)

14 end
15 ω∗ ← max{ω1, ω2, . . . , ωn}
16 NT ← 6×N ×

√
N // (Equation (23))

17 p←
(
πω∗

2

)2 × F (ω∗)n−2 // (Equation (24) and (25))

18 nfa← NT · p // (eq 26)

19 return nfa
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Function angularError(p1, p2, θ). p1 and p2 are two points in R2 whose abscissa and ordinates
are noted pi.x and pi.y; θ is an angle in [0, 2π).

// First compute the orientation of line (p1p2), noted θ12, in (−π
2 ,

π
2 ]

1 if p1.x 6= p2.x then

2 θ12 ← arctan
(
p1.y−p2.y
p1.x−p2.x

)
3 else
4 θ12 ← π

2

5 end
6 ∆ang ← arctan(tan(θ12 − θ)) // With the convention: tan(±π

2 ) = ±∞ and arctan(±∞) = ±π
2

7 return ∆ang

4 Conclusion

This paper has presented a method aiming at interpreting and quantifying the perceptual group-
ing of aligned oriented elements in arrays of Gabor patches. The method is composed of two main
algorithms: first, a generation algorithm designed to build stimuli in which perceptual grouping is
almost only due to the orientations of the patches; second, a detection algorithm designed to find
the target alignments only when they are conspicuous for human visual perception. This parameter-
less algorithm is based on the a contrario theory, a mathematical model of the non-accidentalness
principle. These methods were applied and tested in psychophysical experiments [2], where the NFA
showed strong correlation with the detectability for human subjects, and the algorithm proved to be
an accurate predictor of the average subject’s behavior. Therefore, the framework presented here is
a tool to test the relevance of the a contrario approach to perceptual tasks in image processing and
computer vision.

Appendix

To analyze the distribution of the random variables Ωi we start by analyzing the possible values ω
when the chain at point i has an angle between the previous (L) and next (R) element of ϕ, see
Figure 20.

Given that ω is the largest of αL and αR, for a given ϕ the possible orientations for the Gabor
element are classified into four sectors, in two of them ω = αL and in the other two ω = αR. Indeed,
at the orientation of the bisector of the two lines L and R, αL = αR. The same happens at the
bisector of R and the continuation of L and inversely.

Let us analyze the distribution in one of the sectors; the same distribution is observed in the
three others and the reader can fill the details. The minimal possible value for ω is ϕ

2
, as can be seen

at the orientation marked with the letter A in Figure 21. Indeed, that orientation is the bisector of
line R and the continuation of line L, which form an angle ϕ. As the orientation increases clockwise,
the corresponding angle ω increases gradually, passing the orientation marked with the letter B,
where ω = π

2
− ϕ

2
, until arriving at the orientation C, which is orthogonal to line L and gives the

maximal possible value ω = π
2
. Then, as the orientation goes still clockwise to the orientation D, the

ω decreases gradually to angle π
2
− ϕ

2
, which is the angle of the bisector of lines L and R.

Since the orientation of the Gabor element is uniformly distributed, the values for ω are equiprob-
able in [ϕ

2
, π
2
− ϕ

2
], and so are the values in [π

2
− ϕ

2
, π
2
]. The probability density function for ω, given

a fixed ϕ can therefore be written p(ω|ϕ) = a1[ϕ
2
,π
2
−ϕ

2
)(ω) + b1[π

2
−ϕ

2
,π
2
](ω).

295



Samy Blusseau, Rafael Grompone von Gioi

L

R

ϕ

ω = αL

ω = αL

ω = αR

ω = αR

Figure 20: For a fixed ϕ, depending on the orientation of the Gabor element, the angle ω =
max(αL, αR) is equal to αL or αR. Here we represent the different cases according to the orien-
tation of the Gabor element.

L

R

ω = αL

A

B
C

D

ϕ
2

π
2

ϕ
2π

2π
2

ϕ
2

Figure 21: Analysis of the distribution of ω when the Gabor element is oriented in the bottom right
sector. The letters A, B, C and D mark four key orientations in the analysis. The angular values
reported next to them are the corresponding values for ω, and not the orientation of the Gabor
element.

Also, the probability that ω be in the first interval is equal to the probability that the Gabor
element be oriented between A and B, that is 2

π
(π
2
− ϕ); similarly, the probability that ω be in the

second interval is equal to the probability that the Gabor element be oriented between B and D,
that is 2ϕ

π
. This allows to deduce the values of a and b, which gives the following probability density

function for ω, given a fixed ϕ

p(ω|ϕ) =
2

π
1[ϕ

2
,π
2
−ϕ

2
)(ω) +

4

π
1[π

2
−ϕ

2
,π
2
](ω), (27)
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and the corresponding cumulative distribution function is then

P(Ω ≤ ω|ϕ) =


0 if ω < ϕ

2

2
π
(ω − ϕ

2
) if ϕ

2
≤ ω < π

2
− ϕ

2

4ω
π
− 1 if π

2
− ϕ

2
≤ ω ≤ π

2
.

(28)

Equations (27) and (28) can be represented as a vertical slice at a given value of ϕ, in Figure 22 A
and B respectively.

We are interested in the cumulative distribution F (ω) = P(Ω ≤ ω) which results from integrating
Equation (28) with respect to ϕ between 0 and π

6
. The result is divided into three cases corresponding

to the three parts of the distribution as observed in Figure 22 B, for ω < π
12

, for π
12
≤ ω < 5π

12
, and

for 5π
12
≤ ω. A short computation gives the result

F (ω) = P(Ω ≤ ω) =



12
π2ω

2 if 0 ≤ ω < π
12

2
π
ω − 1

12
if π

12
≤ ω < 5π

12

12
π2ω

2 − 8
π
ω + 2 if 5π

12
≤ ω ≤ π

2
.

(29)

ω

ϕ0 π
6

π
2

π
12

5π
12

P(    <    )Ω ω

ω

ϕ0 π
6

π
2

π
12

5π
12

A B

Figure 22: A: Representation of the joint distribution of ϕ and ω, given that ϕ is uniformly distributed
in [0, π

6
]. Three regions are defined by the lines of equation ω = ϕ

2
and ω = π

2
− ϕ

2
. B: The

corresponding cumulative distribution function.
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