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Abstract

This article presents an implementation and discussion of the recently proposed ‘Efficient Dense-
Field Copy-Move Forgery Detection’ by Cozzolino et al. This method is a forgery detection
based on a dense field of descriptors chosen to be invariant by rotation. Zernike moments were
suggested in the original article. An efficient matching of the descriptors is then performed
using PatchMatch, which is extremely efficient to find duplicate regions. Regions matched
by PatchMatch are processed to find the final detections. This allows a precise and accurate
detection of copy-move forgeries inside a single suspicious image. We also extend successfully
the method to the use of dense SIFT descriptors and show that they are better at detecting
forgeries using Poisson editing.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Keywords: forgery detection; copy-move forgery; PatchMatch; Zernike moment; SIFT descrip-
tor

1 Introduction

Copy-move forgeries correspond to the case where a region is copied from the image and then pasted
in another position of the same image. The copy could be modified in the meantime, but the
detection presented here is only guaranteed to work when a rotation has been applied. Nevertheless
we shall see that this method is also mildly robust to other perturbations such as noise. This type
of forgery, which can easily be performed with most image editing software tools, is usually used

1https://doi.org/10.5201/ipol.2018.213
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to hide undesired details in the image, or to add new details. Detecting such modifications can be
challenging, especially when carried out by a professional image editor.

Many different methods have been developed to detect such modifications. In [8], Farid presented
a large number of such methods: from the simplest ones such as pixel-based methods to much more
complex physics-based methods by which, for example, the illumination of the scene is studied. In this
study, we focus on a single family of detection methods. These methods, specialized im detecting
copy-move forgeries, are organized in the following way. First, descriptors are computed on the
suspicious image. These descriptors are chosen to represent well the local behavior of the suspicious
image. They are then matched to each other during a matching step to detect abnormal similarities
within the image. In the final step, post-processing is applied to refine detections and diminish the
number of false positives. The first papers on this subject proposed classic sparse image descriptors
such as SIFT [12] or SURF [14]. A recent benchmark [4] of many different methods based on
both sparse descriptors and dense descriptors shows that dense descriptors largely outperform sparse
descriptors. For this reason the paper under review [5] chose to use dense descriptors. Matching the
descriptors, or equivalently finding the nearest neighbor for each descriptor, is a well studied problem
but actually quite hard. Many different approaches have been developed but all actually compute
approximate matches. The approximation can be computed using partition trees such as the well
known KD-trees [3], or VP-trees [17], or adapted hashing functions such as LSH [10, 9]. A recent
breakthrough for image specific algorithms is PatchMatch, developed by Barnes et al. [1, 2]. This
algorithm relies on the structural properties of the image and multiple sampling, which in practice
performs extremely well on dense descriptors. It is also the matching algorithm adopted by the
reviewed method.

The rest of the paper is organized as follows: the descriptors used for the processing, Zernike
moments, are presented in Section 2. The matching algorithm PatchMatch and the modifications
implemented to improve the matching for our problem are presented in Section 3. Several pre-
and post-processing steps presented in Section 4 are then applied to obtain precise and accurate
detections. Finally, a couple of experiments where we show success and limits of the method are
presented in Section 5, where we successfully extend the method to dense SIFT descriptors..

2 Zernike Moments

The absolute values of Zernike moments are rotation invariant descriptors that are adapted to the task
of detecting image repetitions up to a rotation. We address in this section their efficient computation
by the Xin et al. [16] method. For a patch u of an image I (defined for now as continuous on [−1, 1]2),
the Zernike Anm moment of order n and angular dependence m, for m < n and m ≡ n[2], is defined
by

Anm =
n+ 1

π

∫ ∫
D
u(x, y)Vnm(x, y)dxdy, (1)

where Vnm is the complex Zernike polynomial of order n and angular dependence and Anm = 0
otherwise (therefore in the following study, the case m 6≡ n[2] will be omitted). The polynomials are
defined over the unit disk D(0, 1) and usually expressed in polar coordinates ρ and θ. They are fully
defined by

Vnm(ρ, θ) = Rnm(ρ)eimθ, (2)

Rnm(ρ) =

bn−m
2
c∑

s=0

(−1)s(n− s)!ρn−2s

s!(
⌊
n+m

2

⌋
− s)!(

⌊
n−m

2

⌋
− s)!

. (3)
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Zernike moments can be interpreted as scalar products between the image u and the Zernike poly-
nomials. The absolute value of these moments is rotationally invariant. Indeed, consider a rotation
of angle α of the given image, or equivalently, a rotation of angle α of the Zernike polynomials

V α
nm = Vnme

iα,

the studied moment Aαnm would then be

Aαnm =
n+ 1

π

∫ ∫
D
u(x, y)V α

nm(x, y)dxdy (4)

=
n+ 1

π

∫ ∫
D
u(x, y)Vnm(x, y)e−iαdxdy (5)

=
n+ 1

π

(∫ ∫
D
u(x, y)Vnm(x, y)dxdy

)
e−iα (6)

= Anme
−iα, (7)

and therefore
|Aαnm| = |Anm|, (8)

which confirms the rotation invariance of the magnitude of these moments.
In our case, the moments will be computed on each patch of the image (considered as a small image

itself). Within the same framework presented previously, one can also define translation invariant
descriptors by computing a dense field of descriptors over the entire image. The computation is
trickier than it appears at first sight because the image (noted u and so far considered continuous)
is sampled over a Cartesian grid whereas Zernike polynomials are more naturally expressed in polar
coordinates. The sampled version of I and u with a sampling step 1

sp
will be noted respectively Ĩ

and ũ. The coordinates (x0, y0) denote the center of ũ in Ĩ and ũ is defined on J−sp, spK. The easiest
solution would be to estimate the integral from Equation (1) by sampling over the Cartesian grid by
(see wikipedia2 for the definition of atan2)

Anm =

sp∑
sx=−sp

sp∑
sy=−sp

ũ(sx, sy)Vnm(
√
s2
x + s2

y, atan2(sy, sx)). (9)

Xin et al. have shown in [16] that this approximation suffers from multiple drawbacks and is
not properly rotation invariant. The rotational invariance being one of the most important features
of the Zernike moments in our case, we shall use the more accurate estimation proposed in [16].
First, we need to resample the image. Indeed the original Cartesian sampling is not adapted to the
unit disk. Figure 1a shows that whatever the choice of pixels taken to do the integration on, it will
never truly form a disk; therefore leading to approximation in the computations. An adequate image
partitioning is required to care for the rotation invariance. First, the unit disk is split into K regions
along the radial direction. These regions are then divided into “pixels” with the same area. For this
reason each region is split into (2k + 1)L subregions. This sampling of the unit disk is presented
in Figure 1b. It has the nice property of not losing resolution compared to the original image. In
addition, the new pixels have approximately the same area as the old ones. The image is considered
piecewise constant over these “pixels”. The value over such a pixel, noted f(ρkl, θkl), is computed by
image interpolation. Xin et al. recommended the usage of a bicubic interpolation. This yields

f(ρk, θkl) =

bρk cos(θkl)c+2∑
sx=bρk cos(θkl)c−1

bρk sin(θkl)c+2∑
sy=bρk sin(θkl)c−1

ũ(sx, sy)h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy) , (10)

2https://en.wikipedia.org/wiki/Atan2
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(a) Cartesian sampling of the unit disk (b) Polar sampling of the unit disk

Figure 1: Different types of samplings for the Zernike moments.

where

h(x) =


3
2
|x|3 − 5

2
|x|2 + 1 if |x| ≤ 1

−1
2
|x|3 + 5

2
|x|2 − 4|x|+ 2 if 1 < |x| ≤ 2

0 otherwise

. (11)

We can now express Zernike moments in polar coordinates by a simple change of variable,

Anm =
n+ 1

π

∫ 2π

0

∫ 1

0

u(ρ, θ)Vnm(ρ, θ)ρdρdθ. (12)

This leads to the following estimate of Anm by sampling the integral over the newly created regions

Anm =
n+ 1

π

∑
k

∑
l

f(ρk, θkl)wnm(ρk, θkl), (13)

where wnm corresponds to

wnm(ρk, θkl) =

∫ ∫
Ωkl

Rnm(ρ)e−imθρdρdθ (14)

=

(∫ ρk,2

ρk,1

Rnm(ρ)ρdρ

)(∫ θkl,2

θkl,1

e−imθdθ

)
, (15)

where the support of the pixel Ωkl is parameterized by ρk,1, ρk,2, θkl,1, θkl,2 (see Figure 2). Besides the
two previous integrals can be computed in closed form

∫ ρk,2

ρk,1

Rnm(ρ)ρdρ =

bn−m2 c∑
s=0

(−1)s(n− s)!
(
ρn−2s+2
k,2 − ρn−2s+2

k,1

)
(n− 2s+ 2)s!(

⌊
n+m

2

⌋
− s)!(

⌊
n−m

2

⌋
− s)!

 , (16)

and ∫ θkl,2

θkl,1

e−imθdθ =

{
θkl,2 − θkl,1 if m = 0
i
m

(
e−imθkl,2 − e−imθkl,1

)
otherwise

. (17)

Xin et al. have shown that computing the moments using this framework allows for a much better
rotation invariance compared to the regular Cartesian approximation. The sums in Equation (13)
can be reordered to compute efficiently the entire set of Zernike moments for the entire image Ĩ.
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Figure 2: Notations for Equations (15), (16) and (17).

Indeed Anm can be rewritten

Anm =
n+ 1

π

∑
k

∑
l

f(ρk, θkl)wnm(ρk, θkl)

=
n+ 1

π

∑
k

∑
l

∑
sx

∑
sy

ũ(sx, sy)h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy)wnm(ρk, θkl)

=
n+ 1

π

∑
sx

∑
sy

∑
k

∑
l

ũ(sx, sy)h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy)wnm(ρk, θkl)

=
n+ 1

π

∑
sx

∑
sy

ũ(sx, sy)

(∑
k

∑
l

h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy)wnm(ρk, θkl)

)

=
n+ 1

π

∑
sx

∑
sy

ũ(sx, sy)F
nm
sx,sy , (18)

which can now be used to define an “image” of zernike moments such that

Anm(x0, y0) =
n+ 1

π

∑
sx

∑
sy

ũ(sx, sy)F
nm
sx,sy

=
n+ 1

π

∑
sx

∑
sy

Ĩ (x0 + sx, y0 + sy)F
nm
sx,sy . (19)

Equation (19) shows that the Anms can be computed efficiently by convolving the image Ĩ with the
newly defined filter F nm. A null extension is chosen for the convolution for efficiency and simplicity.
Indeed, the moments computed on the border won’t have any of the properties required for the
matching, whatever the extension (in particular invariance to rotation is the hardest to ensure);
therefore they should be discarded anyway in the following steps and the choice should be made only
for computation efficiency. The pseudocode for the full computation of the dense field of moments for
a given image is given in Algorithm 1. It yields both translation and rotation invariant descriptors
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with which copy-move forgeries will be detected. The two versions of Zernike moments will be
compared for the problem of forgery detection with rotation in Section 5.1.

Algorithm 1: Zernike moments computation

input : An image I, a half-size of patch sp, a maximum order o
output: A dense descriptor map Z
foreach (n,m) s.t. n ∈ J1, oK,m ∈ J1, nK and n ≡ m[2] do

for s = 0 to n−m
2

do

Cnms ← (−1)s(n−s)!
(n−2s+2)s!(n+m

2
−s)!(n−m

2
−s)! Compute the coefficients for Equation (16)

end

end
for ρ = 0 to sp− 1 do

for θ = 0 to 4(2ρ+ 1)− 1 do
foreach (n,m) s.t. n ∈ J1, oK,m ∈ J1, nK and n ≡ m[2] do

w ← 0 Initialize the weights

for s = 0 to n−m
2

do

w ← w + Cnms

((
ρ+1
sp

)n−2s+2

−
(
ρ
sp

)n−2s+2
)

See Equation (16)

end
if m = 0 then

w ← w × 2π
4(2ρ+1)

See Equation (17)

else

w ← w × i
m

(
e−im

2(θ+1)π
4(2ρ+1) − e−im

2θπ
4(2ρ+1)

)
See Equation (17)

end
F nm
sxsy ← 0

for sx =
⌊
ρ cos

(
2θπ

4(2ρ+1)

)⌋
− 1 to

⌊
ρ cos

(
2θπ

4(2ρ+1)

)⌋
+ 2 do

for sy =
⌊
ρ sin

(
2θπ

4(2ρ+1)

)⌋
− 1 to

⌊
ρ sin

(
2θπ

4(2ρ+1)

)⌋
+ 2 do

F nm
sxsy ← h

(
ρ cos

(
2θπ

4(2ρ+1)

)
− sx

)
h
(
ρ sin

(
2θπ

4(2ρ+1)

)
− sy

)
w + F nm

sxsy

See Equa-
tion (18)

end

end

end

end

end
foreach filter F nm computed previously do

Convolve I (with a null extension) with F nm and store its modulus in ZMnm.
end

3 Patchmatch

In order to detect forgeries, we’ll have to find the nearest neighbors of the descriptors from Section 2.
Usually finding nearest neighbors in high dimension is a rather difficult problem but, for the specific
case of images, the PatchMatch heuristic is faster and more efficient than non-specific heuristics.
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3.1 Original PatchMatch Algorithm [1]

PatchMatch was developed to match dense descriptors of a query image A to the dense descriptors
of a target image B. Its idea is to exploit the overlap of neighboring patches in both images to
accelerate the search. Indeed for two patches that are almost perfectly overlapping, chances are that
their most similar patches will be in the same respective overlapping position.

Given an image B, U(B) represents a uniform distribution over all patches b of B. U , respectively
D, L and R, correspond to functions taking a patch a and returning respectively the patch just above
it, below it, on its left and on its right (always according to the usual sampling grid considered with
numerical images). An approximate nearest neighbor field (abbreviated ANNF) is a data structure
associated with two images which, for each patch of the first image, associates a patch from the
second image, the goal being that the associated patch is the most similar one. An ANNF will be
manipulated like a function from the set of patches of the first image to the set of patches of the
second image.

The PatchMatch algorithm computes an ANNF by leveraging the local similarity property ubiq-
uitous in natural images. This means that if a patch a in A is matched to a patch b in B then
the neighbors of a are more likely to be matched to the corresponding neighbors of b. This idea is
complemented by a random search for the best possible corresponding patches and is then iterated
a fixed number of times. For many applications, a few iterations (between five to ten) provide an
acceptable result. The random search step is done at multiple scales. The local random searches
find the true minimum when a good match has been found whereas the search at larger scales avoids
focusing too much on a non-optimal region of the image by looking also in other regions. When
matching with the same image, there’s a risk for a patch to find itself (which is obviously the best
candidate possible). Because that case is not interesting, matches at a distance smaller than τm in
the image are rejected. A full region is rejected instead of just the patch itself because the over-
lapping patches are often really good candidates as well (though also not interesting for the forgery
detection).

The pseudocode of the algorithm is presented in Algorithm 2. The extension of PatchMatch from
image patches (with which the algorithm was originally defined) to dense descriptors is natural and
changes nothing in the different steps of the algorithm. Later on in this review, PatchMatch (and
several modified versions) will be used with descriptors instead of patches, in particular the Zernike
moments presented in Section 2. In the following, we will keep referring to the elements as patches
even though they can be descriptors as well. The basic propagations are shown in Figure 3a.

3.2 Generalized PatchMatch

In a follow-up paper [2], the authors of PatchMatch proposed several other versions of the algorithm
to either solve slightly different but similar problems or to improve the speed and/or the quality
of the matching. In particular, they considered the problem of matching modulo rotations and
scaling. While the modification for rotation and scaling yields a slow convergence rate in practice
(the space of possible matches becoming far too large for the random search), and is not adapted to
rotation invariant descriptors (it explores the entire space of rotations), we will use the modifications
suggested when applying PatchMatch to the same image. The idea behind this modification is to
try to take advantage of the natural symmetric consistency within the matches. Indeed, if b is the
current candidate as nearest neighbor of a, then a is a good candidate for the nearest neighbor of b.

This will be combined with the modifications suggested by Cozzolino et al. in [5] to take rota-
tion invariant descriptors into consideration and improve their matching. In order to increase the
quality of the matches – when taking rotations into consideration – two more propagations such as
the one presented in Section 3.1 are added. These two propagations correspond to a propagation
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Algorithm 2: Original PatchMatch algorithm

input : A, B two images, d a distance function for patches, N a number of iterations, w
(usually the width of B) and α = 1

2
parameters for the random search, a minimum

distance threshold τm
output: f, an ANNF from A to B
Initialization:
foreach patch a in A do

f(a) ∼ U(B)
end
Iterations:
for n = 1 to N do

if n is even then
foreach patch a in A from the top-left to the bottom-right do

Propagation:
If R(f(L(a))) is not closer than τm from a: f(a)← argminp∈{f(a),R(f(L(a)))} {d(p, a)}
If D(f(U(a))) is not closer than τm from a: f(a)← argminp∈{f(a),D(f(U(a)))} {d(p, a)}
Random search:
i← 0
while wαi > 1 Multiple scale random search

do
r ∼ U(J−bwαic; bwαicK× J−bwαic; bwαicK)
if f(a) + r is further than τm from a then

f(a)← argminp∈{f(a),f(a)+r} {d(p, a)}
end
i← i+ 1

end

end

else
foreach patch a in A from the bottom-right to the top-left do

Propagation:
If L(f(R(a))) is not closer than τm: f(a)← argminp∈{f(a),L(f(R(a)))} {d(p, a)}
If U(f(D(a))) is not closer than τm: f(a)← argminp∈{f(a),U(f(D(a)))} {d(p, a)}
Random search:
i← 0
while wαi > 1 Multiple scale random search

do
r ∼ U(J−bwαic; bwαicK× J−bwαic; bwαicK)
if f(a) + r is further than τm from a then

f(a)← argminp∈{f(a),f(a)+r} {d(p, a)}
end
i← i+ 1

end

end

end

end
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(a) Original PatchMatch propagation: elements in
blue are propagated to the one in black

(b) Improved PatchMatch propagation: elements
in blue (original propagations), green (completed
zero order propagations) and red (first order prop-
agations) are propagated to the one in black

Figure 3: Different types of PatchMatch propagations.

from the top-left patch as well as from the top-right one. This means that information is propagated
to all connecting patches. These propagations are represented in green in Figure 3b. A second set
of propagations, called first-order propagations, are also added to the list of propagations. These
propagations are different from the previous ones because they are not simply a displacement prop-
agation. They propagate linearly varying offset modifications. In order to simplify the notations
for some of the equations, we also introduce the optimal displacement s alongside an ANNF f such
that f(a) = a + s(a). In the following the ANNF and the optimal displacement will be used inter-
changeably, the one leading to the simplest equations will be chosen. For two functions f and g, the
composition of functions is written f ◦g = f(g(.)). Using a rough Taylor expansion, an approximation
of a function f can be made

f(x+ 1) ≈ f(x) +
df(x)

dx

≈ f(x) +
f(x)− f(x− 1)

1
≈ 2f(x)− f(x− 1). (20)

This approximation is classic in numerical analysis. Translating Equation (20) to the current problem,
A being any composition of L, R, U and D, leads to

s(a) ≈ 2s(A(a))− s(A ◦ A(a)). (21)

The first-order nodes used for these types of propagations are represented in red in Figure 3b. In the
end, a total of eight propagations of the different types is done during every iteration of PatchMatch.

Adding all these modifications to the original PatchMatch algorithm presented in Section 3.1
gives us the version used to solve the problem at hand. The final modified PatchMatch algorithm is
summarized in Algorithm 3.

The convergence of this matching algorithm has been proved (for the original one as well as for
a modified version like this one) using the framework presented in [7].

4 Forgery Detection

Once the displacement map has been computed using PatchMatch, forgeries can be detected. In
order to avoid false alarms, multiple pre-processing and post-processing techniques are applied. The
different steps for the detection are:
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Algorithm 3: Modified PatchMatch

Data: A an image, d a distance function for patches, N a number of iterations, w (usually the
width of A) and α = 1

2
parameters for the random search, k the number of nearest

neighbors to be computed, a minimum distance threshold τm
Result: f, a k-ANNF from A to A
Initialization:
foreach patch a in A do

f(a) ∼ U(A)
end
Iterations:
for n = 1 to N do

foreach patch a in A from the top left to the bottom right if n is odd, from the bottom
right to the top left otherwise do

Propagation:
if n is even then

For each propagation, reject candidates that are closer than τm from a in the image:
f(a)← argminp∈{f(a),R(f(L(a)))} {d(p, a)} Zero-order propagation

f(a)← argminp∈{f(a),D(f(U(a)))} {d(p, a)} Zero-order propagation

f(a)← argminp∈{f(a),D◦L(f(U◦R(a)))} {d(p, a)} Zero-order propagation

f(a)← argminp∈{f(a),D◦R(f(U◦L(a)))} {d(p, a)} Zero-order propagation

f(a)← argminp∈{f(a),a+2s(L(a))−s(L◦L(a))} {d(p, a)} First-order propagation

f(a)← argminp∈{f(a),a+2s(U(a))−s(U◦U(a))} {d(p, a)} First-order propagation

f(a)← argminp∈{f(a),a+2s(U◦L(a))−s(U◦L◦U◦L(a))} {d(p, a)} First-order propagation

f(a)← argminp∈{f(a),a+2s(U◦R(a))−s(U◦R◦U◦R(a))} {d(p, a)} First-order propagation

else
Do the reverse propagations

end

end
foreach patch a in A do

Symmetrization:
f(f(a))← argminp∈{f(f(a)),a} {d(p, f(a))}

end
foreach patch a in A do

Random search:
i← 0
while wαi > 1 Multiple scale random search

do
r ∼ U(J−bwαic; bwαicK× J−bwαic; bwαicK)
if f(a) + r is further than τm from a then

f(a)← argminp∈{f(a),f(a)+r} {d(p, a)}
end
i← i+ 1

end

end

end
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1. Application of a median filter.

2. Computation of an error map and early detections.

3. Remove detections that are too small.

4. Remove detections that are too close.

5. Symmetrize the detections.

6. Dilate the detections.

The full algorithm performing forgery detection is presented in Algorithm 10. All these steps will be
developed and explained in the following sections. It is also possible to detect internal copies where
the copies have been flipped. It only requires to compute descriptors for the flipped patches; this is
easily done by computing descriptors on the flipped image and flip the resulting descriptor map. The
distance function used for PatchMath in this case is the distance from the regular descriptors to the
flipped version. Every other step stays the same. Another possible solution is to use flip-invariant
descriptors such the one presented in [18] or [15] so to avoid two computations of the descriptors;
this is not studied in this article though.

4.1 Median Filter

The first step is to apply a median filter to the displacement map. It smooths the displacement
and improves the detection rate by reducing the overall error computed in the following step. The
algorithm used for the median filtering is shown in Algorithm 4.

Algorithm 4: medianFilter algorithm

input : A displacement map D, the radius of the filter ρm
output: A filtered displacement map D̃
foreach pixel p in D do

D̃(p)← median({D(p′) | p′ ∈ D(p, ρm)})
end

4.2 Error Filter and Detection

A copy-move forgery (as its name indicates) copies a region of the image, possibly rotates it, and
pastes it at a different image position. Both regions (the original one and the forged one) can then
be matched by an affine transform. The idea presented in [5] is then to compare the field of matches
created using PatchMatch to the one computed using the best affine transform based on the field of
PatchMatch matches.

Let P ∈M3×n(R) be the homogeneous coordinates of a set of points. We set

P =

 x1 . . . xn
y1 . . . yn
1 . . . 1

 . (22)

Let ∆ be the displacement of these same points (still in homogeneous coordinates). Let A ∈M3×3(R)
be a matrix representing an affine transform. We are looking for a region such that the transformation
error defined by

ε(P ) = min
A∈M3×3(R)

‖∆− (AP − P )‖2, (23)
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is small. The best affine transform minimizing Equation (23) can be estimated using a simple Least
Square Regression, i.e.

A = argmin
A∈M3×3(R)

‖∆− (AP − P )‖2. (24)

The solution of Equation (24) can be expressed as

A = (P + ∆)P T (PP T )−1, (25)

therefore the error can be estimated without a minimization step by replacing A by its solution from
Equation (25)

ε(P ) = ‖∆− (AP − P )‖2

= ‖∆− ((P + ∆)P T (PP T )−1P − P )‖2

= ‖∆−∆P T (PP T )−1P‖2

= ‖∆(I −H)‖2, where H = P T (PP T )−1P. (26)

The set of points P used to estimate this error will be a disk of radius ρe and the error will be
associated to the center of the disk, which delivers an actual error map. In practice the result is
independent of the coordinates in P , as long as ∆ is set coveniently. Therefore H can be precomputed
for all regions. The error detection map is given by thresholding by τ the error map estimated with
Equation (26). The features and the error filter aren’t properly defined on the boundary (it would
require to define the behavior of these objects outside the image as well), therefore detections on
the boundary are not well defined either. This is why the boundary of the image is removed during
the detection step so as to avoid any false detection due to a false matching. The algorithm used to
compute the error detection map is summarized in Algorithm 5.

Algorithm 5: errorDetectionFilter algorithm

input : A displacement map D, the radius of the filter ρe, τ a threshold, sp the half-size of
the patch used to compute the features

output: An error detection map E
P ← D(0, ρe) Define the homogeneous coordinates

H ← P T (PP T )−1P See Equation (26)

H ′ ← I −H
foreach pixel p in D do

Let ∆ be the displacements corresponding to D(p, ρe)
e← ‖∆H ′‖2 See Equation (26)

E(p)←

{
1 if e < τ

0 otherwise

end
Remove any detection at the boundary (of size sp) of E

The next steps of the detection correspond to multiple post-processings trying to minimize false
alarms and to adjust the detection mask to the actual forged regions.

4.3 Size Filter

The first post-processing step tries to remove “unlucky” matches. Sometimes good matches can be
created purely by chance, but in practice these fortuitous regions are very small. The application
of a filter which cuts connected components whose area is below a certain threshold removes these
“unluckily” matched regions. Such a filter is presented in Algorithm 6.
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Algorithm 6: sizeFilter algorithm

input : A detection mask M , area threshold τs
output: A filtered detection mask M̃
foreach 4-connected component c in M do

if c is smaller than τs pixels then

M̃(c)← 0 Assignment for each pixels in c

end

end

4.4 Minimum Displacement Filter

As a last step to remove false alarms, candidates that are too close in the image plane are filtered
out. If the copy is too close to the original, humans detect easily the forgery. Thus, if a detected
forged region is too close to its copy, both are considered false alarms and therefore discarded. This
idea is synthesized in Algorithm 7. While this post-processing is necessary for the method to work
well, it’s actually redundant with the exclusion region from PatchMatch. Indeed setting τm to the
maximum between τm and τd forces all matches of PatchMatch to be at a distance superior or
equal to τd. Therefore there would be no matches to be rejected with this displacement filter. The
deliberate choice to still present the displacement filter was made to describe the originally proposed
post-processing steps, without mixing ideas from different sections.

Algorithm 7: minDispFilter algorithm

input : A mask of detections M , a displacement map D, τd the minimum match distance
output: A filtered mask M̃
foreach pixel p in M do

if the distance in the image between p and D(p) is smaller than τd then

M̃(p) = 0
end

end

4.5 Symmetrization of Detections

Because the process is not entirely symmetric, it can happen that both regions detected as forged
have different shape and size. It may even happen that only one of the forged regions is detected
while the other one is missing from the detection mask. To avoid this problem, the detection mask
is symmetrized using the displacement map. This process is presented in Algorithm 8. This section
is necessary even though PatchMatch already has a mechanism favoring the symmetry. Indeed
PatchMatch only incites it in the sense that if the symmetric match isn’t a better candidate then it’s
rejected. Therefore at the end of the PatchMatch step, the displacement can be asymmetric (even
though in practice it is already quite symmetric). Because a forgery is necessarily symmetric, the
final detection map must be symmetric. Therefore the detection regions in the detection map are
symmetrized using the method presented in this section.

4.6 Dilation

Finally, for the last step, each detection is slightly dilated. Indeed both the median filter and the
error filter tend to reduce the size of a detected region. This dilation step mitigates these effects.
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Algorithm 8: symmetrizationFilter algorithm

input : A detection mask M , a displacement map D
output: A filtered displacement map M̃
foreach pixel p in M do

M̃(D(p))← max{M(p),M(D(p))}
end

This step is presented in Algorithm 9.

Algorithm 9: dilationFilter algorithm

input : A mask of detections M , the radius of the filter ρ
output: A dilated mask M̃
foreach pixel p in M do

M̃(p)← max{M(p′) | p′ ∈ D(p, ρ)} D(p, ρ) is the set of elements at distance smaller or equal

than ρ from p

end

The complete algorithm regrouping all the steps presented in the previous sections 2, 3.1 and 4
is summarized in Algorithm 10.

Algorithm 10: Copy-move forgery detection

input : A suspect I, sp half-size of the patches, ni number of PatchMatch iteration, τm
minimum match distance for PatchMatch, the radius ρm, respectively ρe, for the
median, respectively error computation, τ error threshold, τs size threshold, distance
threshold τd

output: A final detection mask F and binary forgery decision
Z ← ZernikeMoment(I, sp) See Algorithm 1

D ← Patchmatch(Z, ni) See Algorithm 2

D̃ ← medianFilter(D, ρm) See Algorithm 4

E ← errorDetectionF ilter(D̃, ρe, τ) See Algorithm 5

M̃1 ← sizeF ilter(E, τs) See Algorithm 6

M̃2 ← minDispF ilter(M̃1, τd) See Algorithm 7

M̃3 ← symmetrizationF ilter(M̃2) See Algorithm 8

F ← dilationF ilter(M̃2, ρm + ρe) See Algorithm 9

return F and whether F is empty or not

5 Experiments

In this section, results showing both the strengths and the limits of the method are presented. The
displacement results presented in this section will have the same visualization. The color scheme
used to represent the direction and magnitude of the displacement is shown in Figure 4.

180



Automatic Detection of Internal Copy-Move Forgeries in Images

Table 1: Value of the parameters used during the computation of the results in Section 5.1.

Maximum order of the Zernike descriptors o 5

Half-size of patch used to compute the moments sp 8

Number of PatchMatch iterations N 8

Minimum distance between two PatchMatch matches τm 8

Minimum distance between two clones τd 50

Error threshold τ 300

Minimum size of a clone τs 1200

Radius of the median filter ρm 4

Radius of the error filter ρe 6

Figure 4: Color scheme representing the direction and magnitude of the displacement

5.1 Using Zernike Moments

The parameters that will be used for the experiments are those suggested in [5]. They are reminded
in Table 1. The different images used in this section come from the FAU database3 presented by
Christlein et al. in [4]. The first example, shown in Figure 5, is a straightforward example illustrating
the quality of the detections by the method in the simplest case. We can see that every step performs
as expected and provides an accurate estimation of the forged regions. It is also important to test
the method’s resilience to false positives. This is why we applied the exact same method to an intact
image containing several instances of a similar object, shown in Figure 6. The result confirms the
absence of detection in this case even though some regions could have appeared forged due to their
similarity.

One of the requirements of the method was to be rotation resilient. An example of forgery with
a rotation is presented in Figure 7. It actually confirms that the detection succeeds when a rotation
has been applied. Even though only a single example is shown, more tests confirming the rotation
resilience have been done with varying degrees of rotation. The same experiments have also been
done using basic Cartesian Zernike moments in order to see the importance of the resampled version
presented in Section 2. In this case, presented in Figure 8, the detection is much worse (only a much
smaller region is detected) than when the resampled Zernike moments are used.

We also tested other classic perturbations such as the addition of noise. Figure 9 presents a result
with a small amount of noise added after the forgery. The method still works in presence of small
noise. The addition of a large noise in a forgery would make the image suspicious anyway. Figure 10

3http://www5.cs.fau.de/research/data/image-manipulation/
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 5: Result of the method on a forged image for a forgery applying only a translation (using Zernike moments).

(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 6: Result of the method on a clean image (using Zernike moments).
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 7: Result of the method on a forged image for a forgery applying a translation and a ten degrees rotation (using
resampled Zernike moments).

(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 8: Result of the method on a forged image for a forgery applying a translation and a ten degrees rotation (using
basic Cartesian Zernike moments).
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(a) Noise 25 (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 9: Result of the method on a forged image for a forgery applying a translation on top of which a noise of standard
deviation 25 was added (using Zernike moments).

shows the importance of also taking into account flipped copies.

The example of Figure 11 is no longer a simple copy-move forgery but an actual editing of the
image. Indeed the copied section was integrated using the Poisson editing method presented in [13]
and implemented in [6]. Poisson editing is quite adapted to forgery as it blends nicely the pasted
region in the image. This time, the algorithm actually fails. This shows the limitation not of the
method itself but of the descriptors, namely the amplitude of Zernike moments. Those descriptors
achieve the wanted invariance but at the same time they are extremely rigid. With appropriate de-
scriptors, the exact same methodology could be applied and should yield good detections. Removing
the Zernike moment of order 0 from the list of descriptors used (which actually corresponds to the
mean of the local region) didn’t improve the results for Poisson editing.

Another limit of the method is the presence of multiple copies. In such a case, the PatchMatch
displacement field is at risk of splitting between the multiple copies, which increases the error and
decreases the chance of an actual detection. Figure 12 shows an example where this problem arises.
In that case, parts of each of the copies are actually detected but none is entirely detected for the
reasons explained above.

5.2 Using Dense SIFT Descriptors

Although the method performs as expected, as shown in Section 5.1, it is disappointing that forgeries
such as Poisson editing are not detected. For this reason, the same experiments have been repeated
after changing the Zernike moments by dense SIFT descriptors. SIFT descriptors, presented by Lowe
in [11], have been shown to be state of the art descriptors in image matching thanks to their invariance
to noise, changes of lighting or to small changes of viewpoint. In particular, they are rotation
invariant, just like the Zernike moments. A dense version of these descriptors can be computed by
considering all patches instead of those marked by points of interest. The dense version was the one
used for the experiments. The VLFeat implementation of dense SIFT was used4. The parameters
are listed in Table 2. Figures 13, 14, 15, 16 and 17 show the results of the same experiments shown

4A. Vedaldi and B. Fulkerson, VLFeat: An Open and Portable Library of Computer Vision Algorithms, 2008.
http://www.vlfeat.org/
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(a) Flipped forgery (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 10: Result of the method on a forged image for flipped copy (using Zernike moments).

(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 11: Result of the method on a forged image for a forgery applying a Poisson editing (using Zernike moments).
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 12: Result of the method on a forged image for a forgery applying translations when a same object is copied at
multiple different positions (using Zernike moments).

(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 13: Result of the method on a forged image for a forgery applying only a translation (using dense SIFT descriptors).

in Section 5.1. As one can see, dense SIFT descriptors perform as well as the Zernike moments on
the successful experiments but also successfully detect Poisson editing. Nevertheless, dense SIFT
descriptors seem to incur into a higher risk of false positives, see Figures 18 and 16.

6 Conclusion

The forgery detection method analyzed in the present paper proves to be an efficient detector. One
of its major advantages is its resilience to rotations. It is also robust to image perturbations such
as the addition of noise. Nevertheless, it is not deprived of drawbacks. In particular, the results
are particularly disappointing when considering multiple copies of an object or when the forgery has
been performed by a classic copy-paste method such as Poisson editing. A better choice for the
descriptor should be able to fix this deficiency of the method though. Dense SIFT descriptors were
considered as an alternative to improve the detection of forgeries performed by Poisson editing. Even
though these descriptors allow for better detections, they are more likely to produce false positives.
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 14: Result of the method on a forged image for a forgery applying a translation and a ten degrees rotation (using
dense SIFT descriptors).

(a) Noise 25 (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 15: Result of the method on a forged image for a forgery applying a translation on top of which a noise of standard
deviation 25 was added (using dense SIFT descriptors).
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 16: Result of the method on a forged image for a forgery applying a Poisson editing (using dense SIFT descriptors).

(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 17: Result of the method on a forged image for a forgery applying translations when a same object is copied at
multiple different positions (using dense SIFT descriptors).
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 18: Result of the method on a clean image (using dense SIFT descriptors).

Table 2: Value of the parameters used during the computation of the results in Section 5.2.

Number of SIFT bins 4

Size of SIFT bins 5

Number of PatchMatch iterations N 8

Minimum distance between two PatchMatch matches τm 8

Minimum distance between two clones τd 50

Error threshold τ 300

Minimum size of a clone τs 1200

Radius of the median filter ρm 4

Radius of the error filter ρe 6
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Nevertheless, this shows that the method can be modified and improved by varying the descriptors.
The only drawback found – which is not linked to the descriptors but to the usage of PatchMatch –
is the inability of the method to detect multiple copies.
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Image Credits

All the images in this manuscript are either taken from the FAU database presented by Christlein et
al. in [4] or produced by the author.

References

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman, Patchmatch: A ran-
domized correspondence algorithm for structural image editing, ACM Transactions on Graphics-
TOG, 28 (2009), p. 24. https://doi.org/10.1145/1531326.1531330.

[2] C. Barnes, E. Shechtman, D.B. Goldman, and A. Finkelstein, The generalized Patch-
Match correspondence algorithm, in European Conference on Computer Vision, Springer, 2010,
pp. 29–43. https://doi.org/10.1007/978-3-642-15558-1_3.

[3] J.L. Bentley, Multidimensional binary search trees used for associative searching, Communi-
cations of the ACM, 18 (1975), pp. 509–517. https://doi.org/10.1145/361002.361007.

[4] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, An evaluation
of popular copy-move forgery detection approaches, IEEE Transactions on Information Forensics
and Security, 7 (2012), pp. 1841–1854. https://doi.org/10.1109/TIFS.2012.2218597.

[5] D. Cozzolino, G. Poggi, and L. Verdoliva, Efficient dense-field copy–move forgery de-
tection, IEEE Transactions on Information Forensics and Security, 10 (2015), pp. 2284–2297.
https://doi.org/10.1109/TIFS.2015.2455334.

[6] J.M. Di Martino, G. Facciolo, and E. Meinhardt-Llopis, Poisson Image Editing,
Image Processing On Line, 6 (2016), pp. 300–325. https://doi.org/10.5201/ipol.2016.163.

[7] T. Ehret and P. Arias, On the convergence of PatchMatch and its variants, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1121–1129.

[8] H. Farid, Image forgery detection, IEEE Signal Processing magazine, 26 (2009), pp. 16–25.
ISSN:1053-5888.

[9] A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimensions via hashing,
in Proceedings of the 25th International Conference on Very Large Data Bases, vol. 99, 1999,
pp. 518–529.

[10] P. Indyk and R. Motwani, Approximate nearest neighbors: towards removing the curse of di-
mensionality, in Proceedings of the thirtieth annual ACM symposium on Theory of Computing,
ACM, 1998, pp. 604–613. https://doi.org/10.1145/276698.276876.

190

https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1007/978-3-642-15558-1_3
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/TIFS.2012.2218597
https://doi.org/10.1109/TIFS.2015.2455334
https://doi.org/10.5201/ipol.2016.163
https://doi.org/10.1145/276698.276876


Automatic Detection of Internal Copy-Move Forgeries in Images

[11] D.G. Lowe, Object recognition from local scale-invariant features, in IEEE International Con-
ference on Computer vision, vol. 2, IEEE, 1999, pp. 1150–1157. https://doi.org/10.1109/

ICCV.1999.790410.

[12] X. Pan and S. Lyu, Region duplication detection using image feature matching, IEEE Trans-
actions on Information Forensics and Security, 5 (2010), pp. 857–867. https://doi.org/10.

1109/TIFS.2010.2078506.
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