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Abstract

This paper is devoted to a rigorous implementation and to an exhaustive comparison of video
stabilization techniques. These techniques aim at removing the undesirable effects of camera
shake. They first estimate a global transform from frame to frame, which can be a translation,
a similarity, an affine map or a homography. This generates a signal that can be smoothed
and used to compensate the noisy transform signal. This paper compares all classic smoothing
methods and their boundary conditions. It also analyzes two algorithms to crop the video after
stabilization. The stabilization results are displayed in a scale-space form permitting to extract
valuable information about ego-motion such as its frequencies and its general tendencies.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instructions are included in the README.txt file of the
archive.
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1 Introduction

Video stabilization is the process of estimating the undesired camera motion and warping the images
to compensate for it. This is useful, for example, for videos taken with hand–held cameras, which
are often jittery.

Video stabilization has four main steps: motion estimation, motion compensation or smooth-
ing, image warping and, finally, cropping to remove the empty regions that appear at the border of
the frames. A good homographic stabilization also delivers a multi–scale eight parameter temporal
stabilization signal, which we call a stabilization scale–space. This scale–space yields a reliable esti-
mation of the main intrinsic properties of the video, including a multi–scale understanding of camera
ego-motion parameters such as pitch, roll, yaw and zoom, and of their main frequencies in a sliding
window.

We shall first review briefly the main techniques that have been proposed for this complex prob-
lem. 3D stabilization techniques are the most sophisticated ones as they reconstruct the cam-
era trajectory through external camera calibration and an estimation of the 3D structure of the
scene [7], [30], [52], [36], [15], or [61]. Several methods also combine 2D and 3D strategies [35], [15],
for instance, by estimating only the epipolar geometry or involving extra information by depth cam-
eras [38]. Here we shall only deal with simpler 2D strategies that assume no external information
about the 3D camera path. An estimate of the motion between successive frames is the only used
information. These can involve optical flow [40] or instead estimate a parametric planar transform
from frame to frame, such as a translation, a similarity, an affinity, or a homography.

Why homographies? Homographies are the adequate model for the effect on the image of a
moving pinhole camera motion filming remote and steady objects. They also are the right model for
the effect on the image of a rotation of the camera around its optical center. This model is widely
used for creating panoramas.

Motion estimation: Classic methods [20, 45, 46, 60] either use correlation techniques or track
salient points such as Harris corners [21] using, e.g., a KLT tracker [42, 51]. Pyramidal structures
are typically used for estimating large displacements [43, 18, 48].

When estimating a parametric deformation model, affinities are often preferred to homogra-
phies [20, 34, 43], as they avoid introducing important deformations. Even more restrictive pa-
rameterizations such as translations [27, 60] or similarities [45] are sometimes recommended. An
alternative is estimating a 3D camera rotation model [13, 48], which nevertheless requires the es-
timation of a focal distance. When dealing for example with strong camera jitter combined with
a rolling shutter, it may be necessary to estimate a set of transformations for each frame instead
of a single parametric model [17, 35, 39, 23]. Parametric motion estimation can also be based on
smoothed optical flows [40]. This is, however, computationally expensive. The use of optical flow
has been alleviated in [37] using a mesh of motion vector candidates instead of the full optical flow.
These motion candidates are obtained through FAST features [58] and a KLT tracker. In any case,
these methods rely on parametric models for initializing the motion estimates.

In this work, our focus is not on the image matching method. In the code and online demo, we use
a classic feature–based technique [44], which relies on SIFT features [41], and a direct method [49],
which implements the inverse compositional algorithm [4, 3]. Direct methods are usually faster but
more sensitive to brightness changes and outliers. Feature–based methods depend on the type of
selected features. They are typically more sensitive to noise and motion blur, but allow to estimate
stronger deformations [56].
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Motion compensation. Motion compensation estimates a transformation for each frame that
reduces the effect of camera shake. The compositional approach [45, 20] compensates directly the
images with respect to a reference frame, which makes sense if the camera is static. For smoothing
arbitrary camera motions Gaussian smoothing is recommended [46, 43, 25] but robust L1 regulariza-
tion strategies have also been proposed [18, 40] to maximize the size of the cropping window. Another
way is to approximate the smooth camera path by fitting a polynomial curve [8] or by segmenting
the camera path to define an adaptive smoothing.

Image warping and post–processing tasks. In the final step, the images are warped accord-
ing to the calculated smoothed motion. This produces empty regions at the border of the im-
ages. Crop&Zoom is the most widely used strategy for eliminating these empty regions [17]. A
more sophisticated alternative is video completion, which fills these regions by inpainting from other
frames [34, 62, 9, 2], sometimes guided by optical flow [43]. These methods are obviously risky and
impose delicate dynamic blending strategies [57, 6]. On the other hand, motion blur is revealed by
stabilization [29] and requires again sophisticated strategies to transfer sharp information from other
frames [43].

Scale-space and the frequency analysis. Scale-space theory [63, 28, 31, 32, 32] amounts to
analyze a signal or an image by convolving it with Gaussians of growing standard deviations. Scale-
space theory is the subject of several recent books [53, 33, 19]. It has been proposed to stabilize the
video gray scale distribution and to compensate flickering effects [11, 50]. Several works have used
parametric models between two successive frames in the video for the purpose of video indexing,
camera motion characterization, or ego-motion classification, such as [5] or [26]. The scale-space
analysis that we propose for video stabilization can also be used for other related tasks, such as
activity classification and detection [24], [54], [47].

Our plan is as follows: Section 2 introduces the general video stabilization framework and the
taxonomy of the motion compensation strategies, divided in the compositional and additive groups.
It also describes the crop and zoom strategy to mask empty spaces in the stabilization video by
cropping adaptively each frame. Section 3 compares the different compensation alternatives and
deduces from this choice a stabilization scale-space. Experiments demonstrate how it can be used
to compute reliable ego–motion characteristics. This section also describes the online experimental
setup associated with this paper. Conclusions are presented in Section 4.

2 Video Stabilization

Algorithm 1 shows a general framework for video stabilization, comprising four main processes:
The first one computes the transformations between successive frames; the second step smoothes
the trajectory; the third implements some post–processing tasks, such as the crop&zoom; and the
fourth warps the images to compensate the motion in each frame. Computing the frame to frame
transformations, {Hi,i+1} is the slowest process.

The last step consists in applying the smoothing transformations as

I′i(x) := Ii(H
′
ix). (1)

By abuse of notation, here H′ix represents the normalized point in image coordinates, i.e., H′ix =
(x′1/x

′
3, x
′
2/x

′
3, 1), and Ii(H

′
ix) = Ii(x

′
1/x

′
3, x
′
2/x

′
3).
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Algorithm 1: Video stabilization framework

Input : {Ii}
Output: {I′i}

1 Motion estimation({Ii},{Hi,i+1})
2 Motion smooting({Hi,i+1},{H′i})
3 Post processing({H′i})
4 Image warping({Ii},{I′i},{H′i})

I1

I 2
I3

I4 I5

I′1

I′2

I′3

I′4
I′5

H1,2

H2,3

H3,4

H4,5

H′
1

H′
2

H′
3

H′
4

H′
5

Figure 1: Illustration of the motion smoothing process. {Ii}i=1,..N is the initial image sequence, {Hi,i+1}i=1,..N−1 are
the computed transformations between consecutive images. {I′i}i=1,..N is the stabilized sequence and {H′i}i=1,..N are the
stabilizing transformations.

2.1 Motion Estimation

The motion estimation step receives a sequence of images, {Ii}, and computes a set of transforma-
tions, {Hi,i+1}, between successive frames, i and i+ 1, as illustrated in Figure 1.

The pixels of the images are related by the photometry consistency principle Ii(x) = Ii+1(Hi,i+1x),
where x = (x, y, 1) is the pixel position. These matrices may be, for example, any of the transfor-
mations given in Table 1, each of them depending on a set of parameters. These parameterizations
are typical of direct methods [56]. Note that the matrices and points are expressed in homogeneous
coordinates, so the image positions are obtained after normalizing by the third component. In the
following, we will use matrix notation or its corresponding parameterization indistinctly.

In this work, we use two motion estimation techniques. On the one hand, we use a feature–
based technique [44], which is based on SIFT features and RANSAC. In its current implementation,
it only estimates homographies between frames. The benefit of using SIFT and RANSAC is that
it can compute stronger deformations between the images with higher accuracy. In general, the
homographies are representatives of the background motion, where the number of inliers is usually
bigger. On the other hand, we use a direct method [49] implementing the inverse compositional
algorithm [4, 3], which is an improvement of the Lucas-Kanade Algorithm [42]. It can compute any
of the transformations in Table 1. This is faster than the previous method but more sensitive to
outliers. Their implementations are available in IPOL.
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Transform Parameters (p) H

Translation (tx, ty)




1 0 tx
0 1 ty
0 0 1




Euclidean (tx, ty, θ)




cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty

0 0 1




Similarity (tx, ty, a, b)




1 + a −b tx
b 1 + a ty
0 0 1




Affinity (tx, ty, a11, a12, a21, a22)




1 + a11 a12 tx
a21 1 + a22 ty
0 0 1




Homography (h11, h12, h13, · · · , h32)




1 + h11 h12 h13
h21 1 + h22 h23
h31 h32 1




Table 1: Typical planar transformations with their parameters and homogeneous matrix representations.

2.2 Motion Compensation

The objective of motion compensation is to obtain a new set of transformations that effectively
remove the undesired background motion. Given the transition background transforms {Hi,i+1},
which we assume henceforth to be correct, the aim is to obtain the stabilization deformations, as in
Figure 1.

The motion smoothing step obtains a new set of transformations, {H′i}, from the computed mo-
tions {Hi,i+1}. To that purpose, it applies a Gaussian convolution to the time series of transforma-
tions. We discuss the smoothing alternatives in the following section. {H′i} are the transformations
that must be applied to {Ii} to eventually obtain the stabilized images {I′i}.

The strategies for computing {H′i} can be classified in Compositional and Additive methods,
depending on whether they are based on the composition of transformations or the integration of
their coefficients, respectively.

2.2.1 Compositional Methods

Pure compositional approach. Compositional approaches are relevant for fixed cameras, for
which a reference background frame can be established.

Definition 1. We define the compositional approach as the process of calculating the transforma-
tions that compensate the images with respect to a reference frame. The transformations are obtained
by composing the relative motions between successive frames by

H′i = H1,i :=
N∏

j=2

Hj−1,j = Hi−1,iHi−2,i−1 · · ·H2,3H1,2. (2)

This is the technique used in the first works [20, 45] and it was usually combined with the
construction of mosaics. It is compatible with real–time processing, since each single frame can be
directly compensated. A simple iterative procedure is given in Algorithm 2.
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Algorithm 2: Compositional approach

Input : {Hi,i+1}
Output: {H′i}

1 H′1 ← Id // identity matrix

2 for i← 2 to N do
3 H′i ← Hi−1,iH

′
i−1

I1 Ii

I′i

H1,i

H′iH̃1,i

H̃
−1
1,i

Figure 2: Relation between the reference frame, I1, the actual frame, Ii, and the compensated frame, I′i.

If the camera is moving, then the compositional approach is very restrictive as it considerably
reduces the field of view of the video. It is necessary to smooth the transformations in order to
respect the main camera motion.

Compositional smoothing. The idea of compositional smoothing is illustrated in Figure 2. The
objective is to find the transformations {H′i} that relate {Ii} to {I′i}, so that the smooth transfor-

mations {H̃1,i} do not include the high frequency motion. The compositional smoothing approach
is the process of calculating the transformations that simulate a smooth registration of the current
frame with respect to a given reference frame.

Definition 2. We start from the compositional transition homographies H1,i defined by (2) and,
more precisely, from their eight matrix elements H1,i(p, q), where p and q are the row and column

index respectively. Consider the smooth homographies H̃1,i, whose elements H̃1,i(p, q) are obtained
through a convolution with a discrete Gaussian function of the series H1,i(p, q) as

H̃1,i(p, q) := (Gσ ∗H1,·)i(p, q) =
∑

j∈Ni

Gσ(j − i)H1,j(p, q), (3)

with Gσ(x) := We−
x2

2σ2 , Ni = {j : i − k ≤ j ≤ i + k}, and W := 1/
∑i=k

i=−k e
− i2

2σ2 a normalizing
coefficient. The compositional smoothing approach is defined by the following rectifying trans-
formations and image stabilized sequence

H′i := H1,iH̃
−1
1,i ; I′i(x) := Ii(H

′
ix}. (4)

Note that we are using the compositions with respect to the first frame and each element is
obtained as a weighted average of the elements of the composed homographies.
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Alternatively to Definition 2, the smoothing can be realized on the parameters of the transforma-
tions, p, as detailed in Table 1. For instance, if we use an Euclidean transformation, the parameters
to be smoothed are the translation, (tx, ty), and the angle of rotation, θ. Since they are treated
separately, the smoothing has a geometrical meaning.

However, for affinities and homographies, the smoothing is less intuitive and can be formalized
with the transformation matrices. In the case of similarities, it is possible to use another parametriza-
tion based on the translation (tx, ty), the scale factor λ, and the angle of rotation θ. These can be
easily obtained from the parameters in Table 1, and, again, the smoothing has a geometrical meaning.

Algorithms 3 and 4 implement this method and the corresponding discrete Gaussian convolution.

Algorithm 3: Compositional smoothing

Input : {H}, σ, bc
Output: {H′}
// compute transformations with respect to the initial reference frame

1 Hc
1,1 ← H1,1

2 for i← 2 to N do
3 Hc

1,i ← Hi−1,iH
c
1,i−1

// convolve with a Gaussian kernel; Eq. (3)

4 for i← 1 to N do

5 call Gaussian convolution({Hc}, H̃1,i, i, σ, bc)

6 for i← 1 to N do

7 H′i ← Hc
1,iH̃

−1
1,i

Note that the reference frame must also be stabilized. For this reason, we must introduce the
identity matrix at the beginning (H1,1 = Id) and also convolve it with a Gaussian function. The
method explained in [45] follows this scheme, although it combines both the motion estimation and
smoothing steps.

Boundary conditions for compositional smoothing. The Gaussian filtering of the sequence
of homographies requires specifying how to deal with the temporal boundary conditions at the
beginning and end of the time interval. When the smoothing radius goes beyond the limits of the
image sequence, several strategies can be envisaged.

Definition 3. Let {H1,i} be a set of transformations from each frame i to the reference frame 1 in
a time interval between 1 and N . We define constant boundary conditions by

H1,j :=

{
H1,1 if j < 1

H1,N if j > N
. (5)

We define Neumann boundary conditions in the range [−N + 1, 2N − 1] by

H1,j :=

{
H1,−j+1 if j < 1

H1,2N−j if j > N
. (6)
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Algorithm 4: Gaussian convolution

Input : {H}, i, σ, bc
Output: H̃i

1 radius← 3σ
2 if radius > N then
3 radius← N

// Gaussian convolution in each parameter separately

4 forall the (p, q) do
5 average← 0
6 sum← 0
7 for j ← i− radius to i+ radius do
8 value← 0
9 if j < 1 then

10 switch bc do
11 case CONSTANT BC
12 value← H1,1(p, q)

13 case NEUMANN BC
14 value← H1,−j+2(p, q)

15 case DIRICHLET BC
16 value← 2H1,1(p, q)−H1,−j+2(p, q)

17 else if j > N then
18 switch bc do
19 case CONSTANT BC
20 value← H1,N(p, q)

21 case NEUMANN BC
22 value← H1,2N−j(p, q)

23 case DIRICHLET BC
24 value← 2H1,N(p, q)−H1,2N−j(p, q)

25 else
26 value← H1,j(p, q)

27 gauss← e−
(j−i)2

2σ2

28 average← average+ gauss× value
29 sum← sum+ gauss

30 H̃i(p, q)← average/sum

We define Dirichlet boundary conditions in the range [−2N + 2, 3N − 1] by

H1,j :=





H1,−j+2 + 2H1,1 − 2H1,N if − 2N + 2 ≤ j < −N + 1

2H1,1 −H1,−j+1 if −N + 1 ≤ j < 1

2H1,N −H1,2N−j if N ≤ j < 2N

H1,j−2N+1 + 2H1,N − 2H1,1 if 2N ≤ j < 3N

. (7)

Constant boundary conditions replicate the first and last transformations beyond the scope of the
video. A consequence of this boundary condition is that, for large values of σ, the initial and final
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frames of the video are allowed to move from their original positions. In the Neumann boundary
conditions, the derivative of the homographies is constant in the boundaries. These conditions are
accomplished by reflecting the values on both ends. Again, this allows the initial and final frames to
move from their original positions. The goal of Dirichlet boundary conditions is, by an odd reflection
across the temporal boundaries, to ensure that the initial and final frames do not move, namely to
obtain at the boundaries the equivalent to the original matrices. With these boundary conditions,
the first and last frames will coincide with the original video. Note that, in practice, it is sufficient
to take into account the two inner conditions because they already contain the video sequence.

Compositional local smoothing. The compositional local smoothing approach is the process
of calculating the transformations that create a smooth motion path of the video with respect to
a given reference frame. The main difference with respect to the previous approach is that the
transformations are smoothed locally and then composed with the original transformations.

Definition 4. Given the following convolution with a Gaussian function,

H̃i,i+1(p, q) := (Gσ ∗ {H})i(p, q) =
∑

j∈Ni

Gσ(i− j)Hj,j+1(p, q), (8)

the compositional local smoothing is defined by the rectifying transformations

H′i :=
i∏

j=1

(
Hj,j+1H̃

−1
j,j+1

)
=
(
Hi,i+1H̃

−1
i,i+1

)(
Hi−1,iH̃

−1
i−1,i

)
· · ·

· · ·
(
H2,3H̃

−1
2,3

)(
H1,2H̃

−1
1,2

)
. (9)

The stabilized image sequence is defined by (1), I′i(x) := Ii(H
′
ix}.

This relation is similar to the compositional smoothing approach in Figure 2, where the new
matrix represents the desired smooth local increment. This method is mentioned in [43]. The

expression Hi,i+1H̃
−1
i,i+1 removes the original local shake and introduces a smooth increment.

The steps are explained in Algorithm 5 and the Gaussian filtering is given in Algorithm 6. The
first matrix must be initialized to the identity matrix: H′0 ← Id.

Algorithm 5: Compositional local smoothing

Input : {H}, σ, bc
Output: {H′}
// convolve with a Gaussian kernel; Eq. (3)

1 for i← 1 to N do

2 call Local Gaussian convolution({H}, H̃i, i, σ, bc)

3 for i← 1 to N − 1 do

4 H′i ← (Hi−1,iH̃
−1
i−1,i)H

′
i−1

Boundary conditions for compositional local smoothing. The boundary conditions for the
compositional local smoothing approach are slightly different from the previous scheme, because
the transformations are increments between consecutive images. In this case, we have the following
conditions:
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Algorithm 6: Local Gaussian convolution

Input : {H}, i, σ, bc
Output: H̃i

1 radius← 3σ
2 if radius > N then
3 radius← N

// Gaussian convolution in each parameter separately

4 forall the (p, q) do
5 average← 0
6 sum← 0
7 for j ← i− radius to i+ radius do
8 value← 0
9 if j < 1 then

10 switch bc do
11 case CONSTANT BC
12 value← 0

13 case NEUMANN BC
14 value← H−1−j+1,−j+2(p, q)

15 case DIRICHLET BC
16 value← H−j,−j+1(p, q)

17 else if j > N then
18 switch bc do
19 case CONSTANT BC
20 value← 0

21 case NEUMANN BC
22 value← H−12N−j,2N−j+1(p, q)

23 case DIRICHLET BC
24 value← H2N−j,2N−j+1(p, q)

25 else
26 value← Hj,j+1(p, q)

27 gauss← e−
(j−i)2

2σ2

28 average← average+ gauss× value
29 sum← sum+ gauss

30 H̃i(p, q)← average/sum

Definition 5. Let Id be the identity matrix.

Constant boundary conditions are defined as Hj,j+1 := Id if j < 1 or j > N .

Neumann boundary conditions are defined in the range [−N + 2, 2N − 1] as

Hj,j+1 :=

{
H−1−j+1,−j+2 if j < 1

H−12N−j,2N−j+1 if j > N
. (10)
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Dirichlet boundary conditions in the range [−N + 1, 2N − 1] are defined by

Hj,j+1 :=

{
H−j,−j+1 if j < 1

H2N−j,2N−j+1 if j > N
. (11)

The main problem of the previous approaches is that the composition of transformations from a
given frame successively accumulates errors. One way to reduce this effect is to set the coordinate
system in each frame and perform the convolution in a local neighborhood. We envisage two alter-
natives: in the first strategy, the matrices are referenced to the current frame and the components
of the matrices are smoothed similarly to the previous approaches; in the second strategy, a set of
points is selected in the current frame and their positions are tracked in the neighboring frames by
applying the transition transforms. In that case, the trajectories of these points are smoothed and
the resulting points are used to calculate the rectifying transformation.

Local matrix–based smoothing. This method was proposed in [43] and is presented in Figure 3.
The reference system is centered in the current frame, and the smoothing is carried out with a set of
transformations around a temporal neighborhood. These transformations need to be related to this
central frame, so the composition is given in both temporal directions.

Definition 6. Consider the following compositions with the previous transformations from the cur-
rent frame

Hi,j:j<i =
i−1∏

l=j

Hl+1,l = Hj+1,jHj+2,j+1 · · ·Hi−1,i−2Hi,i−1, (12)

with Hl+1,l = H−1l,l+1, and the composition with the following frames as

Hi,j:j>i =

j∏

l=i

Hl,l+1 = Hj−1,jHj−2,j−1 · · ·Hi−1,iHi,i+1. (13)

in a neighborhood, Ni = {j : i − k ≤ j ≤ i + k}, around frame i. Define the convolution with a
Gaussian function in this interval by

Ĥi(p, q) :=
i+k∑

j=i−k

Gσ(i− j)Hi,j(p, q). (14)

with Hi,i := Id. Then the local matrix–based stabilization is defined by the rectifying transfor-

mations H′i := Ĥ−1i and the stabilized image sequence by (1), I′i(x) := Ii(H
′
ix}.

The boundary conditions for this approach are identical to those of the compositional smoothing
approach, so that Definition 3 is valid.

This approach is more stable and works better for more complex transformations, such as affinities
and homographies. The steps of the local matrix-based smoothing are detailed in Algorithm 7.

One of the clear benefits of this approach is that the influence of errors, that may have been
produced during the motion estimation process, is limited to a region given by the temporal window
in (14). As a consequence, the method is more stable and may recover from errors during the
compensation. In the previous techniques, once an error is introduced in the motion of an image, it
is propagated to the rest of frames.

This idea is also used in [48] for the smoothing of 3D camera rotation matrices. In that case, it
also compensates for the rolling shutter effects.
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Ii−2
Ii−1

Ii Ii+1

Ii+2

I′i

H
−1
i−2,i−1

H
−1
i−1,

i

Hi,i+1

H
i+1,i+2

H
−1
i−2,i

H
i,i+2

H′i

Figure 3: Local matrix-based smoothing.

Algorithm 7: Local matrix-based smoothing

Input : {H}, σ, bc
Output: {H′}

1 radius← 3σ
2 if radius > N then
3 radius← N

4 for i← 1 to N do
5 t1 ← i− radius
6 t2 ← i+ radius
7 if t1 < 1 then
8 t1 ← 1

9 if t2 > N then
10 t2 ← N

// compute backward transformations

11 if i > 1 then
12 Hc

i−1 ← H−1i−1,i
13 for j ← i− 2 to t1 do
14 Hc

j ← H−1j,j+1H
c
j+1

// introduce the identity matrix

15 Hc
i ← Id

// compute forward transformations

16 if i < N then
17 Hc

i+1 ← H−1i,i+1

18 for j ← i+ 2 to t2 do
19 Hc

j ← Hj−1,jH
c
j−1

// convolve with a Gaussian kernel; Eq. (3)

20 call Gaussian convolution({Hc}, H̃i, i, σ, bc)

21 H′i ← H̃−1i

Local point–based smoothing. This variant proposes a more intuitive way to process the video
by smoothing point trajectories instead of matrices. The idea is to select several points in the current
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frame and track them in its neighborhood using the estimated homographies. A Gaussian convolution
in each path will provide an average set of points. Then, a homography can be computed from the
averaged points. The local point–based smoothing approach is the smoothing process based on the
trajectory of a set of points in a neighborhood around each frame.

If we want to compute a homography —eight parameters— we need to select, at least, four points
in each frame, {xpi }p=1,...,4. These points are then projected forwards and backwards as xpi+1 :=
Hi,i+1x

p
i and xpi−1 := H−1i−1,ix

p
i , respectively.

Definition 7. Consider a set of points in the current frame i, {xpi }p=1,...,N , and a trajectory for each
point in a temporal neighborhood, Ni = {j : i− k ≤ j ≤ i+ k}, given by the following points

for j = i− k, . . . , i− 1, xpj :=

(
i−1∏

l=j

Hl+1,l

)
xpi =Hj+1,jHj+2,j+1 · · · (15)

· · ·Hi−1,i−2Hi,i−1x
p
i ,

on the left and

for j = i+ 1, . . . , i+ k, xpj :=

(
j−1∏

l=i

Hl,l+1

)
xpi =Hj−1,jHj−2,j−1 · · · (16)

· · ·Hi+1,i+2Hi,i+1x
p
i ,

on the right. We define the convolution of each trajectory with a Gaussian function by

for p = 1, . . . , N, x̃pi :=
(
Gσ ∗ {xpj}j=i−k,...,i+k

)
i
. (17)

The local point–based smoothing approach is then obtained by the rectifying transformations
H′i := Ĥ−1i , where Ĥi is calculated from points {xpi } to the smoothed set {x̃pi }. Finally the stabilized
image sequence is obtained by (1) as I′i(x) := Ii(H

′
ix}.

The steps of the local point–based smoothing are illustrated in Algorithm 8 and the corresponding
Gaussian filtering in Algorithm 9.

In order to compute the homography from the points, we may follow the strategies proposed
in [22]. The inhomogeneous system, where one element of the matrix is set constant, is the simplest
one: we obtain a closed form solution from a system of eight linear equations with eight unknowns.

In the case of degenerate configurations (e.g. when three or four points are aligned), the system
becomes underdetermined and it is not possible to find a unique solution. It is important to choose
the four tracking points well distributed in a rectangle to try to avoid this situation. Nevertheless,
depending on the motion of the camera and the amount of smoothness, we may come across with
this problem.

The number of points to track depends on the type of transformation we choose. Since every
point establishes two equations, we need one point for translations, two for Euclidean and similarity
transforms, three for affinities and four for homographies. For Euclidean transformations there is
one spare equation, and we have an overdetermined system. Another alternative is to always track
four points and then adapt the resulting homography to the chosen parametrization.

Here, logically, the boundary conditions are applied to the points themselves with a definition
similar to the one applied on the local matrix–based smoothing.

Definition 8. Given a point xpi in the reference frame,
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Algorithm 8: Local point-based smoothing

Input : {H}, σ, bc
Output: {H′}

1 radius← 3σ
2 for i← 1 to N do

// choose four points

3 {xpi } ← {(0, 0), (0, 500), (500, 0), (500, 500)}
4 for j ← 1 to radius do

// forward projection

5 if i+ j < N then
6 x1

i+j ← Hi+j−1,i+jx
1
i+j−1

7 x2
i+j ← Hi+j−1,i+jx

2
i+j−1

8 x3
i+j ← Hi+j−1,i+jx

3
i+j−1

9 x4
i+j ← Hi+j−1,i+jx

4
i+j−1

// backward projection

10 if i− j > 1 then
11 x1

i−j ← H−1i−j,i−j+1x
1
i−j+1

12 x2
i−j ← H−1i−j,i−j+1x

2
i−j+1

13 x3
i−j ← H−1i−j,i−j+1x

3
i−j+1

14 x4
i−j ← H−1i−j,i−j+1x

4
i−j+1

// convolve trajectories with a Gaussian kernel; Eq. (17)

15 call Point Gaussian convolution({x1}, x̃1
i , i, σ, bc)

16 call Point Gaussian convolution({x2}, x̃2
i , i, σ, bc)

17 call Point Gaussian convolution({x3}, x̃3
i , i, σ, bc)

18 call Point Gaussian convolution({x4}, x̃4
i , i, σ, bc)

// calculate the smoothed homography from the four smoothed points

19 Compute homography, H̃i, from {x̃pi } ↔ {x
p
i }

20 H′i ← H̃i

Constant boundary conditions are defined by

xpj :=

{
xp1 if j < 1

xpN if j > N
. (18)

Neumann boundary conditions are defined in the range [−N + 1, 2N − 1] by

xpj :=

{
xp−j+1 if j < 1

xp2N−j if j > N
. (19)

Dirichlet boundary conditions are defined in the range [−2N + 2, 3N − 1] by

xpj :=





xp−j+2 + 2xp1 − 2xpN if − 2N + 2 ≤ j < −N + 1

2xp1 − xp−j+1 if −N + 1 ≤ j < 1

2xpN − xp2N−j if N ≤ j < 2N

xpj−2N + 2xpN − 2xp1 if 2N ≤ j < 3N

. (20)
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Algorithm 9: Point Gaussian convolution

Input : {x}, i, σ, bc
Output: x̃i

1 average← 0
2 sum← 0
3 radius← 3σ
4 if radius > N then
5 radius← N

// Gaussian convolution

6 for j ← i− radius to i+ radius do
7 value← 0
8 if j < 1 then
9 switch bc do

10 case CONSTANT BC
11 value← x1

12 case NEUMANN BC
13 value← x−j+1

14 case DIRICHLET BC
15 value← 2x1 − x−j+1

16 else if j > N then
17 switch bc do
18 case CONSTANT BC
19 value← xN

20 case NEUMANN BC
21 value← x2N−j

22 case DIRICHLET BC
23 value← 2xN − x2N−j

24 else
25 value← xj

26 gauss← e−
(j−i)2

2σ2

27 average← average+ gauss× value
28 sum← sum+ gauss

29 x̃i ← average/sum

2.2.2 Additive Methods

In this section, we describe two further simple strategies that avoid the composition of matrices.
The benefit of these schemes is that the errors produced by the compositions are not accumulated.
We call these approaches additive methods because the information is computed in an incremental
way through the addition of the transformations. This relies on what we call virtual trajectories,
where the information used for estimating the set of regularized transformations is not based on real
trajectories, but on the integral of the velocity of, e.g., the central pixel.
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Local linear matrix–based smoothing. This technique proposes a linear variant of the local
matrix–based smoothing.

Definition 9. We define the virtual trajectory of a homography as

H̄i := Id +
i−1∑

l=1

(Hl,l+1 − Id) . (21)

The smoothed coefficients of the matrix trajectory for i = 1, . . . , N are defined by

H̃i(p, q) :=
(
Gσ ∗ {H̄j(p, q)}

)
i

=

j=k∑

j=−k

Gσ(j)H̄i−j(p, q). (22)

and
Ĥi = H̃i − H̄i + Id. (23)

The local linear matrix–based smoothing approach is then obtained by the rectifying transfor-
mations H′i := Ĥ−1i . Finally, the stabilized image sequence is obtained by (1) as I′i(x) := Ii(H

′
ix}.

Virtual trajectories differ from actual trajectories in that the points do not follow a real path in
the images. This concept is clearer in the case of points (see the next method), where the virtual
trajectory is not given by the true displacement of the points from frame to frame but by the apparent
motion of the points in each position.

The boundary conditions for this method are equivalent to the local matrix–based smoothing
strategy, as given in Definition 3.

The steps of Local matrix–based smoothing are illustrated in Algorithm 10. The inputs of the
algorithm are given by the set of the transformations and the smoothing parameter, σ. In this case,
the parametric transformations are previously converted to matrices.

Algorithm 10: Local linear matrix-based smoothing

Input : {H}, σ, bc
Output: {H′}

1 H̄1 ← Id
// Compute the virtual matrix trajectories

2 for i← 2 to N do
3 H̄i ← H̄i−1 + Hi−1,i − Id

// convolve the virtual trajectories with a Gaussian kernel (DCT)

4 call Matrix DCT Gaussian convolution({H̄}, {H̃}, σ, bc)
5 for i← 1 to N do

// compute the correction matrix

6 Ĥi ← H̃i − H̄i + Id
// compute its inverse

7 H′i ← Ĥ−1i

Since we obtain a unique virtual trajectory for the whole sequence, it is easy to apply a DCT
based Gaussian filtering. This method is preferred to discrete filters because it is more precise [14].
The DCT based Gaussian filtering is detailed in Algorithm 11.

In the case of a pure translation, linear matrix based smoothing is equivalent to local linear
point–based smoothing, that we shall examine next. However, for general transformations, the
matrix–based scheme is less sensitive to abrupt camera changes and numerical inaccuracies.
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Algorithm 11: Matrix DCT Gaussian convolution

Input : {H}, σ, bc
Output: {H̃}
// convolution in each matrix position

1 forall the (p, q) do
// copy the original image

2 for i← N to 2N − 1 do
3 src(i)← Hi−N+1(p, q)

// boundary conditions

4 switch bc do
5 case CONSTANT BC
6 for i← 1 to N − 1 do
7 src(i)← H1,1(p, q)

8 for i← 2N to 3N − 2 do
9 src(i)← HN−1,N(p, q)

10 case NEUMANN BC
11 for i← 1 to N − 1 do
12 src(i)← HN−i−1,N−i(p, q)

13 for i← 2N to 3N − 2 do
14 src(i)← H3N−i−1,3N−i(p, q)

15 case DIRICHLET BC
16 for i← 1 to N − 1 do
17 src(i)← 2H1,1(p, q)−HN−i−1,N−i(p, q)

18 for i← 2N to 3N − 2 do
19 src(i)← HN−1,N(p, q)−H3N−i−1,3N−i(p, q)

// apply DCT Gaussian convolution using the method in [14]

20 call dct gaussian conv(dest, src, 3N − 2, σ)
// copy the signal in the domain

21 for i← 1 to N do

22 H̃i(p, q)← dest(N + i− 1)

Local linear point–based smoothing. This variant proposes a linear system to process the
video by smoothing point trajectories. Instead of composing the transition homographies Hj+1,j to
compute the trajectories of the virtual points {xpi }p=1,...,4, the virtual trajectories of the reference
points are computed by integrating their temporal discrete derivative. Then, as in the preceding
section, they are smoothed out to compute a new position at time i. The new position of these
points yields the stabilization homography.

Definition 10. Consider a fixed set of points in frame coordinates, {xp}p=1,...,P , and define their
virtual trajectory by xp1 = xp and

for i = 1, . . . , N − 1, xpi := xp +
i−1∑

l=1

(Hl,l+1x
p − xp) . (24)
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Algorithm 12: Local linear point–based smoothing

Input : {Hi,i+1}, σ, bc
Output: {H′i}
// choose four fixed points for all frames

1 {xp} ← {(0, 0), (0, 500), (500, 0), (500, 500)}
2 x1

1 ← x1, x2
1 ← x2, x3

1 ← x3, x4
1 ← x4

// compute the virtual trajectories

3 for i← 2 to N do
4 x1

i ← x1
i−1 + (Hi−1,ix

1 − x1)
5 x2

i ← x2
i−1 + (Hi−1,ix

2 − x2)
6 x3

i ← x3
i−1 + (Hi−1,ix

3 − x3)
7 x4

i ← x4
i−1 + (Hi−1,ix

4 − x4)

// DCT Gaussian convolution of each virtual trajectory (using [14])

8 call Point DCT Gaussian convolution({x1}, {x̃1}, σ, bc)
9 call Point DCT Gaussian convolution({x2}, {x̃2}, σ, bc)

10 call Point DCT Gaussian convolution({x3}, {x̃3}, σ, bc)
11 call Point DCT Gaussian convolution({x4}, {x̃4}, σ, bc)
12 for i← 1 to N do
13 x̂1

i := x1 − x1
i + x̃1

i

14 x̂2
i := x2 − x1

i + x̃2
i

15 x̂3
i := x3 − x1

i + x̃3
i

16 x̂4
i := x4 − x1

i + x̃4
i

17 Compute homography, H̃i, from (x̂1
i , x̂

2
i , x̂

3
i , x̂

4
i )↔ (x1,x2,x3,x4)

18 H′i ← H̃i

We define the stabilized position of xpi as

x̃pi :=
(
Gσ ∗ {xpj}

)
i

=

j=k∑

j=−k

Gσ(j)xpi−j, (25)

x̂pi := xp − xpi + x̃pi . (26)

The local linear point–based smoothing approach is then obtained by the rectifying transforma-
tions H′i := Ĥ−1i , where the homography Ĥi is calculated from the fixed points {xp} to the stabilized
set at frame i, {x̂pi }. Finally, the stabilized image sequence is obtained by (1) as I′i(x) := Ii(H

′
ix}.

The boundary conditions for this method are equivalent to the local point–based smoothing
strategy, as given in Definition 8.

The steps of the point–based smoothing are detailed in Algorithm 12. The inputs of the algorithm
are given by the set of transformations and the smoothing parameter, σ. The convolution of the
point trajectories with the Gaussian kernel is given in Algorithm 13, which is based on the DCT.

A clear benefit of the additive approaches is that, unlike the previous techniques, no composition
between homographies is performed. This reduces the effect of numerical errors or the influence of
errors during the motion estimation step. Another advantage is that it is easy to use a Gaussian
convolution based on the DCT, since we obtain a unique one–dimensional signal for each point
trajectory or matrix coefficient.

326



Comparison of Motion Smoothing Strategies for Video Stabilization using Parametric Models

Algorithm 13: Point DCT Gaussian convolution

Input : {x}, σ, bc
Output: {x̃}
// copy the original signal

1 for i← N to 2N − 1 do
2 src(i)← xi−N+1

// boundary conditions

3 switch bc do
4 case CONSTANT BC
5 for i← 1 to N − 1 do
6 src(i)← x1

7 for i← 2N to 3N − 2 do
8 src(i)← xN

9 case NEUMANN BC
10 for i← 1 to N − 1 do
11 src(i)← xN−i−1

12 for i← 2N to 3N − 2 do
13 src(i)← x3N−i−1

14 case DIRICHLET BC
15 for i← 1 to N − 1 do
16 src(i)← 2x1 − xN−i−1

17 for i← 2N to 3N − 2 do
18 src(i)← xN − x3N−i−1

// apply DCT Gaussian convolution using method in [14]

19 call dct gaussian conv(dest, src, 3N − 2, σ)
// copy the signal in the domain

20 for i← 1 to N do
21 x̃i ← dest(N + i− 1)

In the experimental results, we will use a linear scale–space analysis which is based on a formu-
lation similar to (24). Furthermore, we will see that these two approaches behave much better if we
analyze the empty regions created by the stabilization.

2.3 Post-Processing: Crop and Zoom Strategies

A post–processing step is necessary to remove the empty regions that appear at the border of the
images. The simplest approach, and probably the most used, is Crop & Zoom. The idea is to find the
largest area axis–parallel rectangle [10] that does not contain empty regions, and apply the adequate
crop to all frames to remove them. This can be realized by translating and scaling the rectangle
in order to fit the image dimensions. This process can be executed before the warping step in the
smoothed homographies to account for this similarity transformation.

A fast and simple method for computing the rectangle is given in Algorithm 14. It iteratively
projects the corners of the images using the homographies of each frame and updates the limits of
the rectangle, given by (x1, y1) and (x2, y2), if necessary. This method is very fast, although it does
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not necessarily obtain the largest area rectangle.

Algorithm 14: Fast computation of inscribed rectangle

Input : {H′i}, nx, ny
Output: x1, y1, x2, y2

1

// variables to store the two corners of the rectangle

2 x1 ← 0, y1 ← 0, x2 ← nx − 1, y2 ← ny − 1
3

// select the maximum rectangle without empty regions

4 for i← 1 to N do
5

// project the top-left corner

6 (x, y, z)T ← (H′i)
−1 · (0, 0, 1)T

7 if xz > x1 then x1 ← x/z
8 if y/z > y1 then y1 ← y/z
9

// project the top-right corner

10 (x, y, z)T ← (H′i)
−1 · (nx − 1, 0, 1)T

11 if x/z < x2 then x2 ← x/z
12 if y/z > y1 then y1 ← y/z
13

// project the bottom-left corner

14 (x, y, z)T ← (H′i)
−1 · (0, ny − 1, 1)T

15 if x/z > x1 then x1 ← x/z
16 if y/z < y2 then y2 ← y/z
17

// project the bottom-right corner

18 (x, y, z)T ← (H′i)
−1 · (nx − 1, ny − 1, 1)T

19 if x/z < x2 then x2 ← x/z
20 if y/z < y2 then y2 ← y/z

If we want to compute the largest rectangle, then the process is more complex. One alternative
is given by the following steps:

• Find the convex polygon given by the intersection of all the quadrilaterals produced by the
homographies.

• Create a binary image with the same size as the video frame, with the pixels inside the polygon
equal to 1 and the pixels outside equal to 0, for instance.

• Compute the rectangle using the algorithm of the maximum rectangle inscribed in a histogram2.

In fact, the last two steps can be substituted by a direct method, such as [12] or [1], which yields
the coordinates of the rectangle directly from the intersecting polygon. However, we prefer these
steps because they are simpler to implement.

2The method of the maximum area axis–parallel rectangle inscribed in a histogram is explained in http:

//stackoverflow.com/questions/4311694/maximize-the-rectangular-area-under-histogram
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In the first step, the objective is to find the common area not including the empty regions.
This can be easily obtained by projecting the four corners with the homographies as in the previous
algorithm. We get a set of quadrilaterals that are intersected to form a convex polygon, which defines
the region that is visible in all the frames. This problem is typical in computer graphics and there
are several standard algorithms, such as [59] or [16]. Since our polygons are convex, one can use the
method of Sutherland and Hodgman [55].

In the second step, a binary image is created, with zeros outside the polygon and ones inside.
Since the polygon is convex, this process is simple: it computes the minimum and maximum y–
coordinates of the polygon, ymin and ymax, respectively; then, the horizontal lines, yi, from ymin to
ymax produce two intersection points with the polygon, (x1, yi) and (x2, yi) for each line. The image
is filled between x1 and x2 in this line. The algorithm needs to control two special cases: when the
intersection with the polygon is just one point, which happens when a vertex of the polygon joins an
ascending and descending edge, or when it intersects a whole horizontal edge.

In the last step, the rectangle is found by using an algorithm based on the histogram, detailed
in Algorithm 15. This works as follows: the values of the mask image are accumulated by columns
(lines 1–4), which gives us the estimate of the height of all possible rectangles; then, the width of all
possible rectangles is calculated by testing if the histograms of the neighbor columns, in the same
line, are equal or larger than the actual value. This process is first carried out on the left columns,
using a temporal array, L(j) (lines 7–13), and then on the right, using another temporal array, R(j)
(lines 15–21). The image is processed line by line, calculating the maximum area (lines 22–29). Using
a stack, this algorithm has O(N) complexity.

In practice, the fastest Algorithm 14 provides results which are usually close to the accurate
Algorithm 15. It typically diverges by a few pixels for large values of the smoothing radius, which
depends on σ, or for large amounts of camera shakiness.

One important issue is that, in general, the rectangle dimensions will not be proportional to the
size of the images and an additional crop is necessary in one of the dimensions. One alternative is
to give up preserving the size of the original video and keep the largest possible contents, although
it is more usual to generate a video with the same resolution.

Definition 11. Let (xm, ym) =
(
x1+x2

2
, y1+y2

2

)
be the center of the rectangle and let s = min(x2−x1

nx
, y2−y1

ny
)

be the scale factor of the shortest relative dimension of the rectangle. We define the Crop&Zoom
transformation as

T :=




1 0 xm
0 1 ym
0 0 1






s 0 0
0 s 0
0 0 1






1 0 −nx/2
0 1 −ny/2
0 0 1


 =




s 0 xm − s nx/2
0 s ym − s ny/2
0 0 1


 , (27)

which is a similarity transform that allows to remove the empty regions, and

I′i(x) := Ii(H
′
iTx), (28)

the stabilized images without empty regions.

Finally, Algorithm 16 details how to compute these transformations. The two corners of the
rectangle, the size of the frames and the scale factor are used to define the similarity transform. The
input homographies are composed with this similarity. Figure 4 shows an example of the Crop&Zoom
strategy and the computed rectangle.

There exist other alternatives for removing the empty regions, as we have seen in the introduction.
Other post–processing tasks are aimed at improving the quality of the video, such as reducing the
effect of motion blur or the changes in illumination.
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Algorithm 15: Accurate computation of inscribed rectangle

Input : I
Output: x1, y1, x2, y2
// initialize histogram array to 0

1 H ← 0
// create the histogram array

2 for i← 2 to number of rows(I) do
3 for j ← 1 to number of columns(I) do
4 if I(i, j) then H(i, j)← 1 +H(i− 1, j)

5 max area← 0
// find the maximum area axis-parallel rectangle

6 for i← 1 to number of rows(I) do
// find the left limit for this position of the histogram

7 for j ← 1 to number of columns(I) do
8 while Not stack.empty() and H(i, j) ≤ H(i, stack.top()) do
9 stack.pop()

10 if stack.empty() then t← 1
11 else t← stack.top()
12 L(j)← t
13 stack.push(j)

14 empty stack
// find the right limit for this position of the histogram

15 for j ← number of columns(I) to 1 do
16 while Not stack.empty() and H(i, j) ≤ H(i, stack.top()) do
17 stack.pop()

18 if stack.empty() then t← number of columns(I)
19 else t← stack.top()
20 R(j)← t
21 stack.push(j)

// calculate final area in the row and find the maximum

22 for j ← 1 to number of columns(I) do
23 A← H(i, j) · (R(j)− L(j))
24 if A > max area then
25 max area← A
26 x1 ← L(j)
27 y1 ← i−H(i, j)
28 x2 ← R(j)
29 y2 ← i

30
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Algorithm 16: Crop and Zoom

Input : {H′i}, nx, ny, x1, y1, x2, y2
Output: {H′i}

1

// compute the scale factor

2 s1 ← (y2 − y1)/ny
3 s2 ← (x2 − x1)/nx
4 if s1 < s2 then s← s1 else s← s2
5

// center of the rectangle

6 xm ← (x1 + x2)/2
7 ym ← (y1 + y2)/2
8

// use a similarity transform for scaling and translating

9 T←




s 0 xm − s nx/2
0 s ym − s ny/2
0 0 1




10

// modify the stabilizing transformations with the similarity transform

11 for i← 1 to N do
12 H′i ← H′i ·T

3 Evaluation and Results

3.1 Comparison of Methods

Table 2 presents the average image percentage for the empty regions left on the border of the
compensated frames for moderate smoothing (σ := 30) and ten diverse videos. This average was
computed for each kind of geometric transform, from translation to homography, and for all kinds
of smoothing processes that we have considered, from compositional to local linear point–based with
Neumann boundary condition.

A lower empty region percentage is a logical and factual criterion of success: For a fixed Gaussian
smoothing, it measures the loss of resolution of the video caused by the camera shake correction.

Figure 4: Crop&Zoom: First row, several frames of a video with the inscribed rectangle obtained through Algorithm 14;
second row, the same frames after the Crop&Zoom process.
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Method Translat. Euclid. Similar. Affine Homography
Compositional 20,5% 23,8% 21,7% 23,2% 43,8%
Compositional smoothing 4,0% 4,1% 6,3% 6,4% 8,4%
Compositional local smth. 8,3% 10,5% 8,1% 8,5% 18,9%
Local matrix–based 4,0% 4,0% 6,3% 6,4% 6,1%
Local point–based 4,0% 4,1% 6,7% 6,8% 11,2%
Local linear matrix–based 4,0% 4,1% 4,6% 4,6% 5,5%
Local linear point–based 4,0% 4,0% 4,6% 4,6% 5,9%

Table 2: Average percentage of empty regions left on the border of the compensated frames for (σ := 30). This percentage is
given for each kind of transform, from translation to homography, and for each kind of smoothing process, from compositional
to local linear point–based. This criterion illustrates two phenomena: First, the growing numbers from left to right show
that allowing more degrees of freedom to the transform implies also a more severe correction, as is logical; second, the
table is a clear decider about the preferable smoothing process. The local linear matrix–based and the (similar) local linear
point–based processes win as they guarantee the smallest distortion and the smallest distortion increase when increasing the
number of degrees of freedom.

Clearly large percentages like 23% would not be acceptable. Fortunately, the best methods give a
reasonable 5 to 6%.

The results demonstrate two phenomena: First, the increasing numbers from left to right on
each row show that allowing more degrees of freedom in the transform implies also a more severe
correction; second, the table is a clear decider about the preferable smoothing process. The local
linear matrix–based and the (similar) local linear point–based processes win as they guarantee the
smallest distortion and the smallest distortion increase when increasing the number of degrees of
freedom. Table 3 shows the average percentage of empty regions left on the border of the compensated
frames for strong smoothing (σ := 60). This percentage is again given for each kind of transform,
from translation to homography, and for each kind of smoothing process, from compositional to
local linear point–based. This table confirms, for more drastic smoothing, the conclusion given
in Table 2: The local linear matrix–based and the local linear point–based processes win. They
guarantee the smallest distortion and the smallest distortion increase when increasing the number
of degrees of freedom. Interestingly, the winners are also the closest ones to the linear scale-space
strategy designed for video analysis in the next section. The tables also confirm that the local
matrix–based approach is the third best method and it is, on average, the best of the compositional
approaches, as shown in [43].

Method Translat. Euclid. Similar. Affine Homography
Compositional 20,5% 23,8% 21,7% 23,2% 43,8%
Compositional smoothing 5,5% 5,6% 12,6% 12,7% 13,5%
Compositional local smth. 11,9% 14,2% 10,6% 10,5% 21,7%
Local matrix–based 5,5% 5,5% 12,6% 12,7% 11,0%
Local point–based 5,5% 5,5% 14,0% 14,1% 18,3%
Local linear matrix–based 5,5% 5,5% 7,3% 7,3% 8,9%
Local linear point–based 5,5% 5,6% 7,3% 7,3% 9,4%

Table 3: Average percentage of the empty regions left on the border of the compensated frames for (σ := 60). This
percentage is given for each kind of transform, from translation to homography and for each kind of smoothing process,
from compositional to local linear point-based. This table confirms, for more drastic smoothing, the conclusion given for
Table 2: The local linear matrix–based and the (similar) local linear point–based processes win.
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3.2 The Motion Linear Scale-Space

If Hi,i+1 are the original transformations between consecutive frames and H′i the rectifying homo-
graphies, we calculate the set of transformations for the stabilized sequence as

H̃i,i+1 := (H′i+1)
−1Hi,i+1H

′
i, (29)

with H̃0,1 := Id. These are used for computing the trajectories and scale–space graphics in the
following experiments. Our goal in this section is to define sets of motion signals that can undergo
a multi–scale analysis and that give a reliable geometric account of the camera motion. We assume
that a series of homographies {Hi}i=1,...,N between successive frames is given. These may be the
initial homographies or the smoothed ones. We want to define and visualize representative virtual
trajectories associated with this series. This analysis is useful to visualize and check the correct
behavior of the methods and, on the other hand, characterize the ego-motion from the video.

Definition 12. Let x be a fixed point in the video frame domain (for example its central point).
Given a series {Hi}i=1,··· ,N of homographies between successive frames, we call virtual trajectory of
x the series

xi := x +

j=i−1∑

j=1

(Hix− x). (30)

We call instantaneous zoom the area ratio between the quadrangles (Hiw,Hix,Hiy,Hiz) and (w,x,y, z),
where the second quadrangle is the image domain. We call instantaneous rotation of the video the
angle between (Hiu,Hiv) and (u,v), where (u, v) denote the middle points of the left and right sides
of the video frame.

Virtual trajectories associated with a series of homographies are obtained through Algorithm 17.

Algorithm 17: Trajectory plot

Input : {Hi}, nx, ny
Output: {vi}

1

// central point

2 xm ← (nx/2, ny/2, 1)T

3 v0 ← (0, 0, 1)T

4

// project the central point and accumulate the velocity

5 for i← 1 to N do
6 x← Hi · xm
7

// normalize the vector by the third component

8 x← x/x3

9 vi ← vi−1 + (x− xm)

Algorithm 18 is used to visualize the evolution of the zoom factor. It computes the observable
area change rate induced by the homographies. This rate is an approximation of the square of the
zoom rate. For similarities, this is equivalent to the scale factor, which can be obtained directly from
their parameters.

Algorithm 19 estimates the angle of rotation for each transformation. It projects the horizontal
line that passes through the center of the image, using each homography, and computes the angle
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Algorithm 18: Zoom plot

Input : {Hi}, nx, ny
Output: {zi}

1

// compute the zoom for each transformation

2 for i← 1 to N do
3 w← Hi · (0, 0, 1)T

4 x← Hi · (0, ny, 1)T

5 y← Hi · (nx, 0, 1)T

6 z← Hi · (nx, ny, 1)T

7

// compute the area of the two triangles

8 A1 ← TriangleArea(w,x,y)
9 A2 ← TriangleArea(x,y, z)

10 zi ← (A1 + A2)/(nx · ny)

Algorithm 19: Rotation plot

Input : {Hi}, nx, ny
Output: {ri}

1

// compute the angle of rotation of the central line

2 for i← 1 to N do
3 x← Hi · (0, ny/2, 1)T

4 y← Hi · (nx, ny/2, 1)T

5 z← y − x
6 ri ← arctan(zy/zx) · 180/π

formed by these two lines. For similarities and Euclidean transformations, this can again be obtained
directly from the parameters.

Our scale-space analysis receives discrete signals (virtual trajectories) obtained from the series of
transition homographies. The trajectories are calculated using Definition 12. These trajectories will
be smoothed by Gaussian convolutions to preserve all the typical scale properties, namely translation
invariance, locality and causality. Thus, we need first to specify how the Gaussian definition must
be done to preserve these three properties.

Consider a digital signal uk with k = 0, . . . , N − 1 and its Discrete Fourier Transform (DFT)
interpolate

u(x) =
∑

m∈[−N/2,N/2−1]

ũme
2iπmx
N , (31)

where ũm are the DFT coefficients of the N samples uk. The classic image analysis theory called

scale-space convolves u with a Gaussian Gσ(x) = 1√
2πσ

e−
x2

2σ2 . A direct calculation shows that the
result of the convolution of u with Gσ is

v(x) := (Gσ ∗ u)(x) =
∑

m∈[−N
2
,N
2
−1]

ũmĜσ

(
2mπ

N

)
e

2iπmx
N (32)
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Algorithm 20: Scale-Space plot

Input : {H1,i}, {H2,i}, nx, ny
Output: {si}

1

// coordinates of the central point

2 xm ← (nx/2, ny/2, 1)T

3 v1,0 ← (0, 0, 1)T

4 v2,0 ← (0, 0, 1)T

5 s0 ← (0, 0, 1)T

6

// project and accumulate the velocity at the central point

7 for i← 1 to N do
8

// project the central point using the two homographies

9 x← H1,i · xm
10 y← H2,i · xm
11

// normalize vectors by the third component

12 x← x/x3

13 y← y/y3

14

// update the accumulated velocities with the position increment

15 v1,i ← v1,i−1 + (x− xm)
16 v2,i ← v2,i−1 + (y − xm)
17 si ← v2,i − v1,i

with Ĝσ(ξ) = e
−σ2ξ2

2 . Indeed,

Gσ ∗ e
2iπmx
N =

∫

R

Gσ(y)e
2iπm(x−y)

N dy = e
2iπmx
N

∫

R

Gσ(y)e−
2iπmy
N dy = e

2iπmx
N Ĝσ(

2πm

N
).

The convolved discrete digital signal therefore simply is

vk := Gσ ∗ uk =
∑

m∈[−N
2
,N
2
−1]

Ĝσ

(
2mπ

N

)
ũme

2iπmk
N . (33)

These calculations lead us to the following definition of Gaussian filtering of a discrete motion signal.

Definition 13. Given a signal uk, k = 0, . . . , N − 1 we call DFT convolution of this signal by a
Gaussian Gσ the discrete signal Gσ ∗ uk obtained by (33).

Nevertheless this definition implicitly assumes the signal to be N -periodic, which is generally
not adequate, as it introduces artificial discontinuities at both ends of the signal. For this reason,
the convolution must respect the constant, Neumann, or Dirichlet boundary conditions used in all
of our previous definitions of motion smoothing. This leads to the obvious next definition, which
proposes again to extend the signal adequately on an interval of length 3N before applying the DFT
convolution.

Definition 14. Given a signal {vk}, and a standard deviation for the Gaussian σ we set, for k = N
to 2N − 1, vak = vk−N+1.
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(i) For a constant boundary condition, for k = 1 to N − 1, vak = v1 and for k = 2N to 3N − 2,
vak = vN .

(ii) For a Neumann boundary condition, for k = 1 to N − 1 vak = vN−k−1 and for k = 2N to
3N − 2 vak = v3N−k−1.

(iii) For a Dirichlet boundary condition, for k = 1 to N − 1, vak = 2v1 − vN−k−1 and for k = 2N
to 3N − 2, vak = vN − v3N−k−1.

Then we apply the DFT convolution of the signal vak with the Gaussian Gσ by Definition 13 to
obtain a discrete signal svk, k = 1, . . . , 3N − 2. Finally, we extract the meaningful part of the signal
for k = 1 to N , by setting svk = vbN+k−1.

Our definition of the motion scale-space will be applied to four signals: The virtual trajectory (x
and y components) of the central point, the instantaneous zoom and the instantaneous rotation.

Definition 15. Let uk, k = 1, . . . , N − 1 be one of the movie motion signals given by Definition 12.
We call scale-space of uk the following series of signals, which are also displayed in this order from
bottom to top in all graphical representations:

a) the original virtual trajectory uk,

b) the high pass filtered signal v10 := uk − (G10 ∗ u)k where G10 ∗ u is defined in Definition 14,

c) the low passed version of b) defined by v20 := (G10 ∗ u)k − (G20 ∗ u)k,

d) the low passed version of c) defined by v40 := (G20 ∗ u)k − (G40 ∗ u)k,

e) the low passed version of d) defined by v80 := (G40 ∗ u)k − (G80 ∗ u)k,

f) the final low passed version of u, u80 = (G80 ∗ u)k.

These definitions define a pyramid that can be collapsed back as we have u = u80 + v80 + v40 +
v20 + v10. Of course the basis value of σ = 10 can be replaced by any other. In addition our scale-
space contemplates the frequency analysis of the pyramid by DFT, namely the DFTs of v80, v40, v20

and v10, presented on the right side of all the graphics from top to bottom.

Algorithm 21: Linear scale-space plot

Input : {v1,i}, {v2,i}
Output: {vsi}

1 for i← 1 to N do
2 vsi ← v2,i − v1,i

3.3 Scale-Space Experiments

As an exemplary scale-space experiment, we analyze the sequence of a man running with a camera
fixed on his head. The trajectories of the camera and the smoothing techniques are shown in Figure 5.

We observe in Figure 6 the characteristic motion of a running person, where the displacement is
periodic in both the horizontal and vertical directions. There is a dominant peak in the x component
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Figure 5: Man running with a GoPro in his head trajectory. These graphics show the virtual trajectory of the central pixel
after successively applying the transformations. We show the trajectory for each smoothing strategy. The left graphic show
the x component and the right the y component of the tracked point.
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Figure 6: Man running with a GoPro in his head linear scale–space analysis. In the top–left figure, we show the scale–space
corresponding to the trajectory of the central point; in the middle–left figure, we show the scale–space of the zoom signal;
and, in the bottom–left figure, the scale–space of the rotation signal. In these figures, the graphics above show the original
signal smoothed with σ := 80 and the graphics in the bottom show the difference between the smoothed signal with σ := 10
and the original one. The right figures depict the DFT signals of these graphics.
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Figure 7: Man running with a GoPro in his chest linear scale–space analysis. In the top–left figure, we show the scale–space
corresponding to the trajectory of the central point; in the middle–left figure, we show the scale–space of the zoom signal;
and, in the bottom–left figure, the scale–space of the rotation signal. In these figures, the graphics above show the original
signal smoothed with σ := 80 and the graphics in the bottom show the difference between the smoothed signal with σ := 10
and the original one. The right figures depict the DFT signals of these graphics.

around 1.5 Hz, which denotes the oscillation from left to right. In the y component, there is a peak
at 3 Hz corresponding to the vertical oscillation.

In the zoom figure, we observe that the graphics present fast periodic motions which are, on
average, above the blue line, corresponding to a static zoom. There is a steady zoom–in due to the
forward motion of the camera. On the other hand, the oscillations are probably due to the balancing
of the head while running.

We can compare the previous analysis with the analysis video of a man running with a camera in
his chest. The results are similar to the previous experiment, although the shake is more important
than when the camera is fixed to the head. This is reasonable as persons tend to stabilize their head
when they run or walk.

The trajectory, in the linear scale–space graphics of Figure 7, seems to be more regular and
periodic; see the two graphics at the bottom. This is due to the fact that the chest is more rigid and
better represents the motion of the run. The peaks are also situated about 1.5 Hz for the horizontal
displacement and slightly above 3Hz for the vertical one.

The zoom and rotation linear scale–spaces are also similar to the previous experiment, although
the rotation seems to be more regular and aligned with the horizontal displacement. This may be
produced by the motion from side to side of the chest while moving the arms, which is synchronized
with the motion of the legs.
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3.4 Online Demo

The online demo allows selecting or uploading a video in several formats. There are some predefined
videos with different amounts of shakiness and behaviors. We have also included several challenging
videos which are difficult to stabilize, see Figure 8.

Figure 8: Input window of the online demo.

If the user uploads a video, it is converted to MPEG–4, its size is reduced to 720 pixels width,
and the duration is limited to 10 seconds, using the avconv program.

The parameter window is divided in three parts, as shown in Figure 9. In the first part, the
user can choose the motion estimation method —direct or feature–based method— and the type of
transformation. For the featured–based method, only homographies can be chosen. In the second
part, the user can select any of the motion smoothing strategies proposed in Section 2, the standard
deviation of the smoothing kernel and the boundary conditions to be applied. The third part corre-
sponds to the post–processing step, where the user can select the Crop&Zoom algorithms proposed
in Section 2.3 or leave the empty regions untouched choosing the No post–processing option. This
option is recommended for several default videos, since the crop operation can eliminate a large
portion of the contents.

The result window shows the original and stabilized videos and provides several buttons to manage
both videos together, as in Figure 10. The user can play both videos simultaneously to appreciate
the differences with respect to the original input. This window also shows several curves related
to the trajectory and scale–space analysis that we have used in the experiments, see Figure 11. In
particular, we show the trajectory of the original and smoothed sequences, the scale–space of the
trajectory, rotation and zoom, and their corresponding DFT signals, as defined in Section 3.2. The
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Figure 9: Input parameters of the online demo.

parameters chosen in the previous step and a link to the output of the program are shown at the
bottom of the window.

Figure 10: Output videos of the online demo.

4 Conclusion

We have described motion compensation strategies for video stabilization and characterized the
different types of boundary conditions for the involved smoothing.

The smoothing strategies are divided in compositional and additive approaches. The former are
further divided in global methods, which compose the transformations from a given reference frame,
and local methods, which compose the transformations in a neighborhood around each image. Two
additional linear methods work directly on the coefficients of the transformations or on the virtual
trajectories obtained as integrals of the instant velocity of fixed frame points.

Analyzing the frequency patterns and the smooth tendency in the scale-space of the virtual tra-
jectories yields crucial temporal information such as frequency peaks linked to periodic ego-motions
and a smoothed evaluation of the movement forward and of the rotations.
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Figure 11: Output graphics of the online demo.
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