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Abstract

Methods performing Image Matching by Affine Simulation (IMAS) attain affine invariance by
applying a finite set of affine transforms to the images before comparing them with a Scale In-
variant Image Matching (SIIM) method like SIFT or SURF. We describe here how to optimize
IMAS methods. First, we detail an algorithm computing a minimal discrete set of affine trans-
forms to be applied to each image before comparison. It yields a full practical affine invariance at
the lowest computational cost. The matching complexity of current IMAS algorithms is divided
by about 4. Our approach also associates to each image an affine invariant set of descriptors,
which is twice smaller than the set of descriptors usually used in IMAS methods, and only 6.4
times larger than the set of similarity invariant descriptors of SIIM methods. In order to reduce
the number of false matches, which are inherently more frequent in IMAS approaches than in
SIIM, we introduce the notion of hyper-descriptor, which groups descriptors whose keypoints
are spatially close. Finally, we also propose a matching criterion allowing each keypoint of the
query image to be matched with several keypoints of the target image, in order to deal with
situations where an object is repeated several times in the target image.

Source Code

The source code to reproduce the same results as the demo can be found on the IPOL web
page of this article1. Compilation and usage instructions are included in the README.md file
of the archive. Complementary information is available at https://rdguez-mariano.github.
io/pages/hyperdescriptors.
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Disclaimer

The present work publishes: near optimal versions of IMAS methods [23]; IMAS with hyper-
descriptors; and two structural and computational improvements. It does not publish the ORSA
method [16, 14, 15] nor the USAC method [22]. They may be updated or replaced by other subrou-
tines.
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1 Introduction

Image matching, which consists in deciding whether or not several images represent some common
or similar objects, is a problem recognized as difficult, especially because of the viewpoint changes
between images. The apparent deformations of (smooth) objects caused by changes of the camera
position can be locally approximated by affine maps. This observation has motivated the development
of comparison methods robust to local affine transformations. These methods usually compare local
image descriptors, which they try to make as invariant as possible to affine transformations.

The best established image comparison method is SIFT [10]. This method was shown in [17]
to perform recognition invariant to image rotations, translations, and camera zoom-outs. SIFT has
inspired numerous variations over the past 15 years [7, 2, 1]. In this paper, we refer to these methods
as Scale Invariant Matching Methods (SIIM). Several attempts have also been made to create local
image descriptors invariant to affine transformations [11, 19, 12]. Yet, it was shown in [17] that none
of these approaches is truly invariant to local affine transformations, due to the fact that optical
blur and affine transformations do not commute. As a result, these methods cannot handle angle
viewpoint differences larger than 60◦ for planar objects [18, 13], and lose quickly efficiency for angles
larger than 45◦ [6].

A more pragmatic approach, proposed a few years ago with the ASIFT Algorithm [17] and
adopted by several authors ever since [21, 13], consists in applying a pre-determined set of affine
transformations to each compared image, in order to simulate the transformations induced by the
viewpoint changes. Instead of comparing two images, the resulting algorithm therefore compares all
the pairs of simulated images. In this article, we refer to these simulation algorithms as IMAS, for
Image Matching by Affine Simulation. In favorable cases, IMAS can capture changes of point of view
up to an impressive 88◦.

Figure 1: IMAS algorithms start by applying a finite set of optical affine simulations to u and v, followed by pairwise
comparisons.

The first IMAS method provided with a mathematical proof of affine invariance is ASIFT [18, 24].
As its name indicates, ASIFT is an affine invariant extension of SIFT, that actually operates on SIFT.
It can operate on any Scale Invariant Image Matching (SIIM) method like SURF [2] as well, provided
its descriptor shows some robustness to angle viewpoint changes like SIFT descriptors do. Unlike
MSER [11], LLD [19], Harris-Affine and Hessian-Affine [12], which attempt at normalizing all of the
six affine parameters, ASIFT only simulates the two camera axis angles, and then applies SIFT which
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simulates the scale and normalizes the rotation and the translation. Similarly, FAIR-SURF [21] is
an IMAS method replacing SIFT by SURF in ASIFT. MODS [13] is another IMAS using heuristics
to test fewer affine transforms and also combining different SIIMs. Other IMAS approaches do not
involve local descriptors: FAsT-Match [9] delivers affine invariance by assuming that the template
(a patch in the query image) can be recovered inside the target image by a unique affine map. The
six affine parameters are simulated instead of the three involved in ASIFT.

Our goal is in this paper is to provide a generic IMAS method that cumulates three new improve-
ments, all aimed at acceleration and robustness:

• it minimizes the number of camera axis angles to be simulated;

• it defines local hyper-descriptors grouping descriptors at the same location to accelerate match-
ing;

• it resolves the problem of Lowe’s matching thresholds that inhibits matching in presence of
multiple similar objects in the same image.

In IMAS methods, the viewpoint change between different views of the same planar scene is measured
by the so-called relative transition tilts [18, 24]. Transition tilts to be simulated to match two images
can be much larger than absolute tilts. We describe here our optimal solution to the key question of
IMAS methods: how to choose the list of tilts applied to both images to test these large transition
tilts before comparison? In [23] we treated this question by finding optimal coverings of the space of
affine tilts. In Section 2 we recall these results and give implementation details to construct nearly
optimal coverings. Section 3 gives the construction of hyper-descriptors. In Section 4 we describe the
two structural and computational improvements of the method. One is the replacement of Lowe’s
acceptance criterion by an a contrario criterion, and the other one is the elimination of useless “flat
descriptors”. Section 5 contains a short experimental assessment. Much more can be done on line!

2 Image Matching by Affine Simulation

In this section, we recall the definition of the space of tilts for planar affine transforms and the
derivation of optimal coverings of this space. The affine transforms considered here can be interpreted
as different viewpoints of a planar image from a remote camera, or more generally as the transition
between two such oblique views. Indeed, given a frontal remote snapshot of a planar object u(x) =
u(x, y), we can transition from any other remote oblique (affine) view Bu of the same object to any
other oblique view Au through the affine transformation AB−1.

Here, for any linear invertible map A ∈ GL+ (2), we denote the affine transform A of a continuous
image u(x) by Au(x) = u(Ax). We recall classic notation for three subsets of the general linear group
GL (2) of invertible linear maps of the plane,

GL+ (2) = {A ∈ GL (2) | det (A) > 0} ,
GO+ (2) =

{
A ∈ GL+ (2) |A is a similarity

}
,

GL+
∗ (2) = GL+ (2) \GO+ (2) ,

where we call similarity any combination of a rotation and a zoom, and the symbol \ denotes the set
difference operator. Our central notion in the discussion is the tilt of an affine transform, which we
now define. The proofs of the following propositions can be found in [23].
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2.1 Absolute tilts

Proposition 1 (Morel, Yu [18]). Every A ∈ GL+
∗ (2) is uniquely decomposed as

A = λR1 (ψ)TtR2 (φ) , (1)

where R1, R2 are rotations and Tt =

[
t 0
0 1

]
, with t > 1, λ > 0, φ ∈ [0, π[ and ψ ∈ [0, 2π[.

Remark. It follows from this proposition that any affine map A ∈ GL+ (2) is either uniquely de-
composed as in (1) or is directly expressed as a similarity λR1.

Figure 2: Geometric Interpretation of (1).

Figure 2 shows a camera viewpoint interpretation of this affine decomposition where the longitude
φ and latitude θ = arccos 1

t
characterize the camera’s viewpoint angles, ψ parameterizes the camera

spin and λ corresponds to the zoom. In the ideal affine model, the camera is supposed to stand at
infinite distance from a flat image u, so that the deformation of u induced by the camera indeed is
an affine map. But the above approximation is still valid provided the image’s size is small with
respect to the camera distance. In other terms the affine model is locally valid for each small and
approximately flat patch of a physical surface photographed by a camera at some distance. Yet,
the affine deformation of the object’s aspect will be different for each of its patches. This explains
why affine invariant recognition methods deal with local descriptors. The parameter t defined above
measures the so-called absolute tilt between the frontal view and a slanted view. The uniqueness of
the decomposition in (1) justifies the next definition.

Definition 1. We call absolute tilt of A the real number τ (A) defined by




GL+ (2) → [1,∞[

A 7→

{
1 if A ∈ GO+ (2)

t if A ∈ GL+
∗ (2)

,

where t is the parameter found when applying Proposition 1 to A.
We call longitude of A the angle φ (A) defined by





GL+ (2) → [0, π[

A 7→

{
0 if A ∈ GO+ (2)

φ if A ∈ GL+
∗ (2)

,

where φ is the angle of the rotation R2 found when applying Proposition 1 to A.
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2.2 Transition Tilts

Image descriptors like those proposed in the SIFT method are invariant to translations, rotations
and Gaussian zooms, which in terms of the camera position interpretation (see Figure 2) correspond
to a fronto-parallel motion of the camera, a spin of the camera and to an optical zoom. We shall
focus on the last part TtR2 of the decomposition (1) because it is the one that is imperfectly dealt
with by SIIMs. SIIMs are instead able to detect objects up to a similarity. This leads us to the next
definition.

Definition 2. Let A,B ∈ GL+ (2). Then we define the right equivalence relation ∼ as

A ∼ B ⇔ AB−1 ∈ GO+ (2) .

Definition 3. Let A,B ∈ GL+ (2). We call transition tilt between A and B the absolute tilt of
AB−1, i.e.

τ
(
AB−1

)
.

The transition tilt has an agreeable visual interpretation appearing in Figure 3. By Formula (1)
applied to AB−1, passing from an image Bu to an image Au comprises a single non-Euclidean
transformation, namely the central tilt matrix Tτ(AB−1) which squeezes the image in a fixed direction,
namely the x horizontal direction, after having rotated it. Thus the transition tilt measures the
amount of image distortion caused by a change of view angle. We now recall the formal properties
of the transition tilt stated in [18].

Buu

Figure 3: Passage from transition tilts (left side) to absolute tilts (right side).

Proposition 2. For A,B ∈ GL+ (2) we have

1. τ (AB−1) = 1 ⇔ A ∼ B;

2. τ (A) = τ (A−1);

3. τ (AB−1) = τ (BA−1);

4. τ (AB−1) ≤ τ (A) τ (B);

5. max
{
τ(A)
τ(B)

, τ(B)
τ(A)

}
≤ τ (AB−1).

Definition 4. We call Space of Tilts, denoted by Ω, the quotient GL+ (2) / ∼, where the equivalence
relation ∼ has been given in Definition 2.
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This definition completes Definition 2 and clarifies the geometrical interpretation of the space of
tilts: an element in the space of tilts represents the set of all the camera spins and zooms associated
with a certain tilt in a certain direction.

Notation. Let A ∈ GL+ (2). We denote by [A] the equivalence class in the space of tilts associated
to A i.e.

[A] =
{
B ∈ GL+ (2) |A ∼ B

}
.

Definition 5. We denote by i the canonical injection from the space of tilts to GL+ (2) defined by

i :

{
Ω → GL+ (2)

[A] 7→ Tτ(A)Rφ(A)
.

This injection filters out the canonical representative from each class which is a mere tilt in the
x direction.

Remark. Clearly, the function i satisfies

[A] = [i ([A])] ,

and the space of tilts can be parameterized by picking these representative elements in each class as

Ω = [Id]
⋃




⋃

(t,φ)∈]1,∞[×[0,π[

[TtRφ]



 .

The notion of transition tilt is helpful for measuring the affine distortion from a fixed affine
viewpoint to surrounding affine viewpoints. Proposition 3 gives an adequate measuring tool. As
argued in [23, 6], transition tilt tolerances (determining visible viewpoints) are SIIM dependent.
Most SIIMs are able to identify viewpoint changes under 45◦ for image sizes around 700× 550.

Transition tilts do not depend on the class representative of A or B, so they can be defined
directly on the quotient GL+ (2) / ∼.

Proposition 3. The function d

d :

{
Ω × Ω → R+

([A] , [B]) 7→ log τ (BA−1)
,

is a metric acting on the space of tilts.

Let us now recall disks formulas in tilt space with respect to the metric d in Proposition 3.

Notation. Let S ∈ Ω and r > 0. We denote either by B (S, r) or by BrS, the disk in the space of
tilts centered at S and with radius r.

Theorem 1 (Rodŕıguez, Delon, Morel [23]). Given an element of the space of tilts in canonical form
[TtR (φ1)], the disk B ([TtR (φ1)] , r) in the space of tilts corresponds to the following set

{
[TsR (φ2)] |G (t, s, φ1, φ2) ≤ e2r + 1

2er

}
,

where

G (t, s, φ1, φ2) =

( t
s

+ s
t

2

)
cos2 (φ1 − φ2) +

( 1
st

+ st

2

)
sin2 (φ1 − φ2) .
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(a)
B
(
[Id], log

√
2
)

(45◦ visibility around [Id])
(b)

B
([
T√2R0

]
, log
√

2
)

(45◦ visibility around
[
T√2R0

]
)

(c)
B
(
[T2R0], log

√
2
)

(45◦ visibility around [T2R0])
(d)

B
(
[T4R0], log

√
2
)

(45◦ visibility around [T4R0])

Figure 4: (Perspective views)

Green point - Affine transformation in question

Dashed line - ∂B
(

[Id] , log 4
√

2
)

Black surface - Disk in question

Figures 4 and 5 show, in a perspective view and in polar coordinates respectively, four disks in
the space of tilts centered at four reference tilts. The radius of these disks corresponds to a maximal
change of angle view of 45◦ with respect to the disk’s center. The larger the tilt, the smaller the
disk with that radius, which means that we need more and more disks to cover the high tilt regions.
Notice that all disks appear duplicated by symmetry. Indeed, a perspective visualization of Ω is
impossible in R3: Ω is the quotient of the half sphere by a central symmetry.

As a consequence, affine simulation is now a reliable way of extending the initial visibility range of
a SIIM. The idea is to place affine simulations in a way that they render all elements in region γ ⊂ Ω
perfectly visible for at least one of them. When that happens we call that set of affine simulations a
covering of the region in question.

Definition 6. We call S ⊂ Ω an α◦-covering of a region Γ ⊂ Ω if and only if

Γ ⊂
⋃

S∈S

B
(
S, log

1

cos (α◦)

)
.

Remark. In Definition 6, S ⊂ Ω actually corresponds to the centers of the balls constituting the
covering. For our scopes it will be a finite set, that determines the set of affine transformations used
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(a) B
(
[Id], log

√
2
)

(b) B
([
T√2R0

]
, log
√

2
)

(c) B
(
[T2R0], log

√
2
)

(d) B
(
[T4R0], log

√
2
)

Figure 5: (Polar coordinates)

Green point - Affine transformation in question

Dashed line - ∂B
(

[Id] , log 4
√

2
)

Dotted line - Equal tilts
Red line - Disk’s boundary

to simulate affine viewpoints in IMAS algorithms, i.e.

{i (S) |S ∈ S}.

The region Γ ⊂ Ω of Definition 6 usually denotes a circular region representing all viewpoints
within a certain angle θ. The following definition gives a name to these sets.

Definition 7. The set Γ ⊂ Ω is called a γ◦-region if and only if

Γ =

{
[TtRφ] | t ≤ 1

cos (γ◦)

}
.

Several α◦-coverings of γ◦-regions have been proposed in [23, 18, 24, 21, 13] for SIFT and SURF;
among them those in Figure 6. It is easily seen that they are far from optimality: some of these
coverings do not really cover the region they were meant to, except for ASIFT [18, 24] which instead
is visually redundant. The following section describes the near optimal coverings proposed in [23].

2.3 Near Optimal α◦-Coverings

Near optimal coverings in [23] ensure minimal complexity for IMAS algorithms. One example of
these α◦-coverings is represented in Figure 9a.

The optimization problem is to minimize the overall number of descriptor comparisons while
maintaining the same detection efficiency. This minimization is not equivalent to a minimization of
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(a) FAIR-SURF fixed tilts [21], a set of 23 affine simulations with an area ratio of 11.42. It
would represent a 48◦-covering of a 53◦-region. Highly redundant in the central part, it does
not cover the 80◦-region.

(b) MEDIUM DoG-SIFT [13], a set of 45 affine simulations with an area ratio of 9. It would
represent a 56◦-covering of a 56◦-region. Although highly redundant, it does not cover the
80◦-region.

(c) ASIFT [18, 24], a set of 41 affine simulations with an area ratio of 13.77. It would represent
a 56◦-covering of a 80◦-region. Highly redundant, it does cover the region it was meant to.

Figure 6: Non optimal coverings
Green points - Affine camera simulations

Red lines - Visibility tolerance from each affine simulation
White/Black surfaces - Visible viewpoints regions

Dashed line - Covered regions

the number of simulated versions being used. Their efficiency criterion is based on two straightforward
remarks. The first one is that if a digital image suffers a tilt t in any direction, its area gets modified
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by a factor 1
t
. The second one is that the expected number of keypoints in a digital image is

proportional to its area. Both remarks imply that the complexity of an IMAS algorithm will be
given by the overall area of the simulated images being ultimately compared. This justifies the next
definition.

Definition 8. We call area ratio of S (a finite set of elements in Ω) the real number

∑

S∈S

1

τ (S)
.

The area ratio fixes the factor (larger than 1) by which the image area is being multiplied when
summing the areas of all of its tilted versions. Then, as the ultimate goal is to reduce the number
of key point comparisons, it is natural to look for a set S whose area ratio is close to the infimum
among all log r-coverings of Γ. It is difficult to find an optimal solution for this NP hard problem.
Fortunately, our search space in the set of log r-coverings can be drastically reduced by imposing
practical and theoretical constraints to S. Those constraints follow from simple requirements for an
image matching method.

Definition 9. We shall say that a set S ∈ Ω is feasible if and only if:

1. [Id] ∈ S.

2. There exist n ∈ N+ and

(t1, . . . , tn, φ1, . . . , φn) ∈ [1,∞[n × ]0, π]n

such that

S \ {[Id]} =
n⋃

i=1

{
[TtiRkφi ] ∈ Ω | k = 0, . . . ,

⌊
π

φi

⌋}
,

where bac denotes the nearest integer less than or equal to a real number a.

The intuition behind Definition 9 is as follows: 1) avoids an image resolution loss before com-
parison, an obvious requirement; 2) imposes groups of concentric equidistant tilts which is a sound
isotropy requirement.

Definition 10. Set Γ = B ([Id] , log Λ). A feasible set S ∈ Ω with parameters

(n, (t1, . . . , tn, φ1, . . . , φn)) ∈ N+ × [1,∞[n × ]0, π]n

is said to be optimal among feasible sets if and only if it realizes the minimal area ratio. In other
words, optimal feasible sets are solutions of

arg min
(n,(t1,...tn,φ1,...φn))∈N+×[1,∞[n×]0,π]n

1 +
n∑

i=1

|Jti,φi |
ti

, (2)

subject to: Γ ⊂ Blog r
[Id] ∪




⋃

1≤i≤n

⋃

S∈Jti,φi

Blog r
[S]



 ,

where Jti,φi is the set of transformations of the form

TtiRφi , TtiR2φi . . . , TtiR
⌊
π
φi

⌋
φi
,

|Jti,φi | is the cardinal of Jti,φi and Blog r
[S] is denoting B ([S] , log r).
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Some conditions have been proposed in [23] in order to verify that a γ◦ region is truly covered
by a feasible set with a fixed number of concentric equidistant tilts. Let the intersection of disks
boundaries, which are composed at most of two elements for non identical disks, be denoted by

Σi := ∂Blog r

[Tti ]
∩ ∂Blog r[

TtiRφi

], (3)

and their respective closest and farthest elements be denoted by

minΣi := arg min
S∈Σi

d (S, [Id]) , maxΣi := arg max
S∈Σi

d (S, [Id]) .

Then Algorithm 1 summarizes the aforementioned conditions in a function, called IsGammaCov-
ered, that is to be called for querying if a feasible set covers a γ◦ region.

Algorithm 1: IsGammaCovered

input:
The initial α◦ visibility (fixes r = 1

cosα◦
).

The γ◦ region to cover (fixes tγ = 1
cos γ◦

).
parameters:
n - Number of concentric equidistant tilts for the feasible set (as in Definition 9). This also
fixes the amount of sets Σi, defined in (3).
ε - Number of uniformly discretized elements in each dimension with respect to the metric d of
Proposition 3.
1. covered portion = r // A feasible set always has the disk Blog r

[Id]

2. if Σ1 = ∅ then
return(false)

3. foreach i = 1, · · · , n− 1 do
if τ (minΣi) >covered portion then

return(false)

covered portion = maxΣi // the annulus Blog τ(maxΣi)
[Id] \ Blog τ(minΣi)

[Id] is already covered

if covered portion > tγ then
return(true)

if Σi+1 = ∅ then
return(false)

foreach [TtRφ] ∈ Fε // Fε is the finite ε-dense set appearing in (4).

do

if [TtRφ] /∈
⋃i+1
j=i B

log r−εTtjR⌊
φ
φj

⌋
φj

 ∪ B
log r−εTtjR⌈

φ
φj

⌉
φj

 then

return(false) // [TtRφ] must lie inside one of the four nearest disks (Theorem 1 is used)

// at this point the annulus Blog τ(minΣi+1)
[Id] \ Blog τ(maxΣi)

[Id] has been proved to be covered

covered portion = minΣi+1

4. if τ (maxΣn) > tγ then
return(true)

else
return(false)

Figure 7 illustrates the iterative process described in Algorithm 1. One crucial step in Algorithm 1
is the creation of an ε-dense set of a given annulus. As explained in [23], this set is a helping hand
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to ensure a log (r − ε)-covering up to an error of ε and so, by dilating back disks radius to r one
ensures log r-coverings. Of course, there exists an infinite number of ε-dense sets. For annulus like

Blog ti+1

[Id] \ Blog ti
[Id]

we propose to build the following set, which is proven to be a ε-dense set by the mere application of
the triangle inequality of the metric d,

Fε := {[TenεtiRkβi ] ∈ Ω|n, k ∈ N+, e
nεti < ti+1, k βε (enεti) < π} , (4)

where the function βε, appearing in Definition 11, determines the angle step for equal distances over
the same tilt.

Covered area

Γ

B ([Id] , log r)

[Id] [Tti ]

[TtiRφi ]

min Σi max Σi B ([Id] , log r)

[Id] [Tti ]

[TtiRφi ]

max Σi
[
Tti+1

]

[
Tti+1

Rφi+1

]

min Σi+1

Fε

Figure 7: Verifying covering conditions for feasible sets in Algorithm 1. Left : covered annulus determined by min Σi and
max Σi. Right : all elements in Fε must lie inside at least one disk.

Indeed, let z ∈ Blog ti+1

[Id] \ Blog ti
[Id] and its surrounding four points yi ∈ Fε, i ∈ Z/4Z satisfying

d (yi, yi+1) = ε. Four auxiliary points, xi i ∈ Z/4Z, are defined as projections of z on arcs (see
Figure 8). In that case, we always have either d (yi, xi) ≤ ε

2
, either d (yi+1, xi) ≤ ε

2
. This implies that

there exists at least one pair (j, k) with k = j or k = j + 1 for which d (xj, z) ≤ ε
2

and such that

d (yk, z) ≤ d (yk, xj) + d (xj, z) ≤ ε.

y1

y2

y4

y3
x1

x2

x3

x4

z

Figure 8: Proving the ε-density of Fε.

Definition 11. We denote by βε, the function defined by

βε :

{
]1,∞] → [0, π[
t 7→ φ (t)

,

where φ (t) is such that
d
(
[Tt] ,

[
TtRφ(t)

])
= ε.
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The procedure in the proof of Proposition 3.16 in [23] can also be applied to find all kinds of near
optimal coverings depending on the initial visibility α◦ and the γ◦-region to be covered. Algorithm 2
delivers a way of finding near optimal α◦-coverings by fixing n, the number of concentric equidistant
tilts, and then optimizing over 2n dimensions. By means of the canonical injection in Definition 5, a
given α◦-covering determines the set of affine maps to be simulated in Algorithm 4. Some examples
of these kind of coverings can be found in Table 1.

Algorithm 2: Finding near optimal coverings

input:
The initial α◦ visibility and the γ◦ region to cover.
parameters:
n - Number of concentric equidistant tilts (as in Definition 9).
κ - Number of uniformly discretized elements in each dimension with respect to the metric d
of Proposition 3.
inner definitions:
]t1, t2]κ =

{
t2
enεκ
|n ∈ N, t1 < t2

enεκ
≤ t2

}
, ]0, β]tκ = {nβεκ (t) |n ∈ N, 0 < nβεκ (t) ≤ β}

where εκ is such that |]t1, t2]κ| =
∣∣]0, β]tκ

∣∣ = κ, and βr2 (ti) appears in Definition 11.

1. r = log
(

1
cos(α◦)

)
// α◦ equivalent transition tilt

2. ar =∞ // current minimal area ratio

3. foreach (t1, t2, · · · , tn) ∈ ]r, r2]κ × ]t1r, t1r
2]κ × · · · × ]tn−1r, tn−1r

2]κ do

foreach (φ1, φ2, · · · , φn) ∈ ]0, βr2 (t1)]t1κ × ]0, βr2 (t2)]t2κ × · · · × ]0, βr2 (tn)]tnκ do

if
(∑n

i=1 ti

⌊
π
φi

⌋
< ar

)
& IsGammaCovered (γ, t1, · · · , tn, φ1, · · · , φn) then

ar =
∑n

i=1 ti

⌊
π
φi

⌋
(
topt
1 , · · · , topt

n

)
= (t1, · · · , tn)(

φopt
1 , · · · , φopt

n

)
= (φ1, · · · , φn)

return S = {toptk , φopt
k }k=1,...,n

α◦ γ◦ EV AR topt1 φopt1 topt2 φopt2 topt3 φopt3

45◦ 80◦ 87◦ 15.889 1.84641 0.459445 2.68973 0.234551 4.58177 0.116774
54◦ 80◦ 87◦ 7.354 2.54902 0.450362 4.71215 0.18624 - -
54◦ 81◦ 88◦ 7.548 2.67673 0.350162 5.65043 0.175859 - -
56◦ 80◦ 87◦ 6.290 2.89419 0.396183 6.33474 0.198091 - -
56◦ 83◦ 88◦ 7.221 2.89419 0.397562 6.07477 0.150497 - -
56◦ 84◦ 89◦ 9.014 2.79309 0.461217 4.61946 0.24717 9.65081 0.123523
58◦ 82◦ 88◦ 5.971 3.01682 0.450814 6.03598 0.200202 - -
58◦ 84◦ 89◦ 7.979 3.02483 0.448874 5.09033 0.261983 10.4035 0.131014
60◦ 84◦ 89◦ 6.126 3.2948 0.396543 7.78261 0.156965 - -

Table 1: Near optimal α◦-coverings of γ◦-regions. As proved in [23], these α◦-coverings will ensure for a generic IMAS an
extended visibility in column EV for a near-minimal area ratio in column AR.

Remark. The global optimization proposed in Algorithm 2 should be followed by some iterations of
a refined search on the neighboring subsets containing the current optimum.
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(a) 56◦-covering with a set of 28 affine simulations that renders viewpoints visible in a 82◦-
region.

(b) 45◦-covering with a set of 43 affine simulations that renders viewpoints visible in an 82◦-
region.

Figure 9:
Near optimal coverings

as in [23]

Green points - Affine camera simulations
Red lines - Visibility tolerance from each affine simulation

White/Black surfaces - Visible viewpoints regions
Dashed line - Covered regions

2.4 Simulating Digital Tilts

While the former sections only dealt with affine geometry, we now must introduce the formalism of
the camera blur, as we shall deal with digital image recognition. Our goal is to define rigorously
affine invariant recognition for digital images.

We now introduce a compact notation for convolution with a Gaussian. We shall denote by ?x
the 1-D convolution convolution operator in the x-direction, i.e.

G ?x u (x, y) =

∫

R
G (z)u (x− z, y) dz.

We denote by Gx
σ the 1D convolution operator in the x direction with

Gx
cσ (x) :=

1√
2πcσ

e
− x2

2(cσ)2 ,

namely

Gx
σu := Gx

cσ ?x u.

Here the constant c ≥ 0.7 is large enough to ensure that all convolved images, initially sampled at 1
distance, can be sub-sampled at Nyquist distance σ without causing significant aliasing.

264



Fast Affine Invariant Image Matching

We now formalize the notion of tilt. There are actually three different notions of tilt, that we
must carefully distinguish. In all that follows, u0 denotes the (theoretical) infinite resolution image
that would be obtained by a frontal snapshot of a plane object with infinitely many pixels.

Definition 12. Given t > 1, the tilt factor, define:

• Geometric tilts

Ttu0(x, y) =: u0(tx, y).

• Simulated tilts (taking into account camera blur)

Ttv =: TtGx√
t2−1

?x v.

• Digital tilts (transforming a digital image u into a digital image)

u→S1TtIu.

where S1 and I denote respectively the image sampling operator defined on the grid Z2 and the
Shannon-Whittaker interpolator of a digital image on Z2.

Digital tilts are the ones used in practice. It all adds up because the simulated tilt yields a blur
permitting S1-sampling. Algorithm 3 digitally simulates tilts in any direction, i.e simulates affine
viewpoints from any place of the sphere.

Algorithm 3: Generating digital tilts in any direction (u S1TtRφIu)

input: the digital image u and parameters (t, φ)
1. u = Rotate (u, φ) // with bilinear interpolation

// Rotate will frame the rotated version of u in a minimal rectangular image

2. u = GaussianBlur1D
(
u, σ = 0.8

√
t2 − 1

)
// Gaussian blur in the x-direction

3. u = Subsample (u, t) // Subsamples the image along the x-direction by a factor of t

return u

2.5 From SIIM to IMAS

We have seen in the previous sections how to compute a near optimal discrete set of affine transfor-
mations in order to cover a given region with a visibility α. The core idea of the IMAS approach,
described in Algorithm 4, is to apply this optimal set of transformations to images before compar-
ing them with a SIIM method. We showed in Proposition 3.6 of [23] that this algorithm offers an
affine-invariant version of the associated SIIM method. Indeed, the optimal covering ensures that
there is at least one pair of simulated images whose transition tilt is visible for the SIIM. Table 1
gives some examples of ensured visibility, depending on the assumed initial visibility α◦ of the SIIM
and the γ◦-region to be covered.

The core idea of the IMAS algorithm is illustrated by Figure 1.
Choosing the right α-covering is fundamental. It depends on the SIIM’s transition tilt tolerance

(with respect to a given image size) and the wanted extended visibility. Clearly, the parameter α
should be less than the initial visibility (determined by the transition tilt tolerance) of the SIIM.
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Algorithm 4: Formal IMAS (Image Matching by Affine Simulation)

input: query and target images: u and v.
parameters:
a routine SIIM-Detector, two sets of optimal coverings S1 = {t1k, φ1

k}k=1,...,n1 and
S2 = {t2k, φ2

k}k=1,...,n2 , provided by Algorithm 2
// ζ (D,u, t, φ) is a simple routine that filters out those descriptors in D which after back projection

with (TtRφ)−1 are not fully inside the domain of u

1. foreach k = 1, . . . , n1 do

Du
k = SIIM-Detector

(
S1Tt1kRφ1k

u
)

// Descriptors on each simulated image from u

Du
k = ζ (Du

k ,u, t
1
k, φ

1
k)

2. foreach k = 1, . . . , n2 do

Dv
k = SIIM-Detector

(
S1Tt2kRφ2k

v
)

// Descriptors on each simulated image from v

Dv
k = ζ (Dv

k,v, t
2
k, φ

2
k)

3. foreach (k1, k2) ∈ {1, . . . , n1} × {1, . . . , n2} do
Mk1,k2 = SIIM-Matcher

(
Du
k1
, Dv

k2

)
// Set of matches between u and v

return M =
⋃

(k1,k2)∈{1,...,n1}×{1,...,n2}Mk1,k2

3 Hyper-Descriptors in IMAS

IMAS algorithms implementations have to deal with various types of spurious or redundant matches
that do not appear in the corresponding SIIM approaches. In this section, we describe the reasons
behind the occurrence of these aberrant matches. Since false matches make it hard in practice to
identify the underlying image transformation, we propose a simple idea to eliminate most of them
without significantly reducing the number of good matches. To do this, we rely on the notion of
hyper-descriptors. A hyper-descriptor is a group of several local descriptors of the different simulated
images whose corresponding keypoints are close when back-projected in the original image plane.

3.1 Identifying Aberrant Matches

We identify in the following paragraphs three kinds of spurious or aberrant matches inherently
produced by IMAS algorithms.

First, these approaches naturally favor repetitive matches, since the same keypoints can be
matched in several pairs of simulated images. These matches are often good but provide redun-
dant information and should be considered as a single match.

Second, IMAS algorithms are prone to yield what we call multiple-to-one matches, where several
keypoints from the query image match one and the same keypoint from the target image. These
matches appear frequently in IMAS algorithms when they use Lowe’s second nearest neighbor accep-
tance criterion2. Since simulated target images with high absolute tilts are smaller and contain fewer
keypoints, the number of second nearest neighbors they provide is also smaller for these images than
for lower absolute tilts. In consequence, keypoints in these images are more likely to match those in
the query image and have a tendency to be involved in multiple-to-one matches. These matches can
be considered as false matches.

Third, IMAS algorithms have a strong tendency to give one-to-multiple matches, where a single
keypoint from the query image matches multiple keypoints from the target image. Such matches,

2In Lowe’s acceptance criterion, the ratio between the distance to the nearest neighbor and the distance to the
second nearest neighbor is thresholded to decide if a match is accepted or rejected.
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which can also be taken as indications of false matches, are naturally eliminated from SIIM approaches
by Lowe’s acceptance criterion. The multiplicity of keypoints comparisons for a given structure in
IMAS algorithms favors the apparition of such one-to-multiple matches.

In order to handle all the above spurious matches generated by Algorithm 4, a post-processing rou-
tine was proposed in [18, 24] and adopted by all subsequent IMAS approaches. This post-processing
is usually composed of three successive filters designed to remove repetitive matches, multiple-to-one
matches and one-to-multiple matches. Such a post-processing is described in Algorithm 5 and can be
applied after Algorithm 4 to identify the underlying transformation between the two images. Unfor-
tunately, many good matches also get eliminated by this hack. For example, if only one false match
comes to meet one end of a true match, then both matches get eliminated. Conversely, truly repeti-
tive objects create various multiple-to-one / one-to-multiple matches that will always get discarded
by this post-processing, and should not.

To avoid the loss of such correct matches, while eliminating the spurious and aberrant matches
described above, we introduce in the next section the notion of hyper-descriptor.

3.2 Hyper-Descriptors Matching

Definition 13. Let u be an image and {u1, . . . ,un} the optimal set of affine transformed versions
of u obtained with an IMAS algorithm. We call ρ-hyper-descriptor of u a group of SIIM descriptors
of this set of images, whose keypoints, once reprojected in u, are all contained in a ball of radius ρ.
The corresponding group of keypoints is called ρ-hyper-keypoint.

In practice, we choose the radius ρ between 3 and 6 pixels, and we keep this parameter fixed. In the
following, for the sake of simplicity, we will assume that ρ is given and speak directly about hyper-
descriptors. Figure 10 shows an exemple of hyper-descriptor composed of three SIIM descriptors
extracted from three different affine simulations of the same image u. This example illustrates an
ideal case in which the center of three SIIM descriptors coincide. In practice the keypoints are not
detected at exactly the same location. This ideal case would appear if no numerical errors were
involved when simulating tilts and obtaining descriptors around an infinitely accurate corresponding
keypoint.

Figure 10: A ρ-hyper-descriptor d = {ω1, ω2, ω3}
Black point - Center of d and of each ωi

Yellow parallelogram - SIIM descriptor ω1 on S1T2u
Brown parallelogram - SIIM descriptor ω2 on S1T4Rπ

4
u

Green parallelogram - SIIM descriptor ω3 on S1T6R 3π
2
u

Now that we have defined hyper-descriptors, Algorithm 7 describes a greedy approach to extract
them from an image u. First, a SIIM detector (SIFT or SURF for instance) is applied to all affine
simulated versions of u (the set of affine transformations is provided as a parameter of the algorithm).
Then, each detected SIIM descriptor gets assigned to an existing hyper-descriptor or a new one is
created. When assigned to an existing group, the center of the hyper-keypoint needs to be recomputed
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Algorithm 5: Post-Processing of Algorithm 4

input:
M - List of output Matches of Algorithm 4.
parameters:
ρ1, ρ2, ρ3 - Distance thresholds
GeometricFilter - An algorithm detecting a geometric consensus among a list of matches
(e.g. RANSAC, ORSA Homography [14], ORSA Fundamental [15] or USAC [22]).
output:
Filtered list of Matches

// a match m is composed by m.kq and m.kt which are respectively the associated query key-point

and target key-point.

// The spatial distance between any two key-points is denoted by Λ(k1, k2) =

∣∣∣∣
(
k1.x− k2.x
k1.y − k2.y

)∣∣∣∣

// unique filter

Mu = ∅
1. foreach m ∈M do

flag-unique = true
foreach mu ∈Mu do

if Λ (m.kq,mu.kq) ≤ ρ1 and Λ (m.kt,mu.kt) ≤ ρ1 then
flag-unique = false

if flag-unique == true then
Mu = Mu ∪m

M = Mu

// multiple2one filter

Mm = ∅
2. foreach m ∈M do

flag-multiple2one = false
foreach mm ∈M \ {m} do

if Λ (m.kq,mm.kq) ≥ ρ3 and Λ (m.kt,mm.kt) ≤ ρ2 then
flag-multiple2one = true

if flag-multiple2one == false then
Mm = Mm ∪m

M = Mm

// one2multiple filter

Mm = ∅
3. foreach m ∈M do

flag-one2multiple = false
foreach mm ∈M \ {m} do

if Λ (m.kq,mm.kq) ≤ ρ2 and Λ (m.kt,mm.kt) ≥ ρ3 then
flag-one2multiple = true

if flag-one2multiple == false then
Mm = Mm ∪m

M = Mm

// Filtering matches agreeing with geometric consensus

4. M = GeometricFilter (M)
return M

268



Fast Affine Invariant Image Matching

and the hyper-descriptor can be merged with a neighboring group. Each of the above computations
can be done with an O (1) complexity, implying that the descriptor extraction parts of Algorithm 4
and Algorithm 6 have about the same complexity.

Algorithm 6: IMAS (with hyper-descriptors)

input: query and target images: u and v.
1. D1 = IMAS-Detector (u) // as in Algorithm 7

2. D2 = IMAS-Detector (v) // as in Algorithm 7

3. M = IMAS-Matcher (D1, D2) // as in Algorithm 8

return M

Algorithm 7: IMAS-Detector

input: image u
parameters:
a routine SIIM-Detector, one set of optimal coverings S = {tk, φk}k=1,...,n, provided by
Algorithm 2

// The spatial distance between any two descriptors is denoted by Λ(d1, d2) =

∣∣∣∣
(
d1.x− d2.x
d1.y − d2.y

)∣∣∣∣
1. D = ∅ // Storage of hyper-descriptors

2. foreach k = 1, . . . , n do
foreach s ∈ SIIM-Detector (S1TtkRφku) do

if (TtkRφk)
−1 (s) is fully inside the domain of u then

if it exists d ∈ arg minb∈D Λ (b, s) such that Λ (d, s) ≤ ρ then
// Add the descriptor s to the ρ-hyper-descriptor d

d = d
⋃
{s}

d.x =
∑
s∈d s.x

|d| , d.y =
∑
s∈d s.y

|d|
foreach d1 ∈ D such that Λ (d1, d) ≤ ρ do

d = d
⋃
d1

d.x =
∑
s∈d s.x

|d| , d.y =
∑
s∈d s.y

|d|

else
// Create a new ρ-hyper-descriptor from s

D = D
⋃
{{s}}

return D

The distance between hyper-descriptors is defined as the minimal distance between the descriptors
they are composed of.

Definition 14. Let
d1 = {α1, · · · , αn1}
d2 = {β1, · · · , βn2}

be two hyper-descriptors where αi and βj are denoting SIIM descriptors. Let also δ be a distance for
SIIM descriptors. We call distance between d1 and d2 the positive number

∆ (d1, d2) = min
1 ≤ i ≤ n1

1 ≤ j ≤ n2

δ (αi, βj) .
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Mariano Rodŕıguez, Julie Delon, Jean-Michel Morel

Remark. Usually δ (α, β) is either ‖α− β‖L1 , ‖α− β‖L2 or the Hamming distance3.

We can now derive an IMAS Matcher algorithm between hyper-descriptors (see Algorithm 8).
We use here a straightforward generalization of Lowe’s criteria to the previous distance. If two
hyper-descriptors (d1, d2) define a match, then the left and right positions of a match are refined to

arg min
(α,β)∈d1×d2

δ (α, β) .

Algorithm 8: IMAS-Matcher

input: two sets of hyper-descriptors D1, D2.
parameters: the match ratio λ ∈ ]0, 1[.
1. M = ∅ // Storage of Matches

2. foreach d ∈ D1 do
a ∈ arg minc∈D2 ∆ (d, c) // ∆ (x, y) = min(α,β)∈x×y δ (α, β)

b ∈ arg minc∈D2\a ∆ (d, c)

if ∆(d,a)
∆(d,b)

≤ λ then

M = M
⋃

arg min(ζ,η)∈d×a δ (ζ, η)

return D

In order to get similar performances, the parameter match ratio in Algorithm 8 should be greater
than its homologous in the SIIM-Matcher of Algorithm 4. Indeed, the second nearest neighbour
applied on each simulated target image is less restrictive than just one application of it on all
simulated target images at the same time.

In practice, for SIFT based descriptors, the match ratio (λ) of Algorithm 8 is set to 0.8. This
configuration seems to correspond to a match ratio of 0.6 for the SIIM-Matcher of Algorithm 4.

Note that hyper-descriptors are not associated with a given affine transformation but rather
group descriptors from several simulated versions of u. Comparing all the hyper-descriptors of two
images u and v is therefore faster than comparing the descriptors of all their simulated versions.
Indeed, when computing the distance between an hyper-descriptor of u and an hyper-descriptor of
v, the computation can be stopped as soon as this distance exceeds the second smallest distance
already calculated for this point. This step saves much more time with hyper-descriptors than with
conventional descriptors.

The use of hyper-descriptors allows to completely remove the classical filters used in standard
IMAS algorithms to avoid problematic matches. Indeed, all post-processing filters that were usually
applied in standard IMAS algorithms are now pointless:

1. Filtering repetitive matches (the unique filter step of Algorithm 5) is no longer useful. Al-
gorithm 7 considers groups of close descriptors as one single hyper-descriptor holding all the
information. A match between two hyper-descriptors is considered as a single match.

2. Filtering one-to-multiple matches is now naturally included by the fact that the IMAS-
Matcher of Algorithm 8 generalizes Lowe’s criterion [10] to hyper-descriptors.

3. Multiple-to-one matches are not forbidden with hyper-descriptors but do not appear any more
in practice.

3The Hamming distance is mostly used with binary descriptors.
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Algorithms 7 and 8 finally give birth to Algorithm 6, an IMAS algorithm based on hyper-
descriptors. As simple as it is, this algorithm increases radically the quality of matches. No post-
processing is needed in order to extract the underlying meaningful transformation. Thus, any pa-
rameter estimation approach like RANSAC [5], LO-RANSAC [4], ORSA [14, 15] or USAC [22], can
be applied right after Algorithm 6. We then propose that any IMAS based on Algorithm 4 should
evolve into Algorithm 6.

4 Two Structural and Computational Improvements

We describe in this section two computational tricks. The first one slightly modifies Lowe’s acceptance
criterion in order to enable multiple matches for each hyper-descriptor. The second one is purely
used for speed-up considerations, and consists in filtering flat descriptors in the early stages of the
whole matching algorithm.

4.1 A Contrario Matching Revisited

In Lowe’s acceptance criterion, the ratio between the distance to the nearest neighbor and the distance
to the second nearest neighbor is thresholded to decide if a match is accepted or rejected. The second
nearest neighbor is taken in the target image. This has several drawbacks. First, it introduces a bias
for small target images, which contain less descriptors and therefore pass the threshold more easily.
A second structural bias is that this threshold also eliminates matches with repeated regions in the
target images. One way of allowing one-to-multiple matches that are truly present in the target image
is to create an a contrario model from an independent base of keypoints. We therefore propose to
take a third image as background model, as it was first proposed in [3]. Instead of selecting the second
nearest descriptors among those of the target image, Algorithm 9 uses the nearest hyper-keypoint
among those of this third image.

Algorithm 9: IMAS-Acontrario-Matcher

input: three sets of ρ-hyper-descriptors D1, D2, Da.
parameters: the match ratio λ ∈ ]0, 1[.
1. M = ∅ // Storage of Matches

2. foreach d ∈ D1 do
a ∈ arg minc∈D2 ∆ (d, c) // ∆ (x, y) = min(α,β)∈x×y δ (α, β)

b ∈ arg minc∈Da ∆ (d, c)

if ∆(d,a)
∆(d,b)

≤ λ then

M = M
⋃

arg min(ζ,η)∈d×a δ (ζ, η)

return D

The idea behind Algorithm 9 is consistent with Lowe’s justification. It evaluates on the a contrario
image how likely it is that a descriptor matches so well just by chance.

By equipping Algorithm 6 with the IMAS-Matcher of Algorithm 9 we allow repetitions in an
image to be recognized. In this way, more reliable information is passed on. For example, keypoints
lying on repetitive windows in a building will not be removed, they will rather match with each other
and add up when the meaningful transformation is queried while post-processing.
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4.2 Filtering Flat Descriptors for Faster Computations

In order to speed-up the matching part of the algorithm, we can identify and eliminate unidirectional
descriptors in the early stages of the algorithm. Flat descriptors are more likely to match each other
and create too many false matches. These flat descriptors are identified with two internal filters in
SIIM:

1. On-edge keypoints are considered as unstable. To detect an edge response, the ratio of smallest
to largest principal curvatures of the DOG function (eigenvalues of the Hessian) is to be below
a threshold. In our case, we set the threshold to 0.08 for octave scales less than 1 and to 0.06
otherwise.

2. Strongly biased descriptors towards a particular direction can also be eliminated by the means
of the structure tensor. The eigenvalues of the structure tensor effectively summarize the
predominant directions of the gradient around the keypoint. In our case, the ratio between the
smallest and largest eigenvalues is set to be less than 0.06.

This filter is nonetheless optional and does not change significantly the final result. However, it often
reduces the total computing time.

5 Numerical Results

Our IMAS method can be tested as an IPOL demo4 for two of the most popular state-of-the-art
SIIMs, namely SIFT and SURF5. The IMAS versions of SIFT and SURF are now ensured to have
minimal complexity thanks to the near optimal coverings described in Section 2.

Several versions of SIFT can also be tested in our IPOL demo. HalfSIFT [8] and RootSIFT [1] have
been successfully applied in Computer Vision. They yield small modifications of SIFT descriptors
but improve the quality of the results. By only taking the square root of a SIFT descriptor after
a normalization, RootSIFT is known to outperform SIFT in terms of transition tilt tolerance [23].
Unfortunately, most SIIMs fail in the case of non monotone intensity variations. HalfSIFT attempts
to handle this by generating mod π-oriented descriptors. Indeed, this property makes HalfSIFT
robust to contrast inversions. It improves the comparison of day/night images of the same objects,
or images of the same objects taken in different wavelengths. Finally, a third descriptor, called
HalfRootSIFT, cumulates the effects of RootSIFT and HalfSIFT. It is also available in the demo
and improves over HalfSIFT.

5.1 Using Optimal Coverings

We first illustrate the gain obtained by using our near optimal coverings (see [23]) instead of the
classical coverings proposed in [18, 21]. We refer the reader to [23] for a more rigorous approach.
Table 2 shows a brief comparison between classical and optimal coverings for two SIIMs: SIFT + L1
norm and Root-SIFT + L2 norm.

Retrieved homographies in Table 2 were visually the same for all fours methods. The mean
homogeneous homography matrix Hmean and its standard deviation are shown in (5). As those
statistics are difficult to interpret, we then compute in (6) the maximal distance of mapped points
for all four homographies hi with respect to the mean homography hmean. Equation (6) also indicates

4https://doi.org/10.5201/ipol.2018.225
5We use the SURF version developed in [20] which improves its former version in transition tilt tolerance.
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M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

ASIFT + L1 801 13.7 189.6 6 36 0
Optimal ASIFT + L1 401 8.9 79.2 3 14 0

ARoot-SIFT + L2 821 13.7 189.6 6 10 1
Optimal ARoot-SIFT + L2 503 7.34 53.8 3 3 0

Table 2: Matching methods performance over query and target images from Figure 11. Computations were performed on
an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz with 4 cores.
M - Matches.
ar - area ratio.

Figure 11: Graffiti.

that the time saved in computations when using optimal coverings does not affect the accuracy of
the retrieved homographies.

Hmean =




0.4356 −0.6739 455.6987
0.4460 1.0201 −51.2587
0.0005 −0.0001 1.0000


 , std =




0.0011 0.0052 0.9886
0.0016 0.0061 0.3213
0.0000 0.0000 0


 (5)

max
v∈ query image domain

max
i∈1,··· ,4

‖hmean (v)− hi (v)‖L2 = 3.2994. (6)

5.2 Using Hyper-Descriptors

Using hyper-descriptors, introduced in Section 3, usually yields more quality matches than using
standard descriptors. Descriptors that once were eliminated by the multiple-to-one / one-to-multiple
filter are now kept without causing a burst of false matches. This means that no post-processing is
needed after Algorithm 6. In order to identify the underlying meaningful transformations, this demo
relies on four versions of the RANSAC Algorithm [5]: ORSA Homography [14], ORSA Fundamen-
tal [15] and USAC (Homography and Fundamental) [22].

We first highlight the need of all filters in the case of usual descriptors in Algorithm 4 and the
advantage of Algorithm 6. Table 3 gives detailed information on how filters perform when applied
sequentially from left to right. Optimal Affine RootSIFT was selected to perform all comparisons in
this section.

It is usually required to remove repetitive matches when using RANSAC. Surprisingly, Table 3
(rows 3 and 4) shows an example in which applying the unique filter results at the end in a smaller
quantity of true matches than not applying it. In practice, it is usually not the case and repetitive
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matches might produce a degenerate case for RANSAC, yielding at the end an inconsistent trans-
formation. Table 3 (rows 1 and 2) shows that the application of multiple-to-one and one-to-multiple
filters can be a more crucial step.

The last row of Table 3 shows that Algorithm 6 is already giving a clean set of matches and that
most of the post-processing (Algorithm 5) is now pointless, except for the geometric filter. Figure 13
shows the output matches from Algorithm 4 and Algorithm 6 corresponding respectively to the
second and last rows of Table 3. Figure 13 visually shows the improvement in terms of quality of
Algorithm 6 over Algorithm 4.

IMAS Output Unique Multiple-to-one and one-to-multiple ORSA Homography
Algorithm Matches Filter Filters Filter [14]

Algorithm 4 10986 - - 6
Algorithm 4 10986 8864 - 0
Algorithm 4 10986 - 122 42
Algorithm 4 10986 8864 117 38
Algorithm 6 309 - - 98

Table 3: The first and second columns represent an IMAS algorithm and its output. From the third to the fifth columns
one reads the sequence of filters appearing in Algorithm 5 applied (or not applied) to the output of the IMAS algorithm
in question (in all cases configured for Optimal Affine-RootSIFT) which was run on the images from Figure 12. The final
number of matches is coloured in blue if they are in accordance with the underlying homography; red on the contrary.

Figure 12: Adam.

5.3 Using the A Contrario Version of Lowe’s Ratio Criterion

The a contrario matching in IMAS often incurs in a larger quantity of valid matches being accepted.
However, the whole process relies on the hypothesis that the a contrario keypoints database represents
an acceptable background model. This means that we should pay attention to the choice of the a
contrario image. Usually, it is desired for this image to contain a wide variety of descriptors; natural
images containing vegetation and water seem to go along with this property. Figure 14 has been
selected for our experiments.

The interest of this a contrario version of Lowe’s acceptance criterion lies in two properties:

1. First, it has a tendency to increase the number of matches, without increasing the number of
false matches. This is illustrated in the following by a panorama stitching experiment.

274



Fast Affine Invariant Image Matching

(a) Algorithm 4 followed only by the unique filter of Algorithm 5, corresponding to the second row
of Table 3. Too many multiple-to-one and one-to-multiple matches make it impossible for ORSA to
determine the underlying homography.

(b) The raw output of Algorithm 6, corresponding to the last row of Table 3.

Figure 13: Analyzing Algorithms 4 and 6

Figure 14: Selected a contrario image for our demo.

2. Second, it authorizes multiple matches per descriptor, hence the detection of structure even if
it is repeated multiple times in the target images. This is illustrated in the following by the
detection of repeated structures.
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Panorama stitching Panorama stitching is the process of combining two or more images with
overlapping regions from different viewpoints to produce a single panorama. If the homography
relating two images is perfectly known, then each point in one image can be located with respect to
the other image’s coordinates.

ORSA Homography [14] can be applied to assess if a homography explains the output matches
of Algorithm 6. If it exists, that homography contains all the information needed for retrieving the
query image around the target one. Figure 15 shows 474 matches in accordance with the homography
retrieved by ORSA [14] applied right after Algorithm 6. Figure 16 shows a panorama stitching using
this homography.

A slightly improved version of the above panorama stitching is obtained by introducing the a
contrario matcher of Algorithm 9. The a contrario keypoints database was extracted from the a
contrario image in Figure 14 by applying Algorithm 7. Resulting in 521 matches explained by the
retrieved homography. Figure 17 shows the stitching result.

Figure 15: 474 matches among the output of Algorithm 6 were explained by ORSA Homography [14].

Detection of repeated structures As explained in Section 4.1, true repeated descriptors will
annihilate each other if Algorithm 8 is applied. Figure 18 shows an example where most descriptors
in the target image find a repeated copy somewhere in this very image. Only 22 matches were found
in this scenario!

Figure 19 highlights the full potential of the a contrario matcher of Algorithm 9. This optional
a contrario matcher is indeed well adapted when many repetitions are involved in the target image.
Obviously its success depends on the choice of the a contrario image. On the other hand, this
dependence is proved to be weak in practice (see Table 4).
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Figure 16: Panorama stitching on Graffiti using the retrieved homography found by ORSA [14].

Figure 17: Panorama stitching on Graffiti with a contrario Matching. In this case, 521 matches among the output of
Algorithm 6 with a contrario Matcher were explained by an homography retrieved by ORSA [14].

6 Conclusion

Three concepts to improve affine invariant image matching have been presented in this work. First,
optimized set of simulations were presented in Section 2 for generic IMAS algorithms depending on
the SIIM and the targeted viewpoint tolerance. In Section 3 a more robust framework for IMAS
algorithms was presented based on generalizations of standard keypoints and the second closest
neighbor criteria introduced by Lowe [10]. Finally, the a contrario matching of Section 4.1 is an
optional way of keeping true repetitive matches in images. However, the success of the a contrario
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A contrario image Size Number of Hyper-Descriptors Found Matches

640 × 480 1181 227

512 × 512 2601 212

668 × 498 2891 198

Table 4: Weak dependence on the a contrario image. The a contrario version of Algorithm 6 was applied on the images
from Figure 19 with three different a contrario images shown in this table. The resulting output matches are varying around
the 222 found matches in Figure 19, visually depending on the number of hyper-descriptors.

Figure 18: A total of 26 matches were found by Algorithm 6 with the matcher of Algorithm 8.

matcher relies strongly on the assumption that our a contrario hyper-descriptors are able to capture
the density of the space of natural hyper-descriptors.
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Figure 19: A total of 222 matches were found by Algorithm 6 (with the a contrario matcher of Algorithm 9). Comparing
these results to those of Figure 18 shows the interest of the a-contrario matcher.

279
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7 Image Credits

belong to the Extreme View Dataset6.

was taken from http://wallpaperhdpark.com/awesome-nature-pictures

were taken from the IPOL demo Anatomy of SIFT 7.

Images appearing in Figures 18-19 c© Julie Delon.
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