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Abstract

We present a novel method for locating large amounts of local matches between images, with
highly accurate localization. Point matching is one of the most fundamental tasks in computer
vision, extensively used in applications such as object detection, object tracking and structure
from motion. The major challenge in point matching is to preserve large numbers of accurate
matches between corresponding scene locations under different geometric and radiometric con-
ditions, while keeping the number of false positives low. Recent publications have shown that
applying an affine transformation model on local regions is a particularly suitable approach for
point matching. Yet, affine invariant methods are not used extensively for two reasons: first,
because these methods are computationally demanding; and second because the derived affine
estimations have limited accuracy. In this work, we propose a novel method of region expansion
that enhances region matches detected by any state-of-the-art method. The method is based
on accurate estimation of affine transformations, which are used to predict matching locations
beyond initially detected matches. We use the improved estimations of affine transformations
to locally verify tentative matches in an efficient way. We systematically reject false matches,
while improving the localization of correct matches that are usually rejected by state-of-the-art
methods.

Source Code

The source code and documentation are available from the web page of this article1. The code
is mainly a Matlab code that requires some Matlab toolboxes detailed in the ReadMe.txt file
attached to the source code. Specific instructions on how to run the code, including some other
dependencies, are also found in the ReadMe.txt file.

Editorial Warning: This paper appears as a useful supplementary material and online illustration
of the SIIMS paper [5]. The referees have not confirmed that the published text is an accurate or
complete account of the published code.
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1 Introduction

Point matching, the process of finding corresponding scene points in two images, constitutes a funda-
mental challenge in many computer vision problems and applications. The problem inherent in point
matching is that the image of a patch around a particular point of a scene can vary dramatically as
a result of variations in the pose of the camera, the lighting conditions, and the camera specifica-
tions. A key factor leading to variability in the appearance of a patch is its geometric transformation
across different views. For smooth surfaces, this variability can be approximated locally by an affine
transformation. Thus, assuming we have small patches around corresponding points that lie on a
smooth surface of the scene, the geometric transformation between them can be well approximated
by an affine transformation. This approach has been explored in many previous works for finding
point correspondences [12, 11], but most of the methods used today for point matching do not ex-
ploit affine transformations. As shown, for example in [9, 2], for many applications it is sufficient
to consider the effect of two dimensional translation, scale (zoom) and rotation around the optical
axis (which are a subset of the affine model). Methods neglecting affine transformations (and other
sources of variability) will usually produce many false matches, which then have to be filtered out
in later stages of the algorithms [7] and will also result in the loss of many other potential matches.
In [11], a method to adaptively normalize the affine shape of every point match is suggested. In [10]
a method to normalize the affine transformation of detected regions is suggested. In [12], a method
to simulate the space of affine transformations is suggested. These methods offer a considerable
improvement in terms of accuracy in position and performance vis-à-vis methods that neglect these
geometric variations [9, 2]. The fact that affine-based methods are not frequently used is either due
to numerical reasons, since corresponding regions do not contain enough information to accurately
estimate the affine transformations (like in [11, 10]); or for computational reasons, when trying to
simulate such transformations [12]. A possible solution to the numerical challenge is simply extract-
ing larger features from each image. But, while allowing better affine transformation estimation
in some cases, extracting larger features might prohibit the affine model (which is usually a local
approximation) in many other cases. In [12], it is shown how simulating a finite set of affine trans-
formations on a given image, outperforms the affine normalization (e.g. MSER) based methods in
many different examples, especially when the affine transformation includes a hard tilt. In practice,
this approach offers a promising way of by-passing the numerical challenges of affine estimation from
small patches. In this work, we suggest an algorithm to estimate affine transformations and create
a matching scheme which takes affine transformation fully into account. The algorithm can be used
on top of any state-of-the-art method (e.g. SIFT, MSER), with little extra computational demand.

1.1 Point Matching

The process of finding point matches usually comprises four stages:

1. Feature Extraction. Finding potential candidate points (a.k.a features), for example corners [13,
8], blobs [9], or level-line based regions [10].

2. Feature Description. Attaching to each potential candidate a descriptor [9, 2, 1, 3] that con-
siders a small image patch around it (the descriptor must be invariant to any variations that
the patch might undergo).

3. Descriptor Matching. Applying some metric to find potential matches, assuming that points
that correspond to the same physical patch in the scene should provide similar descriptors, and
those that correspond to different points should provide different descriptors.
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4. False Match Rejection (Optional). This is usually achieved assuming and verifying global
transformations using methods such as RANSAC [7].

Since false matches are a seemingly unavoidable artifact of common point matching solutions, stage
4 is essential. Specifically, tuning point matching solutions for finding more matches will usually
result in finding more false matches. While these false matches may prove harmful for many tasks,
systematically eliminating them has still remained a challenge. The most common approach for
eliminating false matches [7, 4], is based on an assumption that detected matches agree on some
global geometric model (e.g. co-planar). This enables the detection of a sub-set of the matches that
strongly agree on a consensus model. Matches that disagree on the consensus model are considered
outliers and thus rejected. This paradigm encapsulates two key caveats:

1. Efficiency. Most methods address stage 4 only after completing stages 1-3. In practice, a
considerable amount of matches detected in stages 1-3 are discarded in stage 4. The need to
discard many candidate matches raises both functional and computational issues. Specifically,
there are two main concerns: 1) Increasing the rate of false matches (outliers) could significantly
increase the number of iterations required to detect a sub-set of correct matches; 2) Significant
computational resources are dedicated to detecting and describing matches that are eventually
discarded.

2. Global Model Existence. False match elimination also relies on the existence of a global geo-
metric model. While this is easily the case for rigid planar surfaces (modeled by perspective
transformations) or any other rigid smooth surfaces, global geometric models are much less
applicable in the general case where the scene is only piecewise-smooth, or perhaps composed
of separate dynamic parts (imagine two different cars on a road).

In this work, we implement stage 4 using a local analysis and integrate it along with stages 1-3
in order to avoid falsely detected matches in early stages, such that most detected matches do not
demand any further iterative global analysis. We show that these local considerations can be applied
on any locally smooth surface of the scene with no regard to global geometric assumptions.

2 Region Expansion

In this section, we present a method that both dramatically improves the results of local affine
transformation estimations and locates a massive number of accurate point matches between images.
The method is also very useful in detecting false or inaccurate matches for rejection. We start by
giving an overview of the method, and then give the details in the following sub-sections. As we
illustrate in Figure 1a, the inputs to the region expansion mechanism are region matches between
two images (source and target) produced by any standard region matching algorithm (specifically,
we chose MSER for this explanation). Each of these matches, which we designate phase-zero point
matches, also contains the information about the feature shape in each image (in MSER, this is given
by the affine normalization method), which we utilize to extract the local affine transformations
between the corresponding matched features. The basic idea is to enhance each phase-zero match
separately to produce a set of accurate output matches from each input match. Specifically, we have
three goals:

1. Locate many new accurate local matches.

2. Substantially improve the local transformation estimation.

3. Eliminate false phase-zero matches.
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(a) The overall proposed system.

(b) The flow of region expansion.

Figure 1: High-level and low-level flows: (Blue - Location info; Green - Transformation info.)

As we roughly illustrate in Figure 1b, the core idea behind region expansion is to treat each phase-
zero match as a region match and try to expand the area of the matched region, while taking into
account the knowledge of the local affine transformation (designated Ĥ0). This will help us to achieve
goals 1 and 2. Expanding the area (Algorithm 2) is done by first predicting the location of sample
points around the initial region using the knowledge of the local transform, and then refining this
prediction by scanning the image around the predicted locations (sub-Section 2.1), and thus locating
new point matches. This scanning procedure, which also introduces contextual data of the initial
region match, is used for rejecting false or inaccurate phase-zero matches and thus for achieving
goal 3 (sub-Section 2.3). Finally, we use the new matches to re-estimate the transformation of the
expanded region with significantly higher accuracy than the initial estimation (sub-Section 2.2), this
re-estimation enables us to perform further expansion iterations, as long as the local affine model is
preserved.

2.1 Expansion from Correct Matches

This section describes the initial analysis done by the proposed expansion algorithm. The motivation
here is first to verify the given tentative region match, and then to improve every positively verified
match and achieve higher accuracy and spatial coverage. The algorithm is formally described in
Algorithm 2, and explained in this section.
Given a region in the source image, we sample the area around it with N evenly spaced points in
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Algorithm 1 The Expansion Algorithm (overview)

Inputs:
Isrc, Itgt - Two gray-scale images (accessible to all methods)

{π(sin)
i , π

(tin)
i }i=1,...,K - A set of 2D correspondences between Isrc and Itgt (“phase-zero” matches)

{Hsi}i=1,...,K -The 3× 3 affine normalizing matrices describing the shape of the feature π
(sin)
i .

{Hti}i=1,...,K -The 3× 3 affine normalizing matrices describing the shape of the feature π
(tin)
i .

Outputs:

{π(sout)
i , π

(tout)
i }i=1,...,M - Refined correspondences between Isrc and Itgt (“phase-one” matches)

1: π(sout) = ∅, π(tout) = ∅
2: for 1 ≤ i ≤ K do
3: PA = extractPrincipalAxes(Hsi)
4: Ĥ0 = (Hti)

−1 ·Hsi . Build affine transformation matrix
Default number of samples N = 9. Default expansion factor α = 1.5. Default further expansions FI=2.

5: (wasExpanded,[πs,πt]) = regionExpansion(π
(sin)
i , PA, Ĥ0, N , α, FI) . Algorithm 2

6: if wasExpanded then
7: π(sout) = π(sout) ∪ πs
8: π(tout) = π(tout) ∪ πt
9: end if

10: end for

(a) Expanding beyond a phase-zero point to the

new samples π
(s)
i=1..9

(b) Finding π
(t)
i=1..9 as the centers of the green par-

allelograms. Red parallelograms are the prior esti-

mations Ĥ0(π
(s)
i=1..9).

Figure 2: Example of region expansion and correction of point matches. N = 9 phase-one matches are produced.

an area α times larger than the given region (see illustration in Figure 2a for a rectangular shaped
sampling, where N was set to 9, and α was set to ∼ 3. In the implementation attached to this
manuscript, we scatter the samples in an elliptic shape). Our aim is to match each sample point π

(s)
i

in the source image, to a corresponding point π
(t)
i in the target image to produce what we designate

a phase-one point match. Using the given estimated transformation of the region between the two
images (designated Ĥ0), we obtain an initial prediction of the location and pose of each of the cor-

responding points in the target image (Figure 2b - red parallelograms). For a given point π
(s)
i , this

initial prediction allows us to scan around a predicted location in a constrained search window with
the aim to find a better corresponding point π̂

(t)
i . This search can be performed in many different

ways, but since we have the estimated transformation of the search window, we can use a Normalized
Cross Correlation (NCC) scanning algorithm. The template for the NCC procedure is deduced from

a small patch around π
(s)
i . We use this patch as a template in order to find the maximal response
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Algorithm 2 The top-level region expansion procedure given a single phase-zero match

procedure regionExpansion(X0, PA, Ĥ0, N , α, FI)
Inputs:
X0 - A 2D vector denoting the location (in the source image) of the phase-zero point
PA - A 2D matrix built from the principal axes of the phase-zero region as columns
Ĥ0 - The initially estimated affine transformation induced by the given match
N - A scalar parameter indicating how many new points to sample in each expansion
α - A scalar parameter indicating how much to expand (default value: 1.5)
FI - A scalar parameter indicating the number of further expansions
Outputs:
wasExpanded - Indicating whether the phase-zero match was successfully expanded
π(sout), π(tout) - Two corresponding lists of 2D points (phase-one matches)

1: [π
(s)
i , π

(t)
i ]i=1,2..N = expansionLoop(X0, PA, α, Ĥ0, N)

2: Robustly re-estimate the affine transform Ĥ from the pairs [π
(s)
i , π

(t)
i ]i=1,2..N . sub-Section 2.2

3: if robust estimation fails then
4: return (False,NULL) . Match is rejected in lack of affine consistency
5: end if
6: [π

(s)
i , π

(t)
i ]i=1,2..K≤N ← the inlier subset of [π

(s)
i , π

(t)
i ]i=1,2..N

7: Repeat 7-11 FI times:
8: X0 ← the centroid of the set π

(s)
i i=1,2..K

9: PA ← the principle axes of the set π
(s)
i i=1,2..K

10: [π
(s)
i , π

(t)
i ]i=1,2..N = expansionLoop(X0, PA, α, Ĥ, N)

11: Robustly estimate the affine transform Ĥ from the pairs [π
(s)
i , π

(t)
i ]i=1,2..N

12: [π
(s)
i , π

(t)
i ]i=1,2..K≤N ← the inlier subset of [π

(s)
i , π

(t)
i ]i=1,2..N

13: return (True, [π
(s)
i , π

(t)
i ]i=1,2..K)

end procedure
—————————————————————————————————————————

procedure expansionLoop(X0, PA, α, Ĥ, N)
1: Π(s) ← N evenly-spaced points around X0, in an ellipse defined by α · PA
2: for all π

(s)
i ∈ Π(s) do

3: π
(t0)
i ← Ĥ · π(s)

i

4: Crop a patch P around π
(s)
i in the source image, to use as a template

5: Use P to scan around the corresponding π
(t0)
i in the target image

6: Obtain π
(t)
i as the patch maximizing the NCC with P

7: end for
8: return [π

(s)
i , π

(t)
i ]i=1,2..N

end procedure
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within the search window in the target image. We do this for all N sampled points and obtain N
corresponding points in the target image (Figure 2b - green parallelograms). These points are consid-
erably more accurate than the initial predictions, due to the contribution of the scanning algorithm.
It should be noted that as long as the N templates are disjoint, phase-one matches are obtained
independently of each other (given the initial affine transformation), while most of them (those that
fall outside the phase-zero region) incorporate new information from the scene with respect to the
phase-zero region. Thus, they are necessarily not redundant with respect to each other and with
respect to the phase-zero match, while being considerably more accurate than the phase-zero match,
since they maximized the NCC.

2.2 Re-Estimation of the Affine Transform

Following the expansion process described in sub-Section 2.1, we examine the contribution of the
new phase-one matches to the estimation of the affine transformation. Since each 2D location π

(t)
i

in the target image is considerably more accurate than the initial prediction π
(t0)
i , these matches can

be viewed as a series of 2D corrections to the initially estimated affine transform of the region, and
can thus be fed back in order to re-estimate the affine transform of the expanded region. We note
that while the proposed match scanning algorithm cannot optimize all the parameters of the affine
transform in every scanned point separately, its ability to refine the location of each point relative to
the prediction allows the re-estimation of the affine transformation from all located correspondences
together (we need at least three, since there are six degrees of freedom). Relative to previous
work [6, 15], this replaces a single non-linear six-dimensional optimization used to optimize the affine
transformation estimation between two regions, with a series of N two-dimensional optimization
problems that can be solved using a simple linear procedure such as NCC.
Given the corrected locations π̂

(t)
i=1..N , the affine transformation between π̂

(s)
i=1..N and π̂

(t)
i=1..N is re-

estimated using the Linear-Least-Squares estimator. This new estimation (Ĥ1) is more accurate
than the initial estimation (Ĥ0). When the expansion factor α is chosen properly, this improvement
is proportional to α [5]. This improved estimation can be used to extend the region even further in
the same manner, as long as the affine model is preserved (see Algorithm 2).
We note the importance of an accurate affine transformation in predicting the locations of the
corresponding points in the target image. The prediction error of a point increases linearly with the
distance of the point from the original region. Thus, a prediction error of ±3 pixels for predicting
a location of a 4-pixel-distant point, becomes a prediction error of ±30 pixels for a 40-pixels-distant
point. Intuitively, a large prediction error reduces the chance of finding accurate point matches.
Therefore, region expansion is limited by the accuracy of the affine estimation. Indeed, a very accurate
estimation would allow larger expansions (as long as the affine model is preserved). Estimation
correction is especially helpful in cases where the initial number of phase-zero matches provided is
low due to a significant change of pose. An accurate affine estimation then serves for additional
and further expansions in a similar manner to sub-Section 2.1, thus yielding many more new point
matches and in turn re-improving the affine estimation.

2.3 Rejection of False Matches using Local Context

The expansion mechanism can also be used for rejecting false phase-zero matches. Given a false
phase-zero match, it is very unlikely that the surroundings of the corresponding regions will be
related by an arbitrary affine transformation. This fact is used to create a mechanism for rejecting
false matches. When sampling around a phase-zero region in the source image with the aim to expand
it, we expect the affine transformed samples to roughly correspond to points within the search window
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(a) Sampling around the initial point (blue) to
match new points (red).

(b) Failure to match new points: The location of
the new points is predicted (see numbers for corre-
spondence), but the underlying image is very dif-
ferent from that expected.

Figure 3: A false match through the eyes of the expansion mechanism: The expansion process fails and the zero phase
match (blue parallelograms) is declared false.

in the target image. When the phase-zero match is, in fact, a false match, these correspondences
(phase-one matches) should be obtained with low probability (designated pfa << 1).
In order to approve a tentative phase-zero match in the process of expansion, we demand at least
four approved phase-one matches among the samples (at least three for affine estimation + one
for verification). In order to classify the matches (approve/disapprove), simple thresholding on the
maximal NCC can be used. For better performance, we use the delta-criterion approach described
in [5]. For N samples around a false phase-zero match, we assume that given a false match, the
approval of different points is independent. Thus, the joint probability of at least four of them being
approved in a typical case of N = 16 and pfa = 0.03, is P joint

fa w 0.013, which is given by a binomial
distribution. In addition, for any set of approved phase-one matches around a tentative phase-zero
match, we check the affine consistency (Algorithm 2), as we assume that matches are spatially close
enough to be related by a single affine transformation. A set that is not affine consistent within
itself is rejected in the expansion procedure. This procedure helps us reduce the rate of false matches
even further. In our tests on a standard data-set, we observed that the probability of our expansion
mechanism to approve a false phase-zero match is P consistent

fa w 0.003. In Figure 3, we present an
illustration of a rejection scenario. The similarity of the phase-zero matches (patches within the blue
parallelograms) is high and leads to a false match. Expanding beyond this initial match reveals a
dissimilarity in the surroundings (corresponding patches in the red parallelograms are dissimilar) and
the match is rejected.
We note that this mechanism might sometimes reject well-localized phase-zero matches with very
inaccurate transformation estimation, because the search windows for locating phase-one matches in
the target image will be very inaccurately localized. From a statistical standpoint, these cases are
very rare compared to the amount of false phase-zero matches.

2.4 A Note on Algorithm Parameters

In the description of the expansion algorithm above, we have encountered three main parameters
that influence the performance of each individual expansion procedure:
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1. The expansion factor α. This choice introduces delicate considerations which are beyond the
scope of this manuscript and are available in the journal paper version of this work [5]. As a
simple intuition, we note that while choosing a small α (∼ 1) restricts the positive effects of
the expansion, choosing a large α (>> 1) increases the error of predicting new samples, and
the risk of exceeding the locality of the affine region.

2. The number of further expansions FI. This choice introduces a simple trade-off between compu-
tational load and performance, where performing more expansion iterations linearly increases
computations, but also enables the location of more matches and better scene coverage (up to
the affine region limitation)

3. The number of samples N . This choice again introduces a trade-off between computational load
and performance, where increasing N means performing more match scanning operations, but
also produces more new matches and linearly improves the precision of the affine estimations [5].
In practice, it is reasonable to relate the N to the actual area of the expanded region in order
to provide a dense enough cover from one hand, and avoid redundancy on the other. Thus, we

denote the more meaningful parameter here ρ ,
N

A
where A is the area of the expanded region

in pixels.

In the next section, we also include an empirical examination of the effects of α, FI and ρ on the
algorithm’s result. For a more complete understanding of these parameters and their theoretical
significance, we address the reader to [5].

3 Empirical Evaluation

We have tested the proposed algorithm while varying two crucial factors: 1) Using different state-of-
the-art methods as “phase-zero” initialization of our algorithm; 2) By allowing the system to perform
variable expansion steps in order to produce more point matches. For reference (a before/after test),
we have compared the results to each phase-zero mechanism accordingly used. For examining the
performance of point matching algorithms, there are two crucial criteria: the amount of correct
matches (inliers) and their precision. As phase-zero initializers we have used MSER [10], for which
we used code from [14], combined with a SIFT descriptor; and the Harris-Affine detector [11],
using code from [14] (which outperformed the binaries supplied by the authors). We varied the
amount of allowed expansions between 1 and 7. We have tested all methods and variants on 12
images [“Graffity” + “Wall” sets] coming from the Affine Covariant Features website2, that focus
on performance under various view angles. The ground truth homography was also taken from the
same website and was used to measure the match error of every detected point. The match error
is computed as the euclidean distance between the projection of the source point using the ground
truth homography, and the location of the corresponding target point as detected by each of the
algorithms. We treat all matches with pixel error smaller than 5, as “inliers”. We examine the
performance across the different parameters of the algorithm and compare it to the performance of
the respective phase-zero methods:

1. Varying FI. In Figure 4 we show the performance when allowing varying amounts of expan-
sion iterations (the histogram count is the average under all image pairs in the data-set). In
Figure 4a, we show the performance when using MSER as the phase-zero matching algorithm,
while in Figure 4b we see the corresponding results when using Harris-Affine as the phase-zero
algorithm. X1, X3, X5, X7 denote the allowance of 1, 3, 5 or 7 expansion steps of the proposed

2http://www.robots.ox.ac.uk/~vgg/research/affine/index.html, Accessed: 2014-01-29
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algorithm (labeled REX). In these experiments α was set to 1.5 in the first expansion step,
and to 2 in all further expansion steps, while ρ was set to 0.0625. We observe how under both
phase-zero initializations, the proposed algorithm was able to significantly improve the rate
of inliers, while dramatically increasing the amount of matches. The shape of the histogram
is related to the precision of the matches. We observe that while the REX match errors are
concentrated around 0.5 pixels, the shape of the histogram is preserved under more expansion
steps, indicating that the precision is preserved while the amount of correct matches is signifi-
cantly increased. The slight drop of the inlier-rate when performing more expansion steps can
be ascribed to a slight breakage of the affine transformation under the perspective transform
introduced by some image pairs in the data-set.

2. Varying α. In Figure 5 we show the performance when varying the expansion factor. In these
experiments, the sample density ρ was set to 0.0625, while only one expansion step was allowed
(FI=1). We note that as ρ remains constant, the amount of samples N per expanded region,
actually increases with α. Thus, we expectedly see an increase in the amount of matches when
increasing α up to a certain point. The small drop in performance between α = 2.5 and α = 3
can be ascribed either to the inaccuracy of the initial affine estimations, or to the breakage
of the affine model under the perspective transform introduced by some image pairs in the
data-set.

3. Varying ρ. In Figure 6 we show the performance when varying the sample density when
locating new matches. In these experiments, the expansion factor α was set to 1.5, while only
one expansion step was allowed (FI=1). As expected, the amount of matches increases with
sample density. We note that for many cases of small regions, setting ρ = 0.03125 translates
to taking N < 4 samples, which is below the limit of the algorithm. In those cases we had
to add samples to complete at least 4 samples. Thus the difference between ρ = 0.03125
and ρ = 0.0625 is well reflected in Figure 6. We conclude that choosing small values such as
ρ = 0.03125 for cases of small regions, is actually not recommended.

(a) Expansion over MSER initialization. (b) Expansion over Harris-Affine initialization.

Figure 4: Histograms of point matching errors (only inliers are counted) with varying amounts of allowed expansion steps.
α is set to 1.5 in the initial expansion, and fixed to 2 in all further expansion steps, while ρ is fixed at 0.0625. The total
amount of matches increases with the amount of allowed expansion steps, while the inlier-rate remains almost constant.
For better visualization, the graphs are drawn as continuous plots, but represent discrete information.
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(a) Expansion over MSER initialization. (b) Expansion over Harris-Affine initialization.

Figure 5: Histograms of point matching errors (only inliers are counted) with different expansion factors. ρ is fixed at
0.0625, and only one expansion step is allowed (FI=1). The total amount of matches increases with α, up to a point
(α = 2.5), where increasing α actually reduces the amount of matches. For better visualization, the graphs are drawn as
continuous plots, but represent discrete information. .

(a) Expansion over MSER initialization. (b) Expansion over Harris-Affine initialization.

Figure 6: Histograms of point matching errors (only inliers are counted) with different sample densities. α is fixed at 1.5,
and only one expansion step is allowed (FI=1). The total amount of matches expectdly increases with the sample density,
but not linearly. For better visualization, the graphs are drawn as continuous plots, but represent discrete information.

4 Computational Analysis

The computational complexity of the proposed algorithm is significantly lower than that of ASIFT
and comparable to that of the other tested algorithms. In this computational analysis, we assume
that only one iteration of region expansion was performed for each phase-zero match. The first stage
constitutes of applying MSER matching. We assume that MSER matching produces N0 phase-zero
matches between the two images. Now, we apply expansion from each of the N0 regions to N1 new
phase-one points. For each phase-one point, we apply the match scanning algorithm (thus running
the scanning algorithm N0 × N1 times). The computational complexity of the correlation-based
scanning algorithm is O((Ws log2(Ws))/(Ws − Fs)), where Fs is the area of the template, and Ws is
the area of the search window. Thus, we have a complexity of O(N0×N1×(Ws log2(Ws))/(Ws−Fs)).
In this work, we set Fs = 33 × 33, Ws = 49 × 49, and typically N1 is between 9 and 16. Thus, in
practice, we have added not more than N0 × 3.5× 103 simple operations over MSER, which is near
linear in the image size [10] and is considered a low complexity feature detector. Since N0 is typically
linear in the image size, the complexity of the entire proposed algorithm is linear in the image size.
To gain proportion, the total computation time (including MSER) is about twice the computation
time of MSER matching alone.
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5 Summary

The ability to estimate the affine transformation accurately, using simple initializers such as local
region matches, and then considering larger regions, enabled us to obtain the accuracy benefits of
considering the full affine set of transformations without the computational demand of state-of-the-
art methods. Moreover, we showed a novel way to reject false matches, which is a crucial ability in
many applications, without the need to consider cross-scene complex geometrical transformations.
The results achieved by the proposed method are considerably better than those produced by any
state-of-the-art technique. There are therefore three fundamental practical implications of this work:
1) making very accurate estimations of local affine transforms; 2) increasing the number of point
matches; and 3) increasing the percentage of inliers. The ability to expand any point match to a
larger region enabled us to analyze large portions of the scene, which could not have been analyzed
by any existing local region detector. The expansion concept may also be generalized beyond affine
or even planar regions to cover higher dimension surfaces of the scene, which will allow for better
coverage of general scenes.

Image Credits

All images in this manuscript were taken either from the “Affine Covariant Regions” dataset3 or produced

by the authors (license CC-BY-SA).
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